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Definitions 
 
 
 
The following are key terms for this thesis. These terms have been found in the literature to 
have slightly different definitions. To minimize confusion and to help with the overall flow of 
the thesis, these terms are defined below. 
 
Abundance:   the number of individual plants (counted or estimated) within a 

population. 
Bioclimatic model:  a model which correlates species occurrence records with 

climate variables to predict the extent of climatic conditions 
within which a species can survive. 

Climate envelope:  the spatial polygon within which the climate is suitable for a 
species to survive. 

Fruit:    mature ovary containing the seed. This is what I refer to in 
thesis for Actinotus helianthi, as the seed was not required to be 
isolated for germination or burial experiments. 

Macroclimate:   a set of broad-scale climate variables. 
Population:   a number of individuals plants growing in an area with 

identifiable margins/boundaries. There are many methods and 
quantitative analyses available for defining margins (Krebs 
1999). However I used a simple approach while surveying 
populations in the field and determined the boundary to occur 
when no other plants were found within a 50 m distance away 
from the population. This was undertaken as the plant were 
easily identified when in flower. 

Seed:    the fertilized ovule containing the embryo, stored food material 
(endosperm) and surrounded by an outer seed coat. 

Species distribution model: a model which correlates species occurrence records with 
environmental variables (climate and nonclimate) to predict the 
extent of suitable environmental conditions within which a 
species can survive. 

Traits:    Phenological or physical characteristics of individual plants 
that can be measured or recorded under field or laboratory 
conditions. Traits recorded or measured in this thesis include 
plant height, number of umbels, leaf length, stem width, 
germination, and seedling height. 

Umbel:   A cluster of flowers forming part of an inflorescence. For 
Actinotus helianthi, this does not include the surrounding 
petaloid involucral bracts. 
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Thesis abstract 
 
 
 
Species distribution models (SDMs) are predictive, numerical models that relate climate and 

other environmental data to species distributions. These models are useful for quantifying the 

spatial configuration or change of suitable habitat for a given species. This makes SDMs 

indispensable for conservation planning and climate adaptation management. It is timely, 

therefore, to examine the underlying model assumptions more carefully. The models typically 

use data on the known localities of individuals of the species as an indication of what 

environmental conditions the species will persist under. Each confirmed record is treated 

equally as an indication of suitability, thereby assuming that all populations are equal. 

However, populations vary considerably in the number of individuals, ranging from a few 

individuals to many thousands with implications for how they might persist. The number of 

individuals may also indicate another dimension to how suitable the environment is to the 

growth, survival and reproductive success of that species. A second assumption is that within 

each population all individuals are equivalent in their requirements from the environment. 

My thesis focuses on testing these assumptions by performing field and laboratory 

experiments, which incorporated population level data to determine whether populations are 

equivalent in their response to current or future environments. I then incorporate some of the 

limiting environmental factors identified in my experiments to produce a new SDM. My 

approach demonstrates great promise for further enhancing the use of predictive models to 

assess the impact of future climate on species distributions. 

 

I begin my thesis by introducing and summarizing Species Distribution Models 

(SDMs) and Bioclimatic Models (BMs). Here, I discuss that, given the appropriate ecological 

question, climate-only models can be an integral part of research and management. I then 

discuss the benefits and issues associated with most distribution models. Specifically, I argue 
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that important limiting factors, such as species traits, species interactions and environmental 

barriers, should be examined to determine the capacity for these to be included as factors in 

distribution models. 

 

Given the assumption of SDMs to treat each population the same, I use an exploratory 

analysis to examine whether plant traits within current field populations can be predicted, in 

part, by climate. This approach also tests the assumption inherent in BMs that climate is the 

main factor influencing species distributions. In Chapter 2, therefore, I examine whether 

climate envelopes, generated by overlaying temperature and rainfall variables onto 

geographic species occurrence records, reflect the ecological processes that determine 

whether an individual plant will survive. To achieve this, I sampled plants from 40 field 

populations of Actinotus helianthi across the known geographic distribution of the species. 

Climate envelopes were generated using a Hierarchical Cluster Analysis to group populations 

which had ≥ 84% similarity in the local climate. To determine the extent to which plant traits 

are influenced by current local climate, I used multivariate analyses to compare plants with 

similar phenological traits with their bioclimatic data. Plant traits within climatically similar 

populations were highly dissimilar. Therefore, SDMs which rely solely on climate factors 

may be over-generalizing potential distribution shifts and may not encompass more local 

effects. This raises the question of what factors are contributing to this variation in species 

traits. 

 

To examine the existing variation in plant traits associated with the reproductive 

niche, the reproductive ecology of A. helianthi is described to better understand how it might 

impact on the species reproductive success. Specifically, in Chapter 3, I examine the floral 

phenology and breeding system of the species to determine whether the type of pollination 

affects seed set and germination. Four pollination types – intra-umbel geitonogamy, inter-

geitonogamy, xenogamy and open control – were tested in two populations. Intra-umbel 
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geitonogamy produced very low seed set. By contrast, seed set and germination were not 

significantly different between the three other pollination treatments. The results indicate that 

geitonogamy does not adversely affect overall seed set and germination. 

 

It is then necessary to quantify the extent of variation that exists among current 

populations of A. helianthi. Specifically, I test whether early plant performance traits are 

genetically-fixed by location and if reproductive success is impacted by site-specific 

interactions with insect visitors. The first experiment in Chapter 4 involved growing plants 

from seed in a common garden environment. Plants from 17 populations of A. helianthi were 

tested for germination, early growth and survival. The germination, seedling growth and early 

survival were found to vary by population. Variation in these early performance traits existed 

at multiple levels from the maternal plant to biogeographic regions. The second experiment 

examined localized species interactions by recording insect visitors to umbels on plants from 

nine populations of A. helianthi across New South Wales (NSW). The abundance and 

diversity of insect visitors also varied among populations, and seed set was subsequently site 

specific. These results indicate the likelihood that populations are adapted to the local 

environment. 

 

Soil is one of the most commonly known local environmental factors that influence 

plant growth and survival. However, the edaphic environment is rarely included in predictive 

models. In Chapter 5, I build on my previous results, by growing plants from seed in local 

and nonlocal soils to examine the interactive effect of climate and soil on predicted future 

distributions. Soil samples were collected at intervals of 1 km, 10 km, and 40 km from local 

populations, following the direction that favourable climate was predicted to shift in the 

future using a bioclimatic model in MaxEnt. Seed emergence was significantly influenced by 

population and origin of soil. The model that best explained the variation in seedling growth 

contained pH, sodicity, salinity and phosphate. Soil pH and sodicity were added as spatial 
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environmental predictors to the original bioclimatic MaxEnt model. Following the initial 

experimental evidence, the climate-only model was determined to be over-predicting areas 

with high suitability (60-100% suitability) for A. helianthi. 

 

Trait data has been demonstrated to be an important predictor for the variation 

between A. helianthi populations. However, collecting enough trait data in the field can be 

costly and time consuming. Therefore, in Chapter 6, I present a novel experiment in which 

plant trait data collected from herbarium specimens of Actinotus forsythii, A. minor and A. 

suffocatus are analyzed using the methodology described in Chapter 2. I employ this method 

to illustrate the capacity to detect patterns between plant traits and climate factors that are 

likely to depend on the geographic extent or scale. The results presented in this chapter 

provide insights into whether bioclimatic models should, or could, be performed using 

herbarium data. 

 

I summarize the main findings of my thesis in Chapter 7. I discuss some of important 

questions which arise from my results. I outline several directions that future work should 

take to further enhance, and compliment, the findings of my thesis. My thesis creates a means 

to enhance SDMs by testing some of the assumptions inherent in these models. I have 

successfully illustrated that ecologically limiting factors, such as soil, can be incorporated 

into a SDM to further enhance predictions. Since plant traits differed among populations from 

climatically similar regions, it is important to include these in SDMs as they will have a 

different response to climate across a geographic distribution. The choice of predictors in 

SDMs is crucial to their success, as the model assumes that all relevant factors are included. 

My thesis is an important foundation for experimentally testing the assumptions inherent in 

most SDMs, while at the same time, illustrating how these factors can be added to, or 

combined with, the initial model. 
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Chapter I 

GENERAL INTRODUCTION: NEW APPROACHES TO MODELLING SPECIES 

DISTRIBUTION  

 

1. Introduction 

Climate change presents a significant threat to the function of ecosystems (Bakkenes et al. 

2004; Hughes 2003; Stocker et al. 2013), especially when combined with other disturbances, 

such as habitat fragmentation and invasive species (Mokany and Ferrier 2011; Williams et al. 

2008). Ecosystems typically experience some level of environmental variability, but global 

climate change presents pervasive, rapid, challenges that may transform all ecosystems. To 

survive and reproduce, organisms must adapt or face local extinction. Therefore, the ability of 

a species to withstand future environmental conditions will be dependent on the plasticity or 

fitness of the individuals in its populations, as well as having the necessary traits/mechanisms 

to find and colonize alternative suitable environments. Environmental factors, in particular 

temperature and moisture availability, are known to influence plant traits, including flowering 

time (Dahlgren et al. 2007; Rumpff et al. 2010), seed maturation (Chambers and Keatley 

2010), seed dispersal (Venable and Brown 1988), and seed dormancy (Baskin et al. 1998; 

Cochrane and Probert 2006; Scholten et al. 2009; Schütz and Milberg 1997; Vandelook et al. 

2007). These traits represent population-level differences. However, how the data is included 

in a model will be dependent on the biota studied. For example, predictive studies which 

model animal species have used models to assess species vulnerability under climate change, 

such as thermal tolerance (Helmuth et al. 2002; Pörtner 2001). Furthermore, there is recent 

evidence that suggests mobile species should be modelled at the landscape scale (Harris et al. 

2014). 
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 Given the influence of environmental factors on different species, current research has 

focused on the development of quantitative methods to predict the impact of climate change 

on species distribution and species persistence (Elith et al. 2006; Kearney et al. 2010; 

Mokany and Ferrier 2011). The most common approach to predicting the impact of 

environmental variation is to model distribution changes to individual species in response to 

climate, and this is referred to as either a Species Distribution Model (SDM) or Bioclimatic 

Model (BM). These models have great potential to inform management and policy as the 

application of SDMs has demonstrated the potential magnitude of climate effects on the 

future distributions of species. However, a number of studies have recently criticized the 

usefulness of BMs and have discussed several assumptions which violate environmental 

processes, including species traits and interactions, as well as other landscape factors (Araújo 

and Peterson 2012; Heikkinen et al. 2006; Luoto et al. 2005). Consequently, these models 

could create an inaccurate evaluation of a species ability to adapt under changing climate as 

they do not incorporate population trait differences (Albert et al. 2010a). For example, 

despite showing a correlation between a species and an environmental variable, it remains 

unknown whether this is due to a direct relationship, a biotic or abiotic interaction giving an 

indirect effect, or a response to another factor not included in the model (Kearney and Porter 

2009; Keith et al. 2008; Mac Nally 2000). Therefore, whether broad-scale BMs can 

accurately represent the major contributing forces that shape species traits within populations 

and their distributions has not been fully tested. This is due to a paucity of experimental data 

concerning the effects of other non-climatic factors on a species. These factors should be 

most relevant at fine scale projections since climate is classified as a broad, macro-influential 

factor (Austin and Van Niel 2011b; Petrů and Tielbörger 2008). 
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From the emerging literature, it is propitious to evaluate the ability of BMs to 

accurately depict a species distribution. In this Chapter, I review and summarize SDMs and 

BMs by initially outlining the data required to build a model, and then define the concept of 

these models in ecological niche theory. In doing so, the limitations of BMs are made 

apparent within the framework of complex ecological systems. However, it is important to 

discuss that under the appropriate ecological questions, BMs form an integral part of 

ecological research and management. In this thesis, several novel approaches are combined to 

address some of the issues associated with SDMs, including quantifying several plant traits 

from the ‘reproductive niche’. This work is among the first to combine several population 

reproductive niche traits and constraints with distribution modelling, and this aspect of the 

project is timely. However, several recent publications have demonstrated that including 

population traits, such as phenological and other species attributes, generates significantly 

different model outputs (Chuine 2010; Hanspach et al. 2010). Albert et al. (2010b) show that 

significant variation can exist for a plant trait within a population, and this may account for 

up to 30% of the total trait-based variation for a species (Albert et al. 2010a). Adding to this 

evidence of within-population variation, Wright et al. (2001) report several leaf traits to 

display greater variation within a single habitat than across habitats. That traits may be more 

influenced by their local climate than other factors will be examined in this thesis. By 

examining how traits vary across populations in one species permits a greater understanding 

of how life-history factors can influence distribution. 

 

2. Building SDMs 

2.1.  Defining the model 

BMs can be defined as testing predictions by correlating species occurrence records with 

climate variables to spatially depict the extent of the climatic conditions within which a 

species can survive (i.e. the climate ‘envelope’) (Booth et al. 2014; Walker and Cocks 1991). 
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The basic modelling approach is achieved by superimposing spatial grids (of different sizes 

depending on resolution) over the study area. The initial layer contains biological data, often 

in the form of presence/absence or presence-only data. Each environmental predictor is added 

as a separate layer to the grid. The most common and widely available environmental data are 

temperature and precipitation (and their derivatives) (Hijmans et al. 2005), and these are 

usually stored through a geographic information system (GIS) (Goodchild 2003; Skidmore 

2002). These models can then be applied to future climate scenarios to enable a predictive 

assessment of changes to species distributions across regions or countries, either as range 

expansions, range contractions or range splits (Sommer et al. 2010). 

 

Predicting how distributions might change can be problematic as climate-

environmental-species interactions can be spatially and temporally dynamic. To avoid 

complications, one of the most commonly used SDMs has been to predict distributions of 

individual species (Ferrier and Guisan 2006). Models rely heavily on the validity and 

integrity of input data. Most models operate under the classic niche concept (realized vs 

fundamental niche) described by Hutchinson (1957), which states that species distributions 

are restricted by their interactions with other organisms (Sinclair et al. 2010). For example, 

Davis et al. (1998b) used captive Drosophila melanogaster to demonstrate that changes in 

temperature had a significant interaction with competition. However, the adopted premise of 

these models is that the current climatic geographic distribution is the most accurate 

representation of a species’ tolerance to climate. In other words, the species is at equilibrium 

with climate as it only occurs in areas that are climatically suitable while being absent from 

non-suitable environments (Hutchinson 1957). This is unlikely to be true, as complex 

relationships exist at multiple levels for most species (Araújo and Pearson 2005). This 

principle will be tested in the following Chapters of this thesis. 
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2.2. Data inputs/outputs 

2.2.1. Biological data 

Biological data can be gathered from ecological surveys, from specimen collections and/or 

from historical observations. Due to practical, ethical, financial or logistical restrictions, 

surveys are often sparse, incomplete, and biased. This can mean that the collected data may 

cover a smaller area than originally planned. Data paucity is a major concern for validating 

model accuracy and has been previously reported to directly affect model predictions for 

plants and animals (Hernandez et al. 2006; Kadmon et al. 2003; Wisz et al. 2008). There are 

several reasons why sample size is important, as outlined by Wisz et al. (2008), including: (1) 

uncertainties surrounding statistical parameters (e.g. means) that decrease with increasing 

sample size; (2) outliers are highly influential in small data sets, and more importantly; (3) 

small sample sizes often will not capture niche variation. Therefore, to survey biological data 

efficiently, an environmentally stratified design is required where abundance data is then 

recorded (Austin 1998; Elith et al. 2006). 

  

Despite sometimes involving large numbers of individuals, models which use 

biological data from historical (e.g. herbarium) records also suffer from several problems 

(Austin 1998; Ferrier and Guisan 2006). Firstly, since the intent of collections/collectors may 

be unclear (Elith et al. 2006), the records are presence-only and often lack any information 

from sites visited where the species was absent, or other environmental data. Secondly, the 

locations of older records may be too inaccurate to be of value (Austin 1998). Finally, the 

localities where species have been recorded from are often clumped in areas with easy 

accessibility (e.g. roads and fire-trails), representing a haphazard or biased survey at best. 

However, historical specimen records provide physical confirmation that a species was 

present in an area, compared to anecdotal observational data. It is also suggested that 

including ‘pseudo-absences’ derived from the presence of other species in the community or 
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ecosystem provide the best supplementary information for building models using presence-

only data (Ferrier and Guisan 2006). 

 

2.2.2. Distribution predictors 

Each environmental predictor is stored as a GIS grid layer. In contrast to species occurrence 

or trait data, environmental data are stored in every grid cell, which can be set to different 

resolutions or sizes. Environmental factors can have a direct effect on species through 

physiological restrictions, such as temperature and pH, or as resource-limiting, such as water 

availability, light, competition and food. Indirect factors, including slope, elevation and 

latitude, may have no immediate influence on a species’ distribution, but are still important 

and should also be considered in SDMs when the data is available (Austin 2007; Austin 

1998). 

 

 With the increasing availability of species presence data, access to high-resolution 

environmental data has also become widely available from online databases. This information 

can be derived from satellite images and constructed from detailed historical and 

contemporary climate records (Elith et al. 2006; Hijmans et al. 2005; Turner et al. 2003). 

However, which environmental data to include, how to obtain it, and at what resolution is 

decided by the modeler. Whatever the combination of environmental factors selected, the 

data for that model are then assumed to be the main spatial limiting factors.  

 

Climate 

Climatic conditions are widely acknowledged to be a major determinant for current species 

distribution patterns (Aitken et al. 2008; Helmuth et al. 2002; Sommer et al. 2010). Indeed, 

distribution shifts and adaptation for many woody plant species were a response to the 

climate as far back as the late Quaternary (Davis and Shaw 2001). This is because climate 

6 
 



directly influences species fitness. Clausen et al. (1941) noted that due to many plant species 

having latitudinal or longitudinal restrictions meant that there can then be physiological 

limitations to growth and survival due to the effects of climate. Therefore, it could be 

assumed that using climatic data extracted from a set of known occurrence points, should 

reasonably capture the climatic limitations of the species. This might then be useful for 

predicting where a species could be present across a large landscape in the future should the 

distribution follow any changes in the climate (Beaumont et al. 2005).  

 

As explained above, predicting distribution shifts using climate alone can lead to 

significant overestimations of species loss (Araújo and Peterson 2012; Heikkinen et al. 2006; 

Luoto et al. 2005; Pearson and Dawson 2003). In a large-scale study, Thuiller et al. (2005) 

predicted that more than half of the 1,350 European plant species tested would become 

vulnerable or threatened by 2080. The authors point out, however, the impact of climate 

change lessens when species are more able to move across the landscape – such as runners 

(i.e. horizontal stems) vs. seed dispersers (Thuiller et al. 2005). There are hundreds of 

climatic factors that could be derived from data, including temperature, precipitation, solar 

radiation, so, together with their inherent variation between and within seasons, the 

interpretation of the data is a complex process (Franklin 2009). Furthermore, widespread 

species tend to exhibit regional or local differences in their ecological traits (Osborne and 

Suárez-Seoane 2002). Luoto et al. (2005) noted that model performance for any species is 

dependent on species prevalence, latitudinal range and spatial autocorrelation (i.e. if species 

presences are clumped in an area). Therefore, efforts should be made to improve the current 

methods used to model data, as well as the how the raw data itself is collected. The latter may 

be more important, as missing limiting data will be critical for model accuracy (Huntley et al. 

2010b). 
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The absence of a species from climatically-suitable areas poses the question of how 

far from the climatic equilibrium is the current species distribution? In a broad sense, there 

are three main limitations that can inhibit model predictions as described by Mokany and 

Ferrier (2011). The first, the ‘Linnaean shortfall’ refers to lack of knowledge of how many 

species which have yet to be identified. The second, the ‘Wallacean shortfall’ refers to poor 

knowledge of a species distribution, often due to incomplete presence/absence data. The 

final, ‘Hutchinsonian shortfall’, states that for most species, we have a poor understanding of 

what species attributes or traits influence their niches. These terms are a newer way of 

referring to taxonomic distribution, and species traits or attribute limitations. When species 

locations are known, the ‘Hutchinsonian shortfall’ is arguably the most important limitation 

as this prevents mechanistic predictions of temporal changes using key population traits and 

interactions with other species in an ecosystem. Therefore, despite acknowledging the 

importance of the niche concept, many BMs are unable to compensate or account for this 

complexity (Sinclair et al. 2010). I will attempt to account for the complexity by performing 

several experiments to quantify traits associated with the ‘reproductive niche’ in subsequent 

chapters. 

 

2.3. MaxEnt – a modeling program 

With an increasing availability of environmental and climate data, there has been a rapid 

development of statistical programs capable of predicting and graphically illustrating 

geographic distributions of species. In this thesis, I use the commonly known SDM program, 

MaxEnt (maximum entropy) (Phillips et al. 2004). MaxEnt is a general-purpose SDM 

program which makes predictions of species distributions using incomplete or presence-only 

datasets (Phillips et al. 2006; Phillips and Dudík 2008). The premise of MaxEnt is to estimate 

the probability of a species’ distribution using maximum entropy (i.e. the most spread out or 

closest clumped data), subject to a number of constraints (i.e. climate and/or environmental 
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data), thereby outputting the best estimate of an incomplete distribution since it agrees with 

all the known data and does not assume there is any unknown data (Phillips et al. 2006). 

Several advantages of MaxEnt over other modelling programs include, (1) requiring 

presence-only data, thus overcoming small unstratified sampling; (2) using both continuous 

and categorical environmental (restrictive) data as well as including any interactions between 

these variables (multivariate analysis); (3) optimized algorithms to give an optimal maximum 

entropy probability distribution, and: (4) being adaptive to allow for presence/absence data by 

using a conditional model (Phillips et al. 2006).  

 

 MaxEnt is now one of the most popular SDMs, and has been reported to produce one 

of the most accurate predictive outputs when compared with other models that use presence-

only data (Elith et al. 2006). MaxEnt can also be ‘tuned’ to cope with model issues such as 

sampling bias (i.e. sampling along roads and fire-trails). Furthermore, the program is capable 

of accepting any spatial data layers so that distributions can be modeled across multiple 

surfaces instead of climate alone. MaxEnt has been used in studies of invasive species 

(Giovanelli et al. 2008; Rödder and Lötters 2009), distribution shifts under climate change 

(Fitzpatrick et al. 2008; Rodríguez-Sánchez and Arroyo 2008), predicting rare species 

distributions (Williams et al. 2009), species richness (Pineda and Lobo 2009), and diversity 

hotspots (Murray-Smith et al. 2009). The program has also been used to identify possible 

climate refugia (Marske et al. 2009), and to improve species management by optimizing 

reserve locations (Carroll et al. 2010). 

 

3.   Benefits of bioclimatic models 

The main attractions of BMs include ease of use, flexibility of the data (use of small, 

incomplete datasets), and the availability of programs (e.g. MaxEnt), making them widely 

used in published literature. At the broadest scale, global biomes are to some degree 
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determined by climate. In Australia, for example, there are 89 bioregions defined, in part, by 

climate (IBRA, 2007). Therefore, it may be more relevant to consider the historical and 

future climate impacts on species distributions in the context of scale and specific variables 

(Fig. 1) (Austin and Van Niel 2011b). For example, Sykes et al. (1996) used bioclimatic 

variables to represent physiological mechanisms to predict the future distributions of several 

tree species across Europe. For two species, Picea abies and Fagus sylvatica, the authors 

noted that shifts in their distributions were associated with warmer temperatures during 

winter, thereby reducing the time required for chilling (Sykes et al. 1996). Furthermore, 

Bakkenes et al. (2002) used a climate model to assess the distribution changes to over 2000 

European plant species. In particular, they reported 32% of the species that encompassed an 

area around 44% of the total modeled geographic extent will have disappeared by 2050. 

 

A significant use of BMs lies in examining the risk to conservation areas. Predicting 

how future climate will impact reserves is of conservation importance, particularly when 

these areas are designed to protect fragile or vulnerable species. Several studies have 

examined the effectiveness of conservation networks around the world and have illustrated a 

decline in climatic suitability of these areas (Araújo et al. 2011; Hannah et al. 2007). Araújo 

et al. (2011) found that the potential of protected areas in Europe to be climatically better 

suited for species than non-protected area was mixed. This might be due to the varying 

topology of the protected areas, as the authors point out that mountainous areas will provide 

climate refugia for some species. Such studies provide evidence for the need to re-evaluate 

protected areas in order to conserve species in the future. 

 

Some species do not have the capacity to shift their distribution beyond protected, or 

otherwise natural, areas due to physical or environmental barriers. This is the case for species 

which have poor dispersal or are habitat specialists. In these instances, species can be  
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Fig. 1. Example showing how different environmental variables can influence species 

distributions at different scales. The schematic represents the relative scales at which a 

variable is likely to be most influential on a distribution. Adapted from Pearson and Dawson 

(2003). 
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conserved through translocation or reintroduction by assisted migration (Guisan et al. 2013). 

Since the premise of translocations is to determine the habitat in which the species could exist 

based on its current suite of climatic tolerances, BMs suit this purpose. For example, two 

butterfly species were introduced into areas on Britain which were beyond their current 

distribution, but were predicted to be climatically similar (Willis et al. 2009). The authors 

then noted the distribution expansion of the butterflies increased by 2.5- and 21-fold, 

respectively. Further, growth rates of introduced populations were similar to natural 

populations over a six year period (Willis et al. 2009), although any other effects on flora and 

fauna in the ecosystems were not examined closely. While the rate of colonization success 

will be dependent on the species and its interactions, it is strongly argued that the risk of 

action outweighs the risks of inaction (Gray et al. 2010). However, this may depend on any 

collateral effects of the translocated species in the new ecosystem. 

 

4.   Limitations of bioclimatic models 

Apart from climate, there are other environmental factors that can influence species 

distributions. The selection of these predictors is dependent on the ecological processes that 

are thought to be influential to the particular species, as well as the availability of pertinent 

data (Austin 2007; Austin 1998; Franklin 2009). Climate change will produce unique, 

different environments which are not at equilibrium with the incumbent species (Kawecki 

and Ebert 2004). In this context, applying a correlative BM would be considered questionable 

without further supportive evidence (Kearney et al. 2010).  

 

If we consider a correlation between a species and an environmental variable, we may 

be uncertain as to whether this correlation is due to a direct relationship, a biotic or abiotic 

interaction giving an indirect effect, or a response to another factor not included in the model 

(Kearney and Porter 2009; Mac Nally 2000). Therefore, since most BMs can only illustrate 
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spatial variation, mechanistic models are required to quantify temporal variation in a dynamic 

environment. These models can be performed separately or in tandem with correlative 

models, and are referred to as semi-mechanistic (Mokany and Ferrier 2011). Using two 

correlative and three mechanistic models, Buckley et al. (2010a) compared models to predict 

the distribution shifts of the skipper butterfly (Atalopedes campestris) and a fence lizard 

(Sceloporus undulates). While the authors noted many similarities between the results of each 

model, the correlative models generally over-predicted the distribution margins of the two 

species. This is probably because the model was restricted to thermal tolerance and did not 

include other limiting factors such as inter-species competition and interactions (Buckley et 

al. 2010a). The authors also found correlative models using temperature and precipitation to 

over-predict the range of Sceloporus undulates, further illustrating the need for improvements 

by expanding beyond simple climatic variables. 

 

In the next section, I focus on several important plant-related factors that have been 

used by the modelling community. Because plants are sessile, they must possess the 

necessary conditions to be able to adapt or migrate to new suitable habitat when the current 

habitat becomes unsuitable or face local extinction. Indeed, the different adaptive capacity of 

populations is thought to be a major driving force of diversity within a species (Rutter and 

Fenster 2007). Therefore, plants provide an excellent study system to examine the importance 

of limiting factors. Specifically, I outline the importance of species traits, species interactions 

and environmental factors. Each of these factors is further exemplified by experimental 

testing in subsequent chapters of this thesis. 

 

4.1.  Species traits 

An organism possesses the genetic capability to alter its development and physiology from 

exposure to current or historical environmental conditions. These specific environmental 
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response traits have evolved over time and are known to vary among genotypes, populations 

and species (Sultan 2000). It is suggested that an epigenetic response to natural selection and 

phenotypic plasticity are the two main mechanisms that enable a population to adapt to a 

changing environment (Charmantier et al. 2008). Several studies have demonstrated that 

phenotypic plasticity can also differ among populations of the same species (Byars et al. 

2007; Galloway and Fenster 2000; Stewart Jr. and Nilsen 1995). This variation can be 

observed as a difference in one or more traits among individuals. 

 

Morphological or physiological traits provide an indication of a plant’s fitness. 

Phenotypic plasticity is the response of a plant genotype to alter a trait in response to spatial 

or temporal environmental heterogeneity. If one or more trait changes match the 

environmental conditions, then these traits can improve plant fitness by positively influencing 

survival and reproduction (Violle et al. 2007). Much of the current knowledge about 

phenotypic plasticity comes from plant studies. Plants often display dramatic differences in 

phenotype when exposed to different environments and these, more importantly, can be 

easily bred in alternative or artificial environments (Sultan 2000). For example, Moran, et al. 

(1981) demonstrated significant population-environment interactions in 11 out of the 15 

morphological traits examined when they compared seven populations of the large cocklebur 

(Xanthium strumarium) in Australia. Basic studies of plant plasticity focus on quantifying 

morphological factors such as plant height, leaf number or flower number. Sultan (2000) 

noted that traits involved in resource acquisition can display functional, long-term 

differences. For example, plants will increase biomass ratio from shoots to roots when soils 

have low nutrient levels, such as nitrogen (Gedroc et al. 1996; Reynolds and D'Antonio 

1996), or low soil moisture content (Bell and Sultan 1999).  
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Analyses of phenotypic plasticity and its impact on population adaptability provide an 

important insight into the role of plasticity in governing species distributions (Dorken and 

Barrett 2004). For example, in a large-scale study that included 88 Leucadendron species in 

South Africa’s Cape Floristic region, Thuiller et al. (2004b) found individual leaf area to be 

correlated with the average position of the species across an aridity gradient. Likewise, first 

flowering date was significantly associated with a species position along the gradient 

(Thuiller et al. 2004b). Plasticity in flowering time is a direct response to environmental 

conditions, and it is thought that populations located in unfavourable or disturbed 

environments will reproduce earlier to ensure reproductive success (Sultan 2000). Albert et 

al. (2010a; 2010b) note that significant variation in traits among populations can explain up 

to 70% of the total variation. More importantly, the authors note that the strength of an 

individual trait response among populations will vary depending on the species, traits and 

environmental gradients (Albert et al. 2010b). Therefore, including traits such as those 

discussed here will permit enhanced precision when predicting whether plants will cope with 

temporally variable environmental stresses. 

 

Plasticity of life-history traits can also improve the reproductive success of plants by 

changing their breeding system, reproductive allocation or sex expression (Midgley et al. 

2010). The latter is particularly common in andromonoecious species (those which display 

hermaphroditic and staminate flowers). For example, the proportion of staminate flowers in 

Solanum hirtum was shown to vary among genotypes between 9.3% to 63.6%, most likely 

due to a plant’s resource status (Diggle 1993). This confirmed the hypothesis that fruit set 

caused a dramatic decline in resources available for further growth (Diggle 1993). Indeed, 

some plants are able to alter their breeding system depending on pollen availability. For 

example, under certain circumstances, plants from several genotypes of Solanum carolinense 

were able to relax their self-incompatible system and produce self-pollinated seed in the 
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absence of out-cross pollen (Travers et al. 2004). Campanula rapunculoides plants exhibit a 

plastic response to floral age and lack of earlier fruit development by switching from self-

incompatibility to self-pollination (Vogler et al. 1998). Such adaptive traits act as insurance 

for successful reproduction when out-crossing fails due to isolation or by chance. 

 

Adaptive traits are also expressed in the earliest form of plant development. This is 

due to an organism’s need to express a viable phenotype to survive, or germinate, before 

displaying an adaptive phenotype (Huang et al. 2010). Huang et al. (2010) discovered that 

when seeds were exposed to different field and experimental conditions, quantitative trait loci 

(QTLs) had a significant effect on germination and expression of adult traits. In other words, 

seed dormancy appears to be an important and early form of adaptation acting to inhibit 

germination until environmental conditions improve (Baskin and Baskin 1998; Huang et al. 

2010). Differences in seed dormancy amongst populations of a species are well known 

(Andersson and Milberg 1998; Qaderi and Cavers 2002; Sultan 2000), and the life stage at 

which plasticity can be observed may vary between genotypes or populations (Sultan, 2000 

and references within). For example, in two populations of Lobelia siphilitica, genotypes 

within populations were found to vary significantly in their bolting time, height and leaf 

growth rates, and fruit and leaf production when exposed to different levels of available light 

(Pigliucci and Schlichting 1995). The authors noted that these differences were due to 

variation between genotypes in their growth rate and growth period (Pigliucci and Schlichting 

1995). Since dormancy is shaped by local environmental conditions, measures of germination 

and early survival in populations provide sound data on population level responses under 

changing environments. 
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4.2.  Species interactions 

Species interactions occur at different trophic levels, be antagonistic (i.e. plants and 

herbivores, or between plants competing for resources) or mutualistic (e.g. animal pollinators 

or seed dispersers, symbiotic fungi). In order to define a manageable project, the focus here is 

on the traits that influence species interactions at the reproductive stages of the angiosperm 

life cycle that represent the most sensitive component to changes in the environment. All 

plants have some capacity to tolerate a dynamic environment; however, studying the factors 

that can affect individual plant survival provides a unique opportunity to understand the 

limitations to the species distribution. Plants have two forms of dispersal; as pollen and/or as 

seeds. Self-incompatible species rely on abiotic or biotic factors to distribute pollen between 

genotypes for reproductive success. Several studies have examined the importance of 

including species interactions in species distributions (Heikkinen et al. 2007; Pellissier et al. 

2010; Van der Putten et al. 2010). Pollination success, in particular, is expected to vary 

amongst different populations of a species due to differences in the isolation and abundance 

of plants (Mustajärvi et al. 2001). Furthermore, pollinator abundance can vary throughout a 

species’ distribution  and over time. Out-crossing plants dependent on biotic pollination are 

unable to extend their distribution beyond that of their pollinators (Van der Putten et al. 

2010).  

 

Davis et al. (1998b) pointed out that the omission of species interactions is the single 

greatest shortcoming of BMs. The authors illustrate this by showing that due to the 

competitive interactions between three fruitfly species and a parasitoid wasp, the inter-species 

experimental clines varied significantly from any single species clines (Davis et al. 1998b). A 

criticism of their conclusion is that on a macroecological scale, such interactions do not exert 

a dominant role when added to climate. Hodkinson (1999) contends that it is more important 

for studies to examine the link between species traits and environmental variation at the 
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micro-habitat level and not at the scale suggested by Davis et al. (1998). Araújo and Luoto 

(2007) found the Davis et al. (1998) hypothesis that a species range was a consequence of its 

physiological response to climate to be untrue when they examined the interaction between 

the Apollo butterfly (Parnassius mnemosyne) and three host plant species. The authors 

reported species interactions had a significant impact on the predicted distribution of the 

butterfly at a macroecological scale. However, the authors conceded that P. mnemosyne was 

purposely chosen as its distribution critically relied on the plant host species. Thus, it is 

important to examine the model scale and the dominant factors which govern a species 

distribution at each level (Fig. 1).  

 

It is also expected that the abundance of individuals within a population will have an 

indirect effect on reproductive success due to the attractiveness to pollinators (Morgan et al. 

2005). Therefore, in smaller populations the number of pollinator visits to individual flowers 

are likely to be lower, leading to insufficient pollen transfer and a decrease in seed set (Ågren 

1996; Mustajärvi et al. 2001). However, such results can be equivocal, particularly when 

plant density is also considered. For example, a study on the interactions between pollinators 

and population size and density and its effect on the reproductive success of Lychnis viscaria 

found that rates of pollinator visits were higher in sparse populations, regardless of size 

(Mustajärvi et al. 2001). This was likely to be due to the larger inflorescences of plants in 

sparse populations thereby rendering them more visible to potential pollinators (Mustajärvi et 

al. 2001). Lamont et al. (1993) argue that pollen quality better explains differences in fertility 

among populations than plant abundance. It is possible, though, that pollen quality could be 

dependent on habitat quality or suitability, as well as temperature and moisture availability, 

which could also be linked with germination success and/or survival, thus giving rise to 

differences in population size.  
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Interactions between species have an important impact on a species distribution. The 

complexity of interactions between species means that a predicted geographic distribution of 

a species might have significant ramifications for other species distributions, or may not be 

extrapolated reliably at all. So BMs could lead to inaccurate predictions in some cases, 

although the effects of interactions could be insignificant in comparison to climatic factors 

when distributions are modeled at broad scales (Pearson and Dawson 2003). 

 

4.3.  Environmental factors 

There are several environmental or landscape factors that can indirectly influence the climate 

available to a species. Species will exhibit significant variation across environmental 

gradient(s) (Byars et al. 2007; McIntyre and Lavorel 1994; Ohsawa and Ide 2008), therefore 

including indirect factors in models will help capture this variation and give a more accurate 

output. For example, altitude significantly affects the temperature and precipitation profile, 

making it one of the strongest influential drivers of variability in species morphology. It also 

indirectly influences the level of evapo-transpiration (Ohsawa and Ide 2008). For example, 

Byars et al. (2007) noted that populations of the common alpine grass, Poa hiemata are 

significantly smaller in size at higher altitudes than populations at lower altitudes – a trend 

commonly seen in other species (Clausen et al. 1941). 

 

 Associated with altitude is slope which affects the flow of water, causing variability in 

soil moisture content and soil depth. Furthermore, the slope aspect influences the amount of 

solar radiation which then indirectly affects soil moisture content and temperature (Austin 

2007; Segurado and Araújo 2004). For example, Hanba et al. (2000) reported greater water 

use efficiency for evergreen tree species present on upper slopes in a Japanese temperate 

forest. McIntyre and Lavorel (1994) stated that slope and altitude (measured as topography) 
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explained 6.6% of the variance in species compositions in Australian grasslands, with most 

species being present on mid to upper slopes. 

 

Seed dispersal distance can have a direct impact on plant fitness as it determines the 

environments where seeds and seedlings will survive or perish, influencing the rate of 

recruitment, invasion, distribution shifts and gene flow among populations (Nathan and 

Muller-Landau 2000). In addition, seed dispersal can occur over time through seed banks, 

permitting individuals to avoid unfavourable climates for both local and nonlocal sites (Howe 

and Smallwood 1982). More specifically, the advantage of seed dispersal, includes; (1) 

escaping from density- or distance-dependent mortality near the parent; (2) successful 

colonization of disturbed or otherwise new habitats, which is particularly beneficial when the 

current environment becomes unsuitable, and; (3) directed dispersal to sites with a high 

survival rate (Howe and Smallwood 1982; Wenny 2001). While these are interdependent, the 

importance of each will vary between populations (Howe and Smallwood 1982). 

 

While the projection of a species’ modeled envelope across the landscape provides an 

insight into where the species must disperse to in order to maintain its preferred climate 

niche, the ability for a species to migrate into different habitats will depend on several 

environmental conditions unrelated to climate. Landscape patterns are often delineated by 

vegetation types. Consequently, efforts have been made to predict species distributions using 

vegetation type (i.e. land cover). It has been documented in recent studies that including 

vegetation type in models has varying effects which are species-dependent (Heikkinen et al. 

2006). As expected, the interacting effects of climate and vegetation are more relevant at fine 

scales of modeling (Heikkinen et al. 2006; Luoto et al. 2007). 
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In association with vegetation types and preferences of species, the suitability of an 

environment is also partly determined by other landscape processes. In particular, edaphic 

characteristics, such as soil moisture content and pH are known to vary at a fine scale and 

affect the reproductive niche of plants (Pickett and Bazzaz 1976; Pierce et al. 1999; Weaver 

and Hamill 1985). In turn, this limits the ability of plants to colonize and become established 

in new environments (Coudun and Gégout 2007; Coudun et al. 2006). Specifically, pH is 

reported to control the uptake of minerals by plants and has been correlated with several other 

edaphic variables (Schoenholtz et al. 2000).  

 

5. Enhancing predictive models 

I have argued that SDMs, and BMs in particular, can be a powerful tool to predict how a 

species might respond to a future environment. In addition, I have highlighted that how a 

species responds to external environmental factors will depend on its population attributes 

and their particular plant traits. The benefits of predictive correlative models stem from the 

notion that a species’ current climate envelope can be directly related to specific climate 

variables, and that future changes in the distribution are also associated with the directional 

shift in climate. However, careful consideration for the choice of hypotheses, spatial extent 

and scale are required before the assumption associated with the effects of climate overriding 

environmental heterogeneity can be made. In addition, BMs are particularly beneficial when 

the cost of species surveying is high. The model can then be used to assess the habitat 

suitability between locations, which, in turn, permits surveys to be more efficient (Beaumont 

et al. 2005). Furthermore, in the case of many rare and endangered species, so little is known 

about their biology and ecology that BMs are the only method to provide an estimation of 

their current and future distribution. 
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Since the distribution of a species shifts as one population changes in some way, it 

seems appropriate that we use both correlative and mechanistic approaches to attempt to 

capture this variation and to enhance model accuracy. Correlative elements could help to 

alleviate the limitations of spatial distribution (if that is an aim of the study) and the traits that 

are important to a species and its populations. Incorporating a limiting mechanistic 

component will then illuminate how a population might change over time, particularly with 

an understanding of important population traits and the influential environmental factors. Due 

to the complexity in the response of populations and individuals to changing environments, it 

is unlikely that BMs will be able to include this information in the projections. However, this 

raises the question of how much local adaptation there is, under what circumstances, and how 

can we quantify it? If populations from the distribution centre and the edges are sampled, 

then this will encompass much of the adaptive variation. Surveyed populations should be 

sampled to quantify the population structure and to ascertain how the population currently 

responds to its local conditions. These population factors include, but are not limited to, 

abundance and area (estimated), plant height, number of flowers or inflorescences per plant, 

plant density, and seed viability and germination. The output from such a model would not 

only produce the spatially explicit response of populations over time, but also identify the key 

traits which enable a population to persist or move in the landscape. Ultimately, in order to 

answer these questions and to improve SDMs, it is important to provide some validation and 

address uncertainties by performing ecological experiments to determine whether climate 

influences species traits, and whether other environmental variables are influencing the 

distribution.  

 

The key consideration when developing models is to define the most efficient method 

to balance correlative and mechanistic factors. This could be achieved if the focus shifts from 

species to populations, documenting and embracing the existing variability among dynamic 
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populations that occurs in response to the environment (Anderson et al. 2009). It is also likely 

that for increased reliability this would be performed on a per species basis to cover 

idiosyncratic properties of different species. A population response could be predicted based 

solely from population monitoring and surveying in the field coupled with the knowledge of 

the species life-history and application of the predictive model. From a single-species 

approach it is then possible for future models to be adapted from this framework to address 

other important ecological levels, such as the community- and ecosystem-level or species 

interactions as was recently proposed by Mokany and Ferrier (2011). However, community-

level models may suffer from generality and would be unable to extrapolate detailed changes 

to individual species within. There is a fine balance between the depth and breadth of 

knowledge which should be considered when determining how best to model changes to 

species distributions. The conceptual utility of a single-species approach is evident in that 

results have the capacity to be extrapolated to other species with similar life-history traits. It 

is not enough to know what traits vary, but also how these will ultimately affect and 

subsequently define the species distribution in the future (Albert et al. 2011). Ideally, any 

model which uses climatic, environmental and/or mechanistic variables should be 

experimentally backed-up to illustrate the importance of the included variables. Additionally, 

genetic studies would be crucial to complement extensive ecological sampling, particularly to 

determine whether two putative distinct populations are the same population, separated by 

either a soil seedbank or a physical barrier. 

 

When these data are available, the simplest model could predict population dynamics 

over time, similar to a population viability analysis (Huntley et al. 2010b). Often it is this 

temporal resolution that is lacking in models (Buckley et al. 2010b). If the model predicts a 

high proportion of the sampled populations to decrease in abundance or to become locally 

extinct, then there is some confidence that the overall distribution is likely to retract with 
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future climate change. Thus, the output from such a model would not only produce the 

spatially explicit response of populations over time, but it would also identify the key traits 

that enable a population to persist or to disperse in the landscape. Ideally, this approach 

would provide an accurate assessment of a population’s ‘health’. From this, populations of 

species can be better sampled, and management priority can be given to those species whose 

populations are predicted to decline in future environments. 

 

6. Actinotus: a model genus 

To demonstrate the importance of populations and their traits, Actinotus helianthi Labill. 

(Apiaceae) will be used as a model species to explore ways to enhance SDMs and BMs. The 

genus Actinotus is comprised of 20 species – 19 endemic to Australia and 1 endemic to New 

Zealand. Species are either perennial herbs or sub-shrubs, or annual fire ephemerals. 

Keighery (1982) characterised five Western Australian Actinotus to be out-crossers, whereas 

A. glomeratus Benth. was noted to be mainly inbreeding. Little research has been undertaken 

on the breeding systems of east Australian Actinotus. It is likely that species with a shruby 

habit, such as A. helianthi are out-crossers, but this needs to be confirmed. However, previous 

work on A. helianthi has been focused on establishing species in the horticultural industry as 

a cut flower and potted plant (von Richter and Offord 1997a; b). 

 

In addition to their varying breeding systems and life-histories, Australian Actinotus 

occur in a range of environments. Thirteen species are found in mesic environments, three 

species are restricted to sub-alpine areas, and the remaining three species are found in semi-

arid environments. More importantly, species vary in their predicted distributions within the 

same environment. For example, A. gibbonsii F.Muell. has a relatively large geographic 

distribution and is found in 15 bioregions between Cairns on the far north coast of 

Queensland (QLD), south of the New South Wales (NSW) and Victoria (VIC) border, and in 
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central NSW and QLD.  By contrast, A. schwarzii is a vulnerable species restricted to several 

populations in the MacDonnell Ranges (Northern Territory) (Nano and Pavey 2008; White et 

al. 2000). 

 

Several species, including A. helianthi and A. leucocephalus Benth. have significantly 

higher germination success after fire (Baker et al. 2005; Emery and Lacey 2010). This further 

highlights the need to include impacts of disturbance factors in distribution models as 

populations are likely to differ in their opportunistic responses to disturbances and stochastic 

events. 

 

6.1.  Actinotus helianthi 

Actinotus helianthi (flannel flower) is an erect perennial sub-shrub occurring in eastern 

Australia in NSW and southern central QLD. The species is found on sandy or rocky, 

nutrient-poor soils along the coast of NSW as well as in an isolated populations in central 

NSW.  The species is characterized by inconspicuous flowers aggregated in umbels, 

subtended by involucral bracts (Fig. 2). Umbels are andromonoecious, with peripheral 

staminate flowers surrounding fewer hermaphroditic flowers. Inflorescences are paniculate 

with the central branch terminated by the primary umbel. Populations are often at their most 

abundant two years after fire, and some plants may reach reproductive maturity within the 

first year (Benson 1985). Lee (1995) originally observed different growth habits among 

populations. These different growth habits were not examined by Lee (1995). 

 

 Actinotus helianthi was originally wild-harvested and cultivated as a cut flower crop 

by the local horticulture industry. Several issues, however, surrounded the capacity to 

propagate the species by seed and vegetative tissue resulting in limitations to mass 

production. While many of these issues have been overcome (Offord and Tyler 1993; von  
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Fig. 2. Umbels of Actinotus helianthi comprise a cluster of flowers subtended by white 

involucral bracts. 
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Richter and Offord 1997a; b), inconsistencies still occur when germinating seed from 

different source populations and years (Emery et al. 2011; Emery and Lacey 2010). It is 

likely, therefore, that germination is influenced by both spatial and temporal environmental 

variation. A. helianthi has also been documented to have increased vegetative growth when 

fertilizer was applied (von Richter and Offord 2006). This raises the question of whether the 

species can tolerate a variety of soil environments. Indeed, A. helianthi was reported to be 

successfully transplanted and grown at 19 sites around Australia, including Queensland, 

Victoria, South Australia and Western Australia (von Richter and Offord 2000). Specifically, 

the authors found the species grew best in areas which had well-drained soil. Furthermore, 

the application of fertilizer was shown to improve vegetative and reproductive growth. Little 

is known about the reproductive niche of A. helianthi and the capacity for numerous 

interactions with species that visit umbels during primary flowering.  

 

In this thesis, I use Actinotus helianthi as a single species method of modeling to 

focus on using population-level factors to demonstrate several important limitations that 

should be considered when predicting species distributions. Traditionally, a single species 

approach involves the use of occurrence records only. However, this assumes that each 

occurrence will respond to environmental conditions similarly. Given that the number of 

populations of A. helianthi encompasses wide latitudinal and ecological gradients, we might 

expect the species to exhibit variation in traits and interactions, especially between 

geographically-distant populations. Alternatively, a multiple species approach could allow 

predictions to be compared across a number of phylogenies and life-histories, allowing a 

representation of how climate could impact biodiversity. However, the utility of assessing 

changes to biodiversity relies heavily on the availability of single species distribution data 

(Mokany and Ferrier 2011). Therefore, using a single species approach provides an important 

foundational first step. Furthermore, Keith et al. (2008) note that changes to the distribution 
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of a species are likely to be influenced by its life-history and disturbance regime. These 

variables could not be examined in detail if comparisons were used across multiple species. 

Mokany and Ferrier (2011) also point out that multiple species modelling less suitable for 

taxa that are poorly studied or a high amount of species richness, such as plant and 

invertebrates. Furthermore, comparing multiple species cannot account for differences among 

populations, despite evidence stressing the importance of population-level effects (Albert et 

al. 2011; Albert et al. 2010a; Albert et al. 2010b; Kattge et al. 2011; Wright et al. 2001). I 

chose not to use multiple Actinotus species as a single species examined in detail would 

provide a clearer representation of the likely population factors that could influence 

distribution. The next step would be to extrapolate the findings from this thesis and apply 

them to other species. 

 

7. Conclusions 

As environmental conditions change over time, selection should favour different phenotypes, 

and species persistence will rely on the ability of individuals within to adapt or migrate to 

new habitat. By quantifying the traits that make up a species, it is hoped that this will enhance 

and validate model outputs, thereby complementing current, well-established species 

modelling techniques.  In order to determine how populations might respond to future 

environments, and thus understand the impacts to species distributions, we need to define 

several mechanistic population traits, including phenology, reproduction, and interactions. To 

best understand these factors requires a species-level approach. This then provides a method 

to model the relationship between these key population traits and the environmental 

conditions that influence these. This should provide an understanding of the physiological 

and environmental constraints on a population and their influences on survival. The challenge 

is to develop these models with the help of experimental evidence to increase our ability to 

accurately predict the effects of future environments on populations and validate in silico 
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predictions. These predictions would greatly benefit conservation management to prioritize 

and minimize the loss of diversity. 

 

7.1.  Thesis aims 

The aim of this thesis is to test the assumptions and limitations of BMs outlined in this 

chapter by performing field and laboratory experiments, which incorporate individual and 

population level data to determine whether populations are equivalent in their response to 

current and future environments. Using Actinotus helianthi as a model species, I aim to 

illustrate the importance of collecting experimental evidence from several species and 

environmental factors, including early plant performance traits, species interactions and soil. 

Using this information, I intend to determine whether a species distribution model can then 

be subsequently improved on a species with some level of confidence of its output due to the 

collected experimental data.  
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Chapter II 

POPULATIONS OF ACTINOTUS HELIANTHI ACROSS A WIDE GEOGRAPHIC 

RANGE EXHIBIT DIFFERENT CLIMATIC ENVELOPES AND COMPLEX 

RELATIONSHIPS WITH PLANT TRAITS 

 

Abstract 

Climate envelopes are generated by overlaying climate variables derived from temperature 

and rainfall data onto mapped geographic locations of occurrences. Typically the species data 

are amalgamated into a single climate envelope, missing the opportunity to account for the 

potential of different environments to independently shape the functional plant trait values 

within populations.  Here we explore how climate envelopes vary among populations, and 

whether individuals with similar trait values are similarly matched to particular climate 

envelopes or to spatial layers of environmental classifications based on additional variables 

other than climate. We generated climate envelopes from 35 populations of the widely 

distributed plant species Actinotus helianthi Labill. (Apiaceae). Populations with at least 84% 

similarity in their local climate were grouped by hierarchical cluster analysis. We then tested 

whether the similar climate envelopes would co-vary with populations of plants with similar 

traits. The same method was used to examine whether populations with more individuals 

were better adapted to their local climate than populations with fewer individuals. We also 

compared whether the climate envelopes were representative of other environmental 

groupings, including the Interim Biogeographical Regionalisation of Australia (IBRA) and 

soil types. Plant trait values were significantly different among populations (P ≤ 0.001) and 

soil types (P ≤ 0.003). All traits, except diam and condist, were significantly different among 

bioregions. Seven climate envelopes were identified across sampled populations, and plant 
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trait values within climatically-similar populations were highly dissimilar (Global R = 0.09). 

Larger populations (with more individuals) within a climate envelope displayed greater 

similarity among traits (Global R = 0.19). IBRA regions and soil types showed greater 

similarity with plant traits (Global R = 0.27; Global R = 0.25, respectively). This study 

demonstrates how the collection of data on plant traits and other environmental factors 

beyond climate can improve models of species distributions. Consequently, studies that rely 

on climate-only data, or single broad climate envelopes, may be too general, or disconnected 

from the population-level processes that shape the persistence and distribution of species 

across the landscape.  

 

Introduction 

Bioclimatic models are commonly used to predict the effects of temperature and rainfall on 

the geographic distribution of species. Their utility has increased the knowledge of ecological 

and geographical tolerances of species by depicting the spatial extent of suitable habitat and 

by modeling expected changes over time in response to altered climates (Beaumont et al. 

2005; Busby 1991; Gallego-Sala et al. 2010; Hijmans and Graham 2006). These models 

typically amalgamate species occurrence records into a single climate envelope (i.e. spatially-

similar habitats) that depict where the species is currently distributed. This model, which is 

subject to multiple ecological assumptions, can then be used to predict how the envelope 

might change under future conditions (Araújo and Peterson 2012; Heikkinen et al. 2006; 

Luoto et al. 2005). More recently, these models have evolved to also incorporate non-

climatic, mechanistic factors, including species traits (Hanspach et al. 2010; Pöyry et al. 

2008), species interactions (Araújo and Luoto 2007; Heikkinen et al. 2007; Kissling et al. 

2012), abundance (Huntley et al. 2010a; Van Der Wal et al. 2009) and landscape or 

topological factors (Harris et al. 2014; Slavich et al. 2014). These changes recognize that a 

climate envelope may not authentically represent the main environmental processes that 
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shape species traits because the impact of climate is most prominent at a coarse, macro-

influential scale for continents and the globe (Austin and Van Niel 2011b; Davis et al. 1998a; 

Pearson and Dawson 2003). Additionally, combining species records into a single climate 

envelope generalizes across existing variation at both the population and individual. 

Alternatively, examining the relationship between climate and plant trait values among 

populations will help to identify the relative importance of climate for determining species 

traits at a local or regional scale, and thus inform our models of changing distributions. 

 

If a species is present across multiple environments that differ in factors that can 

affect plant trait values (e.g. soil availability for plant growth and height) then it is likely that 

each population will contain individuals with different suites of traits suited to the local 

environment. Albert et al. (2010b) note that significant variation can be detected using a 

single trait approach. Furthermore, the variation reported had no spatial structure, indicating 

strong variation between individuals possibly due to fine-scale environmental heterogeneity. 

The authors also note that the majority of variation detected was between populations. This 

result was then confirmed in a subsequent study that estimated that multiple trait variation 

between and within populations, accounted for 70% and 30% of the variation, respectively 

(Albert et al. 2010a). Wright et al. (2001) describe a similar result for leaf traits, which 

exhibited more variation within a single habitat than between habitats. In a comparative 

review based on the global TRY plant trait database, Kattge et al. (2011) estimate around 

40% of trait variation exist within-species. If traits are shaped more by their local climate 

than by other environmental factors, then it could be expected that certain phenotypic trait 

values should be similar amongst sites with similar local climatic envelopes. For these 

reasons, a climate envelope approach may be more effective if it represented this fine-scale 

variation. 
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Matching plant trait values across environmental gradients also provides evidence for 

how the broad and local scales interact to shape the extent to which traits are expressed, and 

may help in generating climate envelopes across gradients. Such gradients are generally a 

single dimension; focusing on a single variable such as precipitation, temperature or salinity 

(Díaz et al. 1999; Thuiller et al. 2004b). At a global scale, temperature has been reported to 

influence a greater number of plant traits than precipitation (Moles et al. 2014). A reduction 

in leaf width and surface leaf area have also been reported in several Australian plant species 

along decreasing precipitation and decreasing soil phosphorus gradients (Fonseca et al. 

2000). In South Africa, Thuiller et al. (2004b) used a multivariate analysis to identify niches 

for 88 species of Leucadendron. The authors identified three main gradients – aridity, 

precipitation and temperature tolerance – and the position of species within these gradients 

defined their traits and, therefore, their niches (Thuiller et al. 2004b). Other environmental 

factors, such as topography or soils can also vary in ways that a directional gradient cannot. 

Incorporating these factors permits a continuous quantitative description of the landscape 

within a species distribution, improving the prediction of traits beyond climate alone (Lavorel 

et al. 2011). 

 

 Given the likelihood of variation to occur at a trait level, the spatial scale in which 

climate envelopes are produced will ultimately determine their usefulness. Pearson and 

Dawson (2003) suggest a heirarchical framework could be used to determine whether some 

of the limitations of climate envelopes can be addressed. Therefore, in order to understand 

how a species might respond to changes in climate envelopes, it is necessary to discover if 

individuals within and among populations with similar local climates are also similar in their 

trait values. Any recorded variation may be due to plasticity or be genetically-differentiated 

(Clausen et al. 1940; Petrů et al. 2006), both of which can be complimentary rather than 

exclusive (Albert et al. 2010b). To this end, we generated multiple climate envelopes by 
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grouping populations that had similar local climate. Our study focussed on a widespread 

species as we expected populations from geographically-distant areas to be more likely to 

differ in key trait values. Such a system allowed us to then explore the extent of variation in 

plant trait values within and among populations. Using a heirarchical cluster analysis 

technique allowed us to assess some of the biases and assumptions that are assoicated with 

correlative models by having more information for each species occurrence (Dormann et al. 

2012). We can then determine whether the observed patterns in trait variation match different 

climate envelopes identified by objectively grouping individual plants based on the similarity 

of the climate envelopes generated.  

 

This approach enabled us to address the following question: (i) do individuals within 

and among populations have similar trait values and do these patterns then match our 

generated climate envelopes? Since individual neighbors are expected to be more genetically-

similar, we expect trait value variation to be highest among populations (Albert et al. 2010a). 

We used several trait values to provide a fuller understanding of the indicators of plant 

performance. We then refined our question by repeating our analysis on populations 

estimated to contain at least 1,000 individuals to ask (ii) do more abundant populations have 

plant trait values that are more closely matched to their environment than populations with 

fewer individuals? We predict that smaller populations will be less well-matched to their 

environment as they are more recently colonised. Reader (1998) reported up to 88% of 

interspecific variation in mean plant trait values across populations could be explained by 

abundance. Examining the effects of abundance also links spatial climate modelling with 

demongraphic models (Keith et al. 2008). We then built on our initial questions by asking 

(iii) do other spatial patterns that include non-climate variables better represent the spatial 

variation in trait values than climate envelopes? To address this, we used two sets of 

environmental groupings: the Atlas of Australian Soils classification (Isbell 2002) and the 
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Interim Biogeographic Regionalisation of Australia (IBRA). The former is a national 

hierarchical framework for classifying soils into varying scales while still incorporating a 

number of major soil properties. IBRA bioregions are 89 distinct geographic areas which are 

defined by topological and climate factors as well as species communities (Interim 

Biogeographic Regionalisation for Australia, 2007). Bioregions are then further divided into 

419 sub-regions that represent variability in ecosystems at a finer scale. We used IBRA as a 

refinement of climate envelopes by testing whether the combination of climate as well as 

other environmental and landscape variables was more effective in predicting similar plant 

trait values than climate alone. In this regard, using bioregions provides a more complete 

representation of the potential selective forces of plant trait values.  

 

Materials and Methods 

Study species 

Actinotus helianthi Labill. is a perennial sub-shrub capable of growing up to 2 m tall. Flowers 

are aggregated into pseudanthic capitula, characterized by large, white, petaloid involucral 

bracts (Lee 1995; Webb 1980). Inflorescences comprise a terminal (primary) capitulum 

subtended by at least one secondary branch, each of which is further subtended by tertiary 

branches. Actinotus helianthi is endemic to Australia and occurs on oligotrophic soils of 

eastern New South Wales and central Queensland. The recorded distribution of the species 

spans a latitudinal distance of approximately 1,255 km (between 35.61°S and 24.37°S) and a 

longitudinal distance of approximately 780 km (between 153.43°E and 147.18°E). Long-term 

average annual rainfall and temperature range from 1,200 mm and 22°C on the coast, 600 

mm and 24°C in central New South Wales, and 700 mm and 29°C in central Queensland.  

Thus, the species experiences a wide range of climatic conditions throughout its distribution, 

making it a highly suitable species for this study. 
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Field data 

Thirty-five populations of A. helianthi representing the known geographic range of this 

species and its associated climate gradients were sampled in 2011 (Fig. 1). All populations 

occurred in sclerophyll heathland or woodland. The following plant trait values were 

recorded for each of 30 randomly selected plants at each population (1,050 plants in total): 

(1) above-ground height (height), (2) leaf lamina length (leaf), (3) the number of 

inflorescences (stem), (4) the number of umbels (umbel), (5) diameter of the main stem at 

ground level (diam), (6) the distance to the closest conspecific (to the nearest cm) (condist), 

and (7) the number of umbels per inflorescence (umbelstem – derived from stem and umbel). 

All measurements, except (6), were made to the nearest mm. The traits selected represent soft 

traits and some are described in Cornelissen et al. (2003). These traits were selected as 

representative of plant growth and performance, and are more easily recorded across a large 

number of individuals than other functional traits (Cornelissen et al. 2003). Two population 

traits were also collected from each location. The number of individuals (abundance) was 

recorded for each population with < 300 plants, and was estimated for populations with > 300 

individuals. The percentage of reproductively mature plants (maturity) within a population 

was also estimated (Table 1). 

 

Environmental data 

The relevant climate data were obtained from the WorldClim website (www.worldclim.org; 

Hijmans et al. 2014). These data are freely available, and are most commonly used to 

determine species bio-climatic envelopes (Hijmans et al. 2005). Fourteen climate variables 

were used at the highest resolution available (30 arc-seconds; c. 1km2; Table 1). The climate 

at each population was extracted from the variables in ArcGIS v10.1 (ESRI, 2012). Spatial 

layers for IBRA bioregions and sub-bioregions, the Australian Soil Atlas, and digital 

elevation were obtained from the Australian Department of the Environment website  
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Fig. 1. Distribution map of the 35 Actinotus helianthi populations sampled. Historical records 

from Atlas of Living Australia (www.ala.org.au) accessed on August 16, 2010. 
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Table 1. Climate variables, plant and population traits and site variables used.  

 

Data source Variable name Description 

Worldclim annraina Mean annual rainfall 

 anntempab Mean annual temperature 

 coldTa Mean temperature of coldest quarter 

 dryrainMac Mean rainfall of driest month 

 dryrain Mean rainfall of driest quarter 

 dryT Mean temperature of driest quarter 

 maxwarmT Max. temperature of the warmest quarter 

 mincoldT Min. temperature of the coldest quarter 

 warmrain Mean rainfall of warmest quarter 

 warmTa Mean temperature of warmest quarter 

 wetrainM Mean rainfall of wettest month 

 wetrain Mean rainfall of wettest quarter 

 wetab Mean temperature of wettest quarter 

Plant traits condista Distance to the closest conspecific (cm) 

 diama Diameter of the main stem at ground level (mm) 

 heighta Above-ground height (cm) 

 leaf* Leaf lamina length (mm) 

 stem Number of inflorescences 

 umbela Number of umbels 

 umbelstema Number of umbels per inflorescence 

Population traits abundancea Estimated number of individuals in a population 

 maturitya Estimated proportion of individuals that are 
reproductively mature in a population   

Site  variable elevation elevation (m)  
a variable was included for analyses. 
b variable was included for analyses of large populations only. 
c variable was excluded for analyses of large populations. 
 

 

38 
 



(http://www.environment.gov.au/). The relevant data from these layers were extracted using 

the same method as the climate variables. 

 

Data analysis 

To explore the relationship between local climate and plant trait values, we performed 

multivariate analyses on the climate and biological datasets. In order to avoid any problems 

associated with co-linearity (Dormann et al. 2013), Pearson’s correlation coefficient analysis 

was performed on the climate data. A conservative value of ≥ ± 0.85 was used to identify 

highly correlated variables (Dormann et al. 2013; Elith et al. 2010). The following climate 

variables were retained, which included the most correlated variable (Appendix 2): (1) 

maximum mean temperature of the warmest quarter (warmT), (2) mean temperature of the 

coldest quarter (coldT), (3) mean rainfall of the driest month (dryrainM), and (4) annual 

precipitation (annrain). 

 

 To differentiate the data into climate envelopes, the four climate variables were 

converted into a resemblance matrix using the S15 Gower’s similarity quantitative measure 

as implemented in PRIMER v6.1.16 (Clarke and Gorley 2006). Gower’s coefficient is able to 

combine different types of descriptors and process, each one according to its own 

mathematical type (Gower 1971). A hierarchical cluster analysis (HCA) using the 

unweighted pair-groups method of arithmetic averages (UPGMA) was performed on the 

climate resemblance matrix and climate envelopes were generated from the output. A multi-

dimensional scaling (MDS) ordination plot was used to visualize the climate envelopes in 

space. Each envelope was described according to its most important climate factor(s). 

Analyses of similarity (ANOSIMs), using one thousand permutations, were performed with 

the climate envelopes as the response factor to sub-bioregions nested within bioregions, as 

well as with soil types. ANOSIMs provide a distribution-free test to analyze multivariate data 

39 
 

http://www.environment.gov.au/


for differences using permutations from a rank similarity matrix (Clarke 1993). A global R 

statistic is used in these analyses that scale between -1 and 1 with a 0 value indicating no 

differences between the datasets. If a global R statistic is significant (when P ≤ 0.05), then an 

R statistic and a P-value are calculated for each pairwise comparison. 

 

 One population was removed from the trait data matrix as it contained fewer than 30 

plants. A Pearson’s correlation coefficient analysis was then performed on the trait data from 

the remaining 34 populations. The only highly positively correlated plant traits were umbel 

and stem (R2 = 0.86), and the latter was removed from further analyses. The six plant traits 

and two population traits were then converted to a resemblance matrix using the Gower 

coefficient. A MDS ordination of the trait data, grouped by the climate envelopes, was 

performed to visualize patterns and where groups were identified, and an ANOSIM model 

was used to examine the similarities in the trait data among the climate envelopes.  

 

To assess whether other environmental spatial aggregations were better able to depict 

the spatial patterns of plant trait values, we ran an additional ANOSIM using sub-bioregions 

nested within bioregions and an another using soil types. All ANOSIMs were run using 1,000 

permutations. Multivariate general linear models (GLM) were run to determine the traits that 

varied significantly across populations, bioregions and soil types. 

 

To compare all populations with large populations only, 19 populations estimated to 

contain more than 1,000 plants were retained in the dataset. Analyses were performed on 

these populations as described above except for the following differences. Two climate 

variables: mean annual temperature (anntemp) and mean temperature of the wettest quarter 

(wetT) were added, and dryrainM was omitted from a second Pearson’s correlation 

coefficient analysis using the 19 populations due to be highly correlated with other variables 
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(Appendix 2). Five climate envelopes were generated by the HCA, with each envelope 

containing populations with ≥ 87% similar climate and an MDS plot was generated to 

examine separation of the groups. ANOSIMs and GLMs were performed as above using both 

the climate and trait data with bioregions and soil types.  Correlation analyses and GLMs 

were performed in the SPSS statistical package (version 21; IBM software) whereas 

similarity and cluster analyses were performed in PRIMER (Clarke and Gorley 2006) & 

PERMANOVA+ (Anderson et al. 2008). 

 

Results 

Seven climate envelopes were generated by the hierarchical cluster analysis. Each envelope 

comprised populations which had ≥ 84% similarity in local climate. This value was 

subjectively chosen as it provided a good spatial grouping of populations (Fig. 2). The multi-

dimensional scaling (MDS) ordination plot confirmed the separation of the envelopes with a 

two-dimensional stress of 0.04 (Fig. 3a). The relative differences between the seven 

envelopes are described as follows: (a) cooler average temperatures during summer (17.8 ± 

0.2°C) and winter (6.4 ± 0.1°C); (b) warmer average temperatures during winter (14.1 ± 

0°C); (c) higher average annual rainfall (1320 ± 17 mm) and higher average rainfall during 

the driest month (64 ± 1 mm); (d) highest temperatures during summer (26.2 ± 0°C) and 

lowest average annual rainfall (629 ± 0 mm); (e) lower average annual rainfall than group (c) 

(1006 ± 88 mm) and higher average temperatures during summer (22.3 ± 0.4°C); (f) cooler 

average temperatures during winter (8.8 ± 0.3°C) and low average annual rainfall (918 ± 27 

mm), and; (g) very low annual rainfall (719 ± 19 mm) (Fig. 4). There was a strong 

longitudinal gradient in annual rainfall between the climate envelopes. Envelopes (a) – (c) 

were characterized by high annual rainfall at high altitude or coastal sites. Envelopes (d) – (g) 

were inland sites and had low annual rainfall compared to envelopes (a) – (c) (Fig. 4). The 

nested ANOSIM showed high similarity between the climates of the bioregions and their sub- 
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Fig. 2. Spatial locations of the seven climate envelopes identified from the Hierarchical 

Cluster Analysis dendrogram. 
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Fig. 3. Two-dimensional MDS ordinations illustrating groupings of the seven climate 

envelopes (a) by populations and (b) by plant traits.  ♦: envelope-a; ×: envelope-b; ▲: 

envelope-c; +: envelope-d; ▼: envelope-e; ■: envelope-f, and; ●: envelope-g. 
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Fig. 4. Boxplots of the seven climate envelopes for each of the four contributing climate 

variables, including mean temperature of the warmest quester (warmT), mean temperature of 

the coldest quarter (coldT), mean annual rainfall (annrain), and mean rainfall of the driest 

quarter (dryrain). 
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bioregions (Global R = 0.61; P = 0.002 and Global R = 0.70; P = 0.001, respectively). The 

one-way ANOSIM with soil type showed a very low similarity with the climate envelopes 

(Global R = 0.14; P = 0.001). 

 

  All plant trait values were significantly different across populations (P ≤ 0.001) and 

soil types (P ≤ 0.003), and all trait values except diam (P = 0.251) and condist (P = 0.085) 

were significantly different across bioregions (P < 0.001). From the Pearson’s correlation 

matrix, plants that were taller tended to have larger stem diameters and more umbels. Plant 

traits within the 34 analysed populations showed high disparity (stress = 0.2) within climate 

envelopes. The two-dimensional MDS ordination plot did not show any pattern or clusters of 

populations that shared similar trait values (Fig. 3b). This was confirmed by the ANOSIM 

with each climate envelope containing populations with significantly dissimilar plant trait 

values within (Global R = 0.09; P = 0.001; Fig. 5). When analysed with bioregions, trait 

values showed significant divergence among populations from within the same bioregion 

(Global R = 0.27; P = 0.03) and sub-bioregions (Global R = 0.46; P = 0.001). Plant trait 

values within populations from the same soil type also displayed a weak similarity (Global R 

= 0.25; P = 0.001). 

 

 Four of the seven climate envelopes were retained when the 19 large populations (> 

1,000 plants) were analysed. Envelopes (a), (c), (f) and (g) remained while a fifth envelope 

(h) was recovered and is defined by high annual rainfall. The five climate envelopes showed 

good separation (Stress = 0.01) from the MDS plot (Fig. 6a). Large populations showed 

significant dissimilarity between the plant trait values and climate envelopes (Global R = 

0.19; P = 0.001; Fig. 6b), as well as sub-bioregions (Global R = 0.53; P = 0.001) and soil 

types (Global R = 0.31; P = 0.001). Plant trait values showed some congruence with 

bioregions (Global R = 0.17; P = 0.45). 
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Fig. 5. Boxplots of the seven climate envelopes for each of the six plant traits used in the 

analyses, including above-ground plant height, leaf lamina length, the number of umbels, 

diameter of the main stem at ground level, the number of umbels per inflorescence, and the 

distance to the closest conspecific. 
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Fig. 6. Two-dimensional MDS ordination of the 19 populations with at least 1,000 

individuals separated into five climate envelopes by (a) populations, and (b) plant traits: ♦: 

envelope-a; ▼: envelope-c; ■: envelope-f; ●: envelope-g, and; ▲: envelope-h.  
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Discussion 

The aim of this study was to generate different climate envelopes across the geographic range 

of a species and to determine the importance of climate and non-climate variables in 

explaining plant trait variance. We found that the relationships between climate envelopes 

and observed plant trait values were spatially complex and dependent on scale. Actinotus 

helianthi has a wide distribution and its populations experience a range of climatic conditions 

identified in this study. We demonstrated that for a given year, plants within a population 

have dissimilar trait-values to plants in geographically disjunct populations with a similar 

climate envelope. Our results are indicative of the differential response of plants to climate 

being either a tolerance of, or adaptation to, local conditions (Davis and Shaw 2001). Our 

results agree with other studies that examine plant trait variation across populations (Albert et 

al. 2010a; Albert et al. 2010b). This variation observed in plant trait values was not able to 

reflect our population-level climate envelopes. 

 

The impact of climate at a local scale does not correspond with its impact at coarser 

scales (Araújo et al. 2011). However, population-level climate envelopes do provide a 

foundation for assessing the level of predictability among complex plant traits within 

populations, thereby providing a valuable means to examine the relationship between species 

and their surrounding environment. In this study, we have demonstrated the importance of 

incorporating population-level data into a species distribution model. Taking this further, a 

demographic distribution model (DDM) (Merow et al. 2014) uses demographic data on 

survival, growth and reproduction to develop a mechanistic understanding of population-level 

responses based on forecasts of environmental changes. These models link vital rates directly 

to ecological processes and can predict where within the species distribution may expand or 

contract based on population growth rates. We also recommend using DDMs to evaluate and 
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test different assumptions associated with climate envelopes as they include measures of 

uncertainty associated with limited data or model assumptions.  

 

The IBRA bioregions and sub-bioregions is a system developed where a proportion of 

areas within each ‘environmental envelope’ are listed as protected in order to minimize the 

impact of climate change on the environment (Natural Resource Policies and Program 

Committee, 2009). Although, there is some disparity of opinion regarding whether the 

classification provides an appropriate system (Marchant et al. 2000; Peters and Thackway 

1998), the system still represents the best regionalization of Australia for conservation and 

ecological studies. For example, a study on crayfish identified two bioregions in Tasmania 

that should be given top priority for conserving the highest level of diversity (Whiting et al. 

2000). The author’s results differed from previous reports that suggested high priority areas 

for conservation based on taxonomy alone. Here, we have utilised these spatial ‘envelopes’ in 

a novel way to explore their relationship with A. helianthi trait values. We found several trait 

values to significant differ among bioregions. Furthermore, the climate envelopes identified 

in this study showed some connection with the Australian bioregions and sub-bioregions 

groupings. This result is not surprising given that the bioregions are, in part, defined by 

climate as well as a combination of other factors, including vegetation, geology and 

topography. Our results confirm that bioregions are a further refinement of the climate 

envelopes identified in this study, and may present a useful means to assess population 

differences across the species distribution.  

 

In contrast to the reasonable match to bioregions, the climate envelopes generated 

were not readily aligned to the distribution of different soil types. Soils vary at a local scale, 

and specific factors, such as pH, can elicit a different physiological response from plants to 

the environment. For example, Populus augustifolia seedlings were twice as likely to survive 
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in their local soil, raising the possibility of epigenetic effects determined by soil chemistry or 

soil biota in conveying local adaptations (Smith et al. 2012). The authors also reported that 

height, leaf area and the number of leaves were 15% to 20% greater when grown in their 

local soil. In support of the effects of soil, the availability of nitrogen and carbon, as well as 

pH were reported to vary between soils at the different sites. In a global study, soil nutrient 

factors explained more of the variation observed in leaf traits, such as leaf area (Ordoñez et 

al. 2009). The authors also point out that soil factors also interacted with climate factors in 

explaining leaf area. Phosphorus content has also been shown to be correlated with some 

traits in Australian plant species (McDonald et al. 2003). Although the classification of Isbell 

(2002) is geographically broad, A. helianthi is found across a wide geographic range, thus it 

could be expected for some trait values to show similarity between the different soil types. 

Whether finer scale soil classification systems show greater similarity with plant trait values 

warrants further investigation. 

 

Local adaptation is important for individual plant survival, and, therefore, population 

survival. The degree of local adaptation in plants can be higher in larger populations (> 1,000 

flowering plants) than smaller ones (Leimu and Fischer 2008). Furthermore, plant abundance 

is a more influential factor than life-history and spatial or temporal variation (Leimu and 

Fischer 2008). We might expect this since plants in larger populations may have a longer 

period of time to better match their traits to the local environment.  While not always a good 

predictive factor on its own, when coupled with other species trait values, abundance can also 

be shown to influence overall ecosystem function (Hooper et al. 2005). Climate and 

topography can also have an interactive effect on population size (Reader 1998). For 

example, in New Zealand, higher mean daily temperatures during winter resulted in larger 

populations of Agrostis capillaris L. whereas higher mean daily spring temperatures led to 

larger populations of Lolium perenne L. (Wan et al. 2009). Topography can indirectly affect 
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plant abundance by influencing soil biota and moisture content, and limiting the number of 

growing plants (Radcliffe and Lefever 1981). While sampling larger populations might be 

more beneficial for a study such as ours where we are interested in the conformity and 

predictability of plant trait values with local climate, including smaller populations better 

represents the diversity of phenotypes and, therefore, the overall adaptability and potential 

survival of the species throughout its geographic range. However, caution is warranted when 

using a single estimate of abundance. Abundance of A. helianthi, for example, can be 

strongly influenced by the time since last fire. In addition, our estimate did not include the 

soil seedbank, which is an important parameter for calculating population persistence 

(Wardle 2003). Incorporating both above- and below-ground abundance estimates into the 

model could provide a better understanding of how populations interact with their 

environment. 

 

Exploring plant trait values across individuals and populations is pivotal, in an 

ecological context, to classifying species into functional groups (Albert et al. 2011; Díaz et 

al. 1998). Differences in trait values could be associated with species competitiveness 

(Goldberg 1996) or as a response to species interactions (Díaz et al. 2001). The fact that other 

environmental patterns showed some congruence across A. helianthi plant trait values 

indicates that climate is not the sole selective force, and that different ecosystems are driven 

by different interactions.  This suggests that when climate changes, each population will 

respond based on the composition of individual phenotypes with the potential for divergent 

outcomes across the geographic range. Only if individuals possess similar phenotypes so that 

the mean trait value of neighboring populations are similar can we expect these populations 

to respond similarly, and thus for the climate envelope to meaningfully represent the 

aggregated outcome. If individual plants do not possess similar phenotypes then it is likely 

that an array of responses will occur, even within the same climate envelope. Subsequent 
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studies could then test population genetic structure across the landscape, identify whether the 

capacity of species traits to respond to local climate is constrained due to genetically-fixed 

traits associated with local environmental factors (Storfer et al. 2007). 

 

Complex interactions between populations, traits and climate have been documented 

for other biota. For example, a study of European birds found populations to increase or 

remain stable when changing their migration period, whereas declining populations did not  

(Møller et al. 2008). Interestingly, migratory period was the only significant factor associated 

with population size for the decade 1990-2000. Prior to this, habitat type and other latitudinal 

factors were more important (Møller et al. 2008). Furthermore, it has also been shown that in 

marine crustaceans, populations exhibit strong local adaptation and cannot change their 

thermal tolerance after 10 generations of selection (Kelly et al. 2012). Such results give 

support to the notion that climate-only studies underestimate the probability of species 

distribution changes. Whether A. helianthi is locally adapted to its environment requires 

populations to be tested under common conditions, which is currently under investigation. 

 

Recent studies highlight the need to include plant traits, as well as environmental 

factors, in addition to climate variables for modelling patterns in species distributions. 

Several studies have produced models that perform better with the addition of environmental 

factors, including soil (Coudun et al. 2006; Dubuis et al. 2013) and elevation (Hof et al. 

2012). Plant traits and population size are also being promoted as important for species 

predictions (Douma et al. 2012; Duff et al. 2012). This study supports these 

recommendations by demonstrating that for widely distributed species, such as A. helianthi, 

climate alone does not provide sufficient precision to explain variation in functional plant 

trait values throughout the geographic range. Predicting species response to future climate 

change requires a multifaceted and integrated trait-based approach to understand how 
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populations differ across space. Combined experimental and field-based approaches are 

required in order to gather the necessary data to properly develop the algorithms for this 

framework. In addition, genetic landscape studies that examine the relationship between 

genotypes and environmental interactions would further complement our work. Other 

functional traits not examined in this study, such as those at the earliest and most sensitive 

developmental stages (i.e. reproductive and seed) warrant future investigation to strengthen 

the results from this study and to ultimately determine how best to classify the existing 

variation. Given that all species are undergoing a period of environmental change it is 

important to effectively predict changes in species distributions.  
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Chapter III 
REPRODUCTIVE ECOLOGY OF THE PERENNIAL FLANNEL FLOWER, 

ACTINOTUS HELIANTHI (APIACEAE - MACKINLAYOIDEAE) 

 

Abstract 

Actinotus helianthi Labill. (flannel flower) is a perennial sub-shrub endemic to the east coast 

of Australia. Despite its value as a cut-flower crop and potted plant, the floral phenology and 

breeding system of A. helianthi have not been fully described. Understanding the 

reproductive system of A. helianthi will help improve industry and conservation value by 

optimising the production of viable seed. Here we characterise the reproductive biology and 

determine if the source of pollen affects seed set and germination. Umbels of A. helianthi 

comprise a central aggregation of numerous hermaphroditic flowers, surrounded by 

peripheral, unisexual (functionally male) flowers. Hermaphroditic flowers are protandrous. 

Peripheral male-only flowers have pollen present during the male phase of the 

hermaphroditic flowers, but not during their female phase. There is some temporal overlap 

between sexual phases among umbels of different ages. We document within-umbel floral 

phenology and pollen counts to quantify the potential for geitonogamous pollination to occur 

between primary and secondary umbels. We tested four pollination types in two populations 

of A. helianthi – within-umbel (intra-umbel geitonogamy), within-plant (geitonogamy), 

between-plant (xenogamy) and open-control. Within-umbel pollinated flowers produced very 

low viable seed set in each population (1 % and 6 %, respectively), and were excluded from 

analyses. By comparison, seed set and germination percentage did not differ significantly 

among the other three manipulated treatments. Populations differed significantly in the 

percentage seed set (31 % and 68 %), but not in the germination of fresh seeds (25 % and 21 
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%). The difference in seed set between populations could be due to pollination service, but 

once flowers are pollinated, the seeds produced are of similar quality in terms of germination. 

These findings may apply to other Apiaceae or other self-compatible species with similar 

temporal gender expression. 

 

Introduction 

The showy flowering heads of the flannel flower, Actinotus helianthi Labill. (Apiaceae) has 

led to its popularity as a horticultural species, but the basic reproductive biology of this native 

angiosperm remains unknown. A. helianthi is grown particularly for the cut-flower trade due 

to the long, straight stems that terminate with a flower head (von Richter and Offord 1997a). 

Despite its desirability to the horticulture industry, the flannel flower suffers from a number 

of cultivation difficulties, including root disease (Offord and Bullock 2009) and erratic 

propagation (Lee 1995; Offord and Tyler 1993). Much of the research to date has focused on 

optimising the method of cultivation from cuttings or from seed (Emery and Lacey 2010; Lee 

1995; von Richter and Offord 1997a; b). The next step is to investigate whether the 

reproductive ecology of A. helianthi, specifically the mode of pollination, affects seed quality 

and, subsequently, propagation.  

 

Understanding the reproductive system of any species is a complex task in plant 

population biology (Devaux et al. 2014), and such estimations have required various 

combinations of field trials and laboratory manipulations (Brys et al. 2008; Cohen 1966; 

Davila and Wardle 2002; Offord 2004; Rees 1994; Willi et al. 2007). Reproductive success in 

out-crossing plants is expected to vary most prominently among populations due to 

variability in pollen availability (Aizen and Harder 2007; Davila et al. 2012), as well as 

changes in the abundance of plants and external environmental factors such as pollen vectors 

(Ågren 1996; Brys et al. 2008; Kunin 1997; Mustajärvi et al. 2001). 
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Apiaceae is a species-rich family of flowering plants found in numerous habitats, 

including deserts, marshes, subalpine tundra and woodlands (Lawrence 1970). Much of the 

research on seed set and quality in Apiaceae has been focused on wild sources of 

economically-important crop species (Hendrix 1984; Hendrix and Sun 1989; Koul et al. 

1986; Robinson 1954), with a number of studies examining plant and insect interactions 

(Berenbaum 1990; Lindsey 1984; Niemirski and Zych 2011; Zych 2007). Webb (1981) lists 

several broad features of Apiaceae floral phenology: (1) andromonoecism, (2) highest 

proportions of co-sexual flowers occur in outer umbels and in primary umbels, (3) anthesis 

occurs centripetally within umbels, and (4) self-compatibility. Most species are protandrous, 

however some North American Apiaceae are protogynous (Schlessman and Graceffa 2002; 

Webb 1984). Most Apiaceae are characterised by simple or compound umbels comprising 

co-sexual flowers. Despite the relative uniformity of floral morphology, a number of different 

breeding systems have been documented for the family (Keighery 1982; Koul et al. 1986; 

Koul et al. 1993; Lindsey and Bell 1985; Webb 1981). Many Apiaceae are thought to be 

xenogamous and/or geitonogamous, particularly for those which have numerous, conspicuous 

pseudanthia within an inflorescence (Keighery 1982). Most species also have a generalist 

pollination system (Proctor et al. 1996), although some specialist behaviour has been 

documented (Zych 2007). In addition, because of the often complex, structured inflorescence 

morphology, and the temporal expression of gender, geitonogamy is likely in many Apiaceae. 

 

The occurrence of geitonogamy in Apiaceae can be comparable with xenogamous 

pollination rates (Gaudeul and Till-Bottraud 2003; Marcinko and Randall 2008). 

Geitonogamous pollination often occurs in hermaphroditic species, and if the species is also 

self-incompatible, there is no fitness benefit of pollen remaining within the plant (de Jong et 

al. 1993). Several studies have estimated the consequences for reproductive success using 
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pollen from the same plant. For example, artificial geitonogamous pollination resulted in 

twice as many aborted fruits than in the naturally-pollinated flowers of the milkweed, 

Asclepias speciosa Torr. (Finer and Morgan 2003). Karron et al. (1995) noted that 

geitonogamous pollination was more likely to occur in low density populations of Mimulus 

ringens L.. Seed set in Ipomopsis aggregata Pursh. was 42% lower when self pollen was 

combined with pollen from a xenogamous source than just the latter alone (Waser and Price 

1991). Therefore, it is important for studies that evaluate the reproductive ecology of species 

with co-sexual flowers to include the effects of geitonogamy on seed set, as well as the 

possibility of inbreeding depression in future generations.  

 

Actinotus comprises 20 species – 19 in Australia and 1 in New Zealand. Species are 

perennial (either sub-shrubs or herbs) or annual herbs (some of which are fire-ephemerals). 

Keighery (1982) considered five species of Western Australian Actinotus to be out-crossing, 

but did not describe their floral phenology. Relatively little is known about the breeding 

systems of the other 14 Australian Actinotus. An exception is A. helianthi, which has been 

used by the Australian horticulture industry as a cut flower crop and potted plant. A recent 

study by Emery et al. (2011) confirmed that germination success differs substantially among 

populations even when a germination stimulant (smoked water) was used. However, the 

degree to which different pollen sources have an effect on seed set and germination of A. 

helianthi remains unknown. The aims of our study are three-fold: firstly, to document the 

floral phenology for A. helianthi to determine the potential for geitonogamous pollination; 

secondly, to investigate whether the source of pollen affects seed set and germination in A. 

helianthi; and finally, to determine how seed set and germination varies between populations. 

These studies are important for understanding potential interactions between plants and 

pollinators and the effects on the reproductive system. If our manipulations illustrate that 

geitonogamy is inevitable (due to the phenology), this then has important implications for ex 
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situ propagation. It would then be recommended for secondary umbels to be removed from 

plants grown for seed production. If there are no differences in seed germination, then we 

suggest that the species is used to selfing and plants can still be grown for seed production 

with few deleterious effects of inbreeding. Furthermore, the results from this study will 

contribute towards our understanding of the plant attributes that might determine persistence 

and geographic distribution of this species. 

 

Materials and methods 

Study species 

Actinotus helianthi is a geographically widespread sub-shrub that grows to 2 m tall, and 

occurs in dry sclerophyll woodland and heath vegetation along the east coast of Australia 

(Fig. 1). Plants grow in oligotrophic soils from Ulladulla on the New South Wales (NSW) 

south coast to Salvator Rosa National Park in central Queensland (QLD). The species is 

characterised by umbels comprising a central aggregation of co-sexual flowers surrounded by 

morphologically unisexual male flowers. Each umbel is subtended by several large, white, 

petaloid involucral bracts (Webb 1980; Lee 1995). The paniculate inflorescence is terminated 

by a primary umbel with each of several higher order branches also terminated by an umbel 

(Fig. 2). Flowering commences in the primary umbel in September (early spring) and 

progresses sequentially to the cessation of tertiary flowering in March. The morphology of 

co-sexual flowers is typical for the family, comprising an androecium of five stamens and a 

gynoecium of two styles. However, the corolla is reduced to five, trichome-like structures, 

and the ovary comprises a single locule with one functional ovule. Germination significantly 

increases when the seeds are exposed to smoke, and following a fire, thousands of seeds 

germinate and form a dense understorey (Emery and Lacey 2010). 
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Fig. 1. Actinotus helianthi population along the edge of a walking track at Manly Dam in 

September, 2010. Photo by N. Emery. 
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Fig. 2. A typical inflorescence of Actinotus helianthi from Manly Dam. A primary umbel is 

subtended by multiple secondary branches, each of which can carry one or more tertiary 

branches. All branches are terminated by an umbel. Photo by N. Emery. 
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Study sites 

A natural (field-based) population and a cultivated population were studied during the period 

of flowering of the primary and secondary umbels in October and November, 2011. The 

cultivated population was established from fruit collected from the corner of Putty Road in 

Yengo National Park, where A. helianthi was the dominant under-storey species in open 

sclerophyll woodland, 330 m above sea level (32° 58’ 9” S, 150° 41’ 5” E). Seed was 

collected from this population in January, 2008 and stored at the Australian PlantBank since. 

54 plants were then grown from this seed source in pots at the nursery at The Australian 

Botanic Garden, Mount Annan in the Greater Western Sydney  region of NSW (32° 58’ 50” 

S, 150° 41’ 11” E, hereafter referred to as Mt Annan). The plants were watered on a daily 

basis via automatic sprinklers. The second, natural population was located on the north-east 

section of Manly-Warringah War Memorial Park (33° 46’ 03” S, 151° 14’ 50” E; hereafter 

referred to as Manly Dam). The vegetation at Manly Dam was predominately open heath, 125 

m above sea level. The Manly Dam population comprised about 200 plants over an area of 

approximately 250 m2. Both populations experience different climatic conditions. Mean 

monthly temperatures range from 17.3 °C to 29.5 °C (43 year average) at Mt Annan, and 16 

°C to 26.5 °C (10 year average) at Manly Dam. Annual rainfall in 2011 was 757 mm (61-year 

average: 788 mm) and 1,647 mm (56-year average: 1331 mm) at Mt Annan and Manly Dam, 

respectively (Bureau of Meteorology 2014). 

 

Floral phenology 

Stages of floral phenology were initially identified by monitoring an inflorescence on a single 

plant from Mt Annan. Tagged umbels were examined daily over a 38 day period to determine 

the relative timing of anther dehiscence and stigma receptivity. Male phase was judged to 

commence when the first anther began to dehisce. The onset of stigmatic receptivity was 

recognised by the presence of a glistening tip on each of the two, fully erect styles. Stigmatic 
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receptivity was considered to have ceased when the styles incurved, and the stigmas dried 

and discoloured. Fruit development was assumed to have initiated once the stigmas were 

unreceptive, and to have completed when fruits were brown.  

 

 The number and the proportion of co-sexual and staminate flowers per umbel were 

recorded from two primary, two secondary and two tertiary umbels haphazardly selected 

from each of five plants at the Manly Dam population (a total of 30 umbels: ten umbels per 

order). The number of viable and non-viable pollen grains per anther was estimated by 

mounting 24 unopened anthers in a drop of glycerine. A pollen grain was recorded as viable 

if cytoplasm filled the grain when viewed with an Olympus CH-2 microscope at 100× 

magnification. Anthers of four co-sexual and four unisexual male-phase flowers were 

sampled from two primary, two secondary and two tertiary umbels haphazardly selected from 

the Manly Dam population.   

 

Breeding system 

At each population, a total of 40 umbels were selected across 30 plants were haphazardly 

tagged and randomly assigned to one of four pollination treatments to give ten replicate 

umbels per treatment. Replicates were subsequently adjusted to n = 8 per population because 

of damage to experimental inflorescences. Umbels were bagged prior to pollination for the 

first three treatments (below):  

1- Intra-umbel geitonogamy: stigmas of hermaphrodite flowers in female phase were brushed 

10 times with 5-10 excised unisexual male flowers from the same umbel. Umbels were re-

bagged after treatment; 

2- Geitonogamy: when a primary umbel had commenced the female phase, a secondary 

male-phase umbel with pollen present from the same plant was excised and brushed over the 

stigmas 10 times. Umbels were re-bagged after treatment; 
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3- Xenogamy: when an umbel had entered female phase, a male-phase umbel from another 

plant at least 5 m away was excised and brushed over the stigmas 10 times. Umbels were re-

bagged after treatment; 

4- Open control: umbels were tagged and left open to pollinators for the duration of stigma 

receptivity. Umbels were bagged when stigmas were no longer receptive. 

 

 Mature fruit were collected and stored in a controlled environment dry room (16 °C; 

16% rH) for two weeks so that all fruit would equilibrate to similar moisture content. For 

each pollination treatment, seed set per umbel was determined as the proportion of seeds 

containing endosperm. Seed germination and viability were assessed by placing fruit 

containing mature seeds on water agar petri dishes made by heating 7 g of powdered agar per 

1 L of deionised water to 200 °C for 10 minutes. The plates were sealed with plastic wrap and 

transferred to a germination incubator at a constant 15 °C with a 12 h light and 12 h dark 

regime. These conditions have been previously reported to induce the germination of A. 

helianthi (Emery et al. 2011). Smoke-water was not used in this study since we wanted to 

mimic germination conditions in the absence of fire to avoid having additional pre-

germination treatments that might inhibit our ability to elucidate the impact of pollen source. 

This is a reasonable expectation as A. helianthi can persist in the landscape without being 

dependent on fire to stimulate germination. Agar plates were monitored for seed germination 

every 2-3 days for a 60 d period. Germination was considered to have commenced when a 

radicle protruded at least 2 mm from a seed. A cut-test was performed on non-germinated 

seeds to identify the presence of an embryo. Final seed germination percentages were 

subsequently adjusted from the viability results. 
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Data analysis 

Differences between umbel orders in the number of flowers, the number of pollen grains per 

anther, and the proportion of male-only to co-sexual flowers were tested using univariate 

general linear models (GLMs). Bonferroni post-hoc tests were performed where appropriate. 

Mean seed set for each pollination treatment was calculated as the seed set proportion 

multiplied by the viability. Mean adjusted germination was then calculated by the effective 

seed set multiplied by the germination proportion adjusted for viability. The within-umbel 

treatment was excluded from statistical analyses (only one fruit germinated) to avoid 

unbalanced data. Mean seed set was modelled as a response to pollination treatment (fixed) 

and population (fixed) using a univariate GLM. Mean germination was also analysed using a 

similar model. Differences were considered significant where P ≤ 0.05. All analyses were 

performed in SPSS Statistics 21 (IBM, New York). 

 

Results 

Floral phenology 

Morphologically co-sexual flowers of A. helianthi are protandrous. In co-sexual flowers the 

onset of the male phase of individual flowers within an umbel was spread over two days, and 

was synchronous with anther dehiscence in the peripheral morphologically male flowers 

within umbels. The sex phases of co-sexual flowers were separated by a quiescent (non-

sexual) phase of 2 to 3 days, during which styles were raised centripetally in the umbel. 

Umbels within an inflorescence overlapped in male and female sex phases to some degree. 

Flowering began in primary umbels with anther dehiscence occurring first in the central co-

sexual flowers and progressing centrifugally towards the peripheral morphologically-male 

flowers. This was followed by stigma receptivity in the co-sexual flowers. Pollen was not 

apparent on the dehisced anthers of the flowers during the female phase. Primary and 

secondary umbels of the same inflorescence overlapped in anthesis. Male phase commenced 
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in secondary umbels when primary umbels had commenced their short quiescent phase (prior 

to the onset of stigmatic receptivity). The pollen presentation in secondary umbels overlapped 

with at least half of the duration of stigmatic receptivity phase in the primary umbel (Fig. 3; 

Fig. 4). Male phase in tertiary umbels commenced when stigmatic receptivity had ceased in 

secondary umbels. Tertiary umbels had a longer male phase (9 days) than secondary and 

primary umbels (approximately six and seven days, respectively; Fig. 4).  

  

 Staminal filaments of co-sexual flowers elongated and straightened, lifting the anthers 

above the incurved styles before the involucral bracts have fully recurved. Anther dehiscence 

occurred 24 hours after the staminal filaments reached maximum elongation. Anther 

dehiscence in peripheral, morphologically male flowers commenced 72 hours after the onset 

of anther dehiscence in the central, co-sexual flowers. Nectar was visible on two black 

nectaries during anther dehiscence. The male phase of each umbel lasted between four and 

nine days. The male phase lasted for 1 to 2 days before filaments and anthers began to 

senesce, which signaled the start of the quiescent phase. Following this short phase, stigmatic 

receptivity then commenced centripetally in co-sexual flowers. The two nectaries remained 

raised in each co-sexual flower, and styles were fully erect by 2 to 3 days. At this time, the 

terminal stigmas were glossy and appeared to be wet. After 3 to 5 days, the stigmas dried and 

discoloured, and the tips of the styles incurved. The involucral bracts then started to close 

over the umbel. Fruit matured on the umbels for 14 to 17 days before the involucral bracts 

were shed (Fig. 4). 

 

 The number of flowers (co-sexual and unisexual male) in each umbel was 

significantly different between umbel orders (F2,27 = 10.192; P = 0.001). Primary umbels 

comprised 263 ± 11 (mean ± SE) flowers (Table 1). The number of flowers in primary 

umbels was statistically similar to secondary umbels (247 ± 15 flowers). The number of  
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Fig. 3. Umbels of an Actinotus helianthi inflorescence twelve days from the start of the 

observation period. Primary umbel (a) was in female stage with erect styles, while the 

secondary umbel (b) was in male phase with pollen present in anthers, and the tertiary umbel 

was in bud (c). Photos by N. Emery. 
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Fig. 4. Floral phenology of single umbels of an inflorescence on a plant from the Mt Annan 

population. Primary umbel (Prim.), secondary umbel (Sec.) and tertiary umbel (Tert.). 
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Table 1. Mean morphological differences among different umbel orders and flower types in 

Actinotus helianthi. Pollen grains were counted from n = 4 anthers for each anther-umbel 

combination. Flowers were counted using n = 10 per umbel order. 

 

Umbel Flower 
morphology 

Mean Viable 
pollen grains per 

anther 

Mean Number 
of flowers 

Proportion of total 
flowers per umbel 

Primary 

Unisexual male 248 ± 22 149 ± 9 0.57 ± 0.04 

Co-sexual 292 ± 12 114 ± 12 0.43 ± 0.04 

All 270 ± 14 263 ± 11 1 

Secondary 

Unisexual male 189 ± 18 158 ± 9 0.64 ± 0.02 

Co-sexual 295 ± 8 90 ± 8 0.36 ± 0.02 

All 242 ± 19 248 ± 15 1 

Tertiary 

Unisexual male 233 ± 9 149 ± 11 0.80 ± 0.03 

Co-sexual 151 ± 20 37 ± 5 0.20 ± 0.03 

All 192 ± 19 186 ± 12 1 
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flowers in tertiary umbels (186 ± 12) was significantly different from primary (P = 0.001) 

and secondary (P = 0.006) umbels (Table 1). The proportion of unisexual male flowers was 

lowest in primary umbels (0.57 ± 0.04) and increased throughout the higher orders. In 

secondary and tertiary umbels, the proportion of unisexual male flowers to co-sexual flowers 

was 0.64 ± 0.02 and 0.80 ± 0.03, respectively (Table 1). The proportion of unisexual male 

flowers was significantly different between umbel orders (F2,27 = 14.032; P < 0.001). 

Bonferroni post-hoc tests showed a significant difference between primary and tertiary 

umbels (P < 0.001), but not primary and secondary umbels (P = 0.129).  

 

 The number of pollen grains per anther varied significantly among umbel orders and 

flower types (F2,22 = 18.351; P < 0.001). Flowers of primary umbels contained more pollen 

grains per anther than flowers of either secondary or tertiary umbels (Table 1). Bonferroni 

post-hoc tests revealed tertiary umbels to be significantly different to primary (P < 0.001) and 

secondary (P = 0.012) umbels. The number of pollen grains in anthers of unisexual male 

flowers was higher in primary umbels (292 ± 12) than unisexual flowers of secondary (189 ± 

18) or tertiary umbels (233 ± 9; Table 1). There was no significant difference in pollen grains 

per anther of unisexual flowers between umbel orders (F2,11 = 3.124; P = 0.084). By contrast, 

the number of pollen grains in anthers of co-sexual flowers was significantly different 

between umbel orders (F2,11 = 36.207; P < 0.001). Post-hoc tests showed co-sexual flowers in 

tertiary umbels have significantly fewer pollen grains (151 ± 20; P < 0.001) than co-sexual 

flowers of primary and secondary umbels (292 ± 12 and 295 ± 8, respectively; Table 1). 

Pollen was not presented in the anthers of primary co-sexual flowers or morphologically male 

flowers when the former were in female phase. 
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Breeding system 

Across the four pollination treatments, the number of fruit per umbel ranged from 31 to 120 

(n = 32) and 34 to 245 (n = 32) for Manly Dam and Mt Annan, respectively. Flowers that 

received the intra-umbel geitonogamy pollination treatment produced few mature fruit in 

both populations (Fig. 5). No interaction between population and pollination treatment was 

detected (F2,42 = 0.155; P = 0.86). Mean seed set for the remaining three pollination 

treatments in the Mt Annan population was consistently low, ranging from 26 ± 6 % of 

geitonogamously-pollinated fruit (within plant) to 38 ± 6 % of open (control) pollinated 

flowers (Fig. 5). In contrast, mean seed set of the Manly Dam population was significantly 

higher (P < 0.001), ranging from 65 ± 7 % for fruit produced with pollen from a different 

plant to 71 ± 6 % for fruit open pollinated flowers (Fig. 5). Seed viability ranged between 60 

% and 72.5 % across the pollination treatments. Despite the highest proportion of viable fruit 

being produced when flowers were open pollinated, the difference was not significant (P = 

0.32). 

 

The open pollination (control) treatment had the highest mean germination in both 

populations (32 ± 5 % in Mt Annan and 24 ± 3% in Manly Dam). Mean germination for the 

xenogamous pollinations (treatment 3) and geitonogamous pollinations (treatment 2)  were 

24 ± 7 % and 19 ± 5 % in the Mt Annan population, and 22 ± 4 % and 16 ± 4 % respectively 

in the Manly Dam population (Fig. 5). There was no significant interaction in mean 

germination between population and pollination treatment (F2,42 = 0.193; P = 0.82). Neither 

population nor pollination treatments were significantly different (P = 0.31 and P = 0.82, 

respectively). 
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Fig. 5. Mean seed set for each pollination treatment (n = 8) is represented as the clustered 

dark and open bars. Mean germination was calculated as the proportion of seeds from the 

mean seed set that germinated and adjusted for viability, represented by the grey bars. Mean 

seed set was calculated as percentage seed set multiplied by the viability percentage, 

represented by the white bars. 
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Discussion 

The breeding system of Actinotus helianthi comprises xenogamy and geitonogamy (i.e. 

different umbels on the same plant), the latter being due to the species temporal flowering 

structure. Intra-umbel geitonogamy produces little (if any) viable fruit. Our results indicate 

that propagation difficulties might not be caused by the reproductive system of A. helianthi, 

but rather how seeds are treated ex situ that determines the proportion of successfully 

germinating seeds. Co-sexual and unisexual flowers of each order of umbel present pollen 

simultaneously, and the presentation of pollen within an umbel concluded prior to the stigmas 

of co-sexual flowers becoming receptive.  Thus, individual co-sexual flowers of each umbel 

of Actinotus helianthi are protandrous, thereby reducing the potential for pollen transfer 

within co-sexual flowers and individual umbels (Webb 1981). Our results demonstrate the 

potential for geitonogamous pollination to occur between separate umbels on the same plant 

is relaxed between successively higher orders of umbels, and flowering is not synchronous 

among same order umbels or inflorescences (Fig. 3). Thus, co-sexual flowers in primary 

umbels of plants with at least one inflorescence have a higher probability of being pollinated 

by male-phase flowers from a secondary umbel. A similar result was recorded in Daucus 

carota plants (Koul et al. 1993). 

 

 These results suggest that a mixed-mating strategy could be possible in A. helianthi. 

While autogamy may not occur, the capacity for geitonogamy provides insurance against low 

pollinator diversity and/or pollinators that move small distances (Goodwillie et al. 2005; 

Kalisz et al. 2004; Vogler and Kalisz 2001). Furthermore, nectar was available during both 

sex phases of co-sexual flowers as well as in unisexual male flowers, a feature exhibited in 

other Apiaceae, (e.g. Angelica sylvestris L.; Stpiczyńska et al. 2014). Langenberger and 

Davis (2002) reported the volume of nectar secretion to be around 5.7 times higher when co-
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sexual flowers were in female phase than when in male phase. Whether nectar secretion 

influences pollinator behaviour in A. helianthi requires further investigation. 

 

 Examining the breeding system by manipulating the source of pollen provided a 

detailed understanding of the reproductive system of A. helianthi. While there could also be a 

genetic, maternal mechanism that prevents autogamy within an individual co-sexual flower 

(i.e. partial self-incompatibility in the sense of Gaudeul and Till-Bottraud 2003), this was not 

examined in the current study. Autogamy can have negative impacts on within-population 

genetic variation, which can adversely affect the fecundity and survival of individuals 

(Charlesworth and Charlesworth 1995). Thus, these negative impacts may outweigh any 

positive potential genetic advantage of selfing when xenogamy is less likely to occur 

(Gaudeul and Till-Bottraud 2003). However, as the co-sexual flowers of A. helianthi can be 

geitonogamously pollinated, this might negate the need for autogamy. It should be noted that 

we cannot specifically comment on the potential rates of geitonogamy in situ without 

examining the genetic diversity of the viable seeds produced (de Jong et al. 1993; Gaudeul 

and Till-Bottraud 2003). Interestingly, while viable seed production and germination did not 

vary among three of the pollination treatments (excluding the within-umbel geitonogamy), 

overall seed set was significantly higher at the Manly Dam population (Fig. 5). These results 

may explain the variation in germination success among populations that has been reported 

previously for A. helianthi (Offord and Tyler 1993) and for other angiosperms (Ågren 1996; 

Menges 1991). This may also be linked to the interaction between the attractiveness of 

flowers to pollinators, pollinator availability and pollinator diversity, and population size 

(Kunin 1997; Mustajärvi et al. 2001). These factors must be considered to determine the 

cause of variability when propagating A. helianthi.  
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 Our results indicate that intra-umbel geitonogamy is not possible in the co-sexual 

flowers of A. helianthi. This means that pollen must come from another umbel from either the 

same or a different inflorescence for seed set to occur. Our results agree with the observations 

made by Keighery (1982), who observed five West Australian Actinotus species were 

xenogamously pollinated. Much of the potential for reproductive success occurs in primary 

umbels where pollen counts, and, therefore, the pollen ovule ratio (Cruden 1977), as well as 

the proportion of co-sexual to unisexual male flowers are at their highest. The low pollen 

count of the unisexual male flowers compared to the co-sexual flowers might be a strategy to 

encourage pollinators to forage on the latter (Manicacci and Despres 2001; Stanton et al. 

1986; Willson and Rathcke 1974). Comparatively, the increase in the number of pollen grains 

in tertiary unisexual male flowers may be to increase the opportunity for achieving pollen 

export and thus fitness via male function. It is also noteworthy that pollen abundance can be 

influenced by environmental conditions, such as nutrient availability and herbivory (Cruden 

2000; Young and Stanton 1990), which may further result in variation in the production of 

viable seeds between populations. 

 

 The production of viable seed from three of the four pollination treatments 

demonstrated the tendency for a generalist breeding system of A. helianthi. Moreover, seed 

set from geitonogamous (treatment 1 and 2) and xenogamous pollination (treatment 3), was 

comparable with natural (open) pollination (treatment 4). Autogamy in A. helianthi is 

prevented by the temporal separation of male- and female-phases within co-sexual flowers, 

and other examples of low autogamy have been reported in other Apiales. For example, seed 

set in the long-lived Eryngium alpinum L. was significantly higher in xenogamous pollen 

treatments, (18 % to 61 %) than in geitenogamous and intra-umbel geitonogamous 

treatments, (8 % to 38 %; Gaudeul and Till-Bottraud 2003). The proportion of viable seed set 

as a result of intra-umbel geitonogamous pollination peaked around 2 % for D. carota subsp. 
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sativus Hoffm. Thell., compared to a range of 35 to 68 % for open (control) pollination (Koul 

et al. 1989). In Trachymene incisa subsp. incisa Maiden & Betche, seed set was also 

significantly lower in autogamous (ca. 15%) compared to out-crossed (ca. 45%) treatments 

(Davila and Wardle 2002). 

 

 Keighery (1982) recorded six Western Australian Actinotus species to be protandrous 

and self-compatible, with five of the six species being predominately pollinated by native 

bees. The pollinators of A. helianthi are currently unknown, although bees, beetles and ants 

were regularly observed visiting umbels. Empirical studies into the pollinators of A. helianthi 

and other Actinotus would complement our results and help to elucidate the likelihood for 

geitonogamy to occur naturally in situ. 

 

No pollen was available in the anthers of any co-sexual flowers when a primary  

umbel was in female phase. Furthermore, anthers from male-only flowers had dehisced 

pollen that was not available for transfer to stigmas This explains why seed set in A. helianthi 

was low following intra-umbel geitenogamous treatment. It is possible that the few seeds that 

developed as a result of this treatment were due to pollen contamination during the 

manipulative pollination treatments. 

 

 With the exception of intra-umbel geitonogamy, the effective germination percentage 

was consistent among pollination treatments and populations. The proportion of viable seeds 

that germinated, however, varied significantly between populations. Actinotus helianthi 

recruitment is higher following fire and, like many Australian angiosperms, germination 

success often increases when seeds are artificially exposed to smoke (Nelson et al. 2012). 

Furthermore, the population at Manly Dam and the source population of Mt Annan from 

Yengo National Park are known to be smoke-responsive (unpublished data). The lack of 
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variation in percent germination observed in this study is consistent with the germination of 

seed produced by artificial autogamy and geitonogamy pollination of T. incisa subsp. incisa 

(Davila and Wardle 2002). The difference in the proportion of viable non-germinated seeds 

between the two populations suggests that the degree of seed dormancy may be an important 

factor for propagating A. helianthi. As seed dormancy is, in part, influenced by the maternal 

environment as opposed to source of pollen (Roach and Wulff 1987), similar levels of 

germination would be expected across the different treatments.  

 

 The seeds of A. helianthi are morphophysiologically dormant (Lee 1995), and have 

two dormancy mechanisms. The first is a morphological dormancy that requires the growth 

of the immature embryo in order to be broken. Following the development of the embryo is 

the second physiological dormancy, which requires appropriate external environmental 

conditions in order to be relaxed (Baskin and Baskin 1998). Since the level of dormancy can 

vary among populations, so too can the period required for after-ripening for relaxing the 

physiological component (Andersson and Milberg 1998). The number of seeds germinated 

from Manly Dam might have increased if the seeds were stored for longer before being 

subjected to germination conditions. Therefore, we suggest that number of viable seeds is a 

sufficient measure of reproductive success, and successfully captures the variation among 

populations. 

 

 Actinotus helianthi provides an ideal model for examining how the mode of 

pollination affects seed set and germination. This may be particularly important for plants 

with geographically widespread distributions where pollinators might occur across all 

locations. We have demonstrated A. helianthi to have no capacity for autogamy. The sex-

phase overlap within and between inflorescences of an individual, coupled with the 

statistically similar seed set between two pollination treatments indicate that this species can 
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set seed by geitonogamous pollination (i.e. from another umbel on the same plant). In 

addition, our study indicates that pollen source does not adversely affect seed set in A. 

helianthi. However, the level of seed set does vary between populations. The results 

presented here provide the first evidence of the reproductive system of A. helianthi. In 

addition, we have provided further support for the need to account for variability between 

populations when considering how a species might respond under future environmental 

conditions.  
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Chapter IV 
RIGHT HERE, RIGHT NOW: CURRENT POPULATIONS DIFFER IN THEIR 

EARLY PERFORMANCE TRAITS AND SPECIES INTERACTIONS 

 

Abstract 

Variation in local environments helps to drive the dynamic response of populations over 

space and time, and therefore, to shape the distribution and abundance of the species. 

Population differences in early performance traits are also influenced by ecological 

interactions with insect visitors, yet few studies combine the two. We use experiments and 

field observations to explore how population differences might co-vary with geographic 

location. In a common garden experiment we quantified the early life-history components of 

fitness across 17 populations of the understorey sub-shrub, Actinotus helianthi Labill.. Across 

several geographically disjunct populations, variation in localized species interactions were 

examined in the field by quantifying the diversity of insect visitors to A. helianthi and the 

impact of visitation rates on seed set (a proxy for reproductive success). We found 

populations to vary in germination success between 0.2 ± 0.1 % to 64.2 ± 2.3 %. Seedling 

growth and early survival varied between populations by as much as two and 44 orders of 

magnitude, respectively. Specifically, we identified that variation existed at multiple levels 

from the maternal plant to biogeographic regions. The abundance and diversity of insect 

visitors also varied among populations and seed set was found to be site specific. There was a 

trend for populations with taller plants and larger floral display sizes to be more frequently 

visited by pollinators. We also identified a positive linear relationship between the intensity 

of visits by flies and seed set success. Our results indicate that A. helianthi populations 

exhibit local adaptation across the studied environments. This could have negative 
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consequences for populations that migrate to new suitable habitats under changing 

environments. 

 

Introduction 

As environments change, organisms must evolve new characteristics and broader tolerances, 

or shift into more suitable habitats. These differential responses to changing environments by 

populations will be, in part, dependent on the existing level of local adaptation of the plants 

within. Local adaptation is a well-documented phenomenon in plant populations (Ågren and 

Schemske 2012; Bennington et al. 2012). However, in the context of shifting distributions of 

the species, a fixed match of phenotype to the local conditions within populations would 

likely hinder migration to different environments (Pigliucci and Schlichting 1996; Via and 

Lande 1985). Plants can express different phenotypes among populations in different 

environments or across climatic gradients (Byars et al. 2007; Qaderi and Cavers 2002) but 

their potential or capacity to alter this response also varies, and may itself be influenced by 

the local environment (Breza et al. 2012).  

 

It has been recently questioned whether populations have a greater capacity to survive 

in their local environment compared to populations from other environments (Hancock and 

Hughes 2014; Hancock et al. 2013). In order to quantify any local vs. non-local advantage, 

plants traits are often recorded and related to survival as a measure of plant performance. 

There are specific plant traits that are likely to be more effective at demonstrating the 

importance of local adaptation. Often, differences in morphological traits such as plant 

height, leaf number and flower number within populations are reported (Byars et al. 2007; 

Galloway and Fenster 2000; Stewart Jr. and Nilsen 1995). However, there are other plant 

traits, such as those expressed in early development which might be more sensitive to 

environmental change.  
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Traits of individuals within a species have also only been recently examined in the 

context of species distributions (Hanspach et al. 2010; Pollock et al. 2012; Thuiller et al. 

2004b). However, most of these traits are not reported at a population level, but rather an 

aggregated species level. Flowering, fruiting, germination and young seedlings are the most 

sensitive stages for growth and reproductive success (forming a plant’s ‘reproductive niche’) 

and likely to affect individual plants and their distribution if they are compromised by 

environmental processes (Billings 1952). While all plants have some level of tolerance for 

dynamically-changing environmental conditions they are exposed to, determining the extent 

of this tolerance would provide a more detailed representation of the survivorship of species 

across distributions. Therefore, working at the population level provides a unique opportunity 

to understand the factors that can limit individual plant survival, and, in turn, the species 

distribution. 

 

Early performance traits 

Early performance traits, such as dormancy, for example, are likely to be under strong 

selection as plants must be able to express a viable phenotype for juvenile survival before 

expressing an adaptive adult phenotype (Huang et al. 2010). A dormant seed is the earliest 

stage at which adaptation to the local environment can occur (Huang et al. 2010), with the 

degree of dormancy determined by the maternal genotype and influenced in part by the 

maternal environment (Baskin and Baskin 1998; Roach and Wulff 1987). Furthermore, since 

dormancy is also shaped by local environmental conditions, measures of germination and 

early survival in populations provide sound data on species level responses under changing 

environments. Therefore, the challenge is to determine the degree of adaptation to local 

environmental conditions during such early developmental stages. There are several methods 
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to quantify local adaptation with common garden and reciprocal transplant experiments being 

most frequently used. 

  

 Reciprocal transplant experiments that compare phenotypes in the ‘home’ 

environment with an ‘away’ environment provide the strongest test for local adaptation 

(Ågren and Schemske 2012), but present methodological and ethical difficulties. For 

example, Petrů and Tielbörger (2008) point out that a number of plant community variables, 

such as soil resource availability and degree of biotic interactions, are likely to differ between 

transplant sites. Common garden experiments, on the other hand, are used to assess the 

relative contribution of genetic and environmental influences on intraspecific variation by 

comparing phenotypes of individuals from different populations, when grown together in the 

same environment (Clausen et al. 1940; Colautti et al. 2009). Phenotypic differences might 

reflect either environmental gradients or responses to different ecological habitats. For 

example, differences in time of emergence, time to flowering and reproductive output 

(number of flowers and fruit) were observed among and within five populations of 

Campanula americana from a wide latitudinal gradient when grown in a common glasshouse 

environment (Kalisz and Wardle 1994). Such differences expressed in the common 

environment provide appropriate means to report evidence for local adaptation (Colautti et al. 

2009) and broad sense genetic variation (Kalisz and Wardle 1994). Linking variation in early 

life-history traits with local environments will be important to elucidate how a species’ 

populations might respond to future conditions. 

 

Species interactions 

Species range shifts give way to changes in the timing of flowering phenology (Chambers 

and Keatley 2010; Fitter and Fitter 2002). The wide variety of breeding systems and plant 

mating strategies (Barrett and Harder 1996; Charlesworth 2006; Lloyd 1980) coupled with 

81 
 



the need for biotic pollen vectors (Willmer 2011), add to the variability exhibited in early 

life-history traits (Ågren 1996; Olsson and Ågren 2002). These changes can then affect the 

functioning of a species depending on whether any interactions with other species are 

subsequently influenced. Therefore, species interactions underly differences in plant 

performance and are expected to vary across populations.  

 

Species interactions are also important in predicting population persistence 

(Heikkinen et al. 2007; Van der Putten et al. 2010). Pollination, in particular, is sensitive to 

habitat changes (Aguilar et al. 2006; Vergeer et al. 2003) and is expected to vary prominently 

between populations of a species due to isolation and changes in the abundance of plants 

(Kunin 1997; Mustajärvi et al. 2001). This is also pertinent as biotically pollinated plants 

cannot extend their range beyond their pollinators (Van der Putten et al. 2010). Insect 

pollinators are also not evenly distributed across environmental gradients. For example, 

Devoto et al. (2005) examined pollinator diversity across a rainfall gradient in Argentina, 

noting that bees dominate flower visits over flies in dryer areas (43% and 28%, respectively), 

whereas the converse was true for wetter areas (25% bees and 43% flies). Thus, studies 

which examine the effects of pollinator diversity on seed set across multiple populations are 

useful for estimating persistence of populations across the landscape. 

 

In this study, to better understand the factors that influence species distributions 

population differences in plant traits were examined in two experiments. Firstly, we used a 

common garden environment to address two main questions:  

1. Are seeds from the same plant (i.e. collected from different umbels on the same plant) 

more variable in terms of germination, seedling growth and survival than among 

populations across the geographic distribution? 
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2. Do populations from different bioregions exhibit more pronounced differences in 

germination success and early survival than nearby populations?  

Secondly, the role of insect visits in influencing seed set among plant populations was 

compared within and between populations. Several traits were measured that can influence 

pollinator visits, including plant abundance, plant height and floral display size to address the 

following:  

3. Does insect diversity vary between populations and is this variation also reflected in 

overall seed set? 

4. Do plant traits within populations influence visits, and are there specific insect groups 

which are associated with higher seed set? 

This study will contribute mechanistically to more accurate models for predicting species 

distributions by determining how individuals within populations vary in early life-history 

fitness traits, as well as the interactions which influence such traits. Practical outcomes will 

include documenting how patterns in germination, growth and survival of plants among 

populations are influenced by the environment. Identifying species interactions will also 

inform decisions about how best to manage and conserve native plant populations in the face 

of changing climates. 

 

Materials and methods 

Study species 

Actinotus helianthi Labill. (flannel flower) is a common sub-shrub of sclerophyll vegetation 

in eastern Australia. Plants grow up to two metres tall in nutrient-poor sandstone soil from 

Ulladulla on the New South Wales (NSW) south coast to Salvator Rosa National Park in 

central Queensland (QLD) and in the Pilliga region of central-west NSW. Flowers are 

aggregated in umbels surrounded by whitish-cream bracts covered in dense velvet-like hairs. 

Umbels are andromonoecious with peripheral staminate flowers and inflorescences are 
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paniculate (order three) with the central branch terminated by an umbel. Anthesis proceeds 

sequentially within an inflorescence from the primary umbel through to the tertiary umbels. 

Flowering begins in the primary umbels in September (mid spring) and concludes in the 

tertiary umbels, usually by March (early autumn). Actinotus helianthi is insect-pollinated, and 

may outcross or be geitonogamously (between umbels) pollinated (Chapter 3). Fruit of 

Actinotus are pseudomonocarpic. 

 

 Actinotus helianthi is an ideal species with which to investigate how population 

differences might vary geographically for the following reasons. Firstly, the species is known 

to vary in its growth habits among populations (Lee 1995). Secondly, cultivation and 

conservation of the species is severely hampered due to erratic germination success, 

particularly among populations and between years (Emery et al. 2011; Lee 1995). While the 

addition of smoke improves the overall germination response, results are known to vary by 

population (Emery and Lacey 2010). Seed germination is therefore influenced by both spatial 

and temporal environmental variation. Thirdly, little is known about the species reproductive 

niche and the species that visit umbels during primary flowering. Finally, the geographic 

distribution spans wide latitudinal and ecological gradients and thus environmental conditions 

and interactions can vary significantly among geographically distant populations. 

 

Experiment 1: early performance traits 

Seventeen wild populations were sampled across NSW (Fig. 1; Table 1). Populations were 

chosen to span a wide latitudinal and rainfall gradient of mesic coastal sites from 35.39°S to 

32.66°S, and to include more arid inland habitats (149.29°E to 149.42°E; Fig. 1). The 

sampled populations covered around 42% of the latitudinal and 52% of the longitudinal 

geographic range of the species. Although not the full distribution, this geographic range 

includes multiple spatial scales relevant for comparative studies. The populations represented  
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Fig. 1. Map of New South Wales (NSW), Australia showing the locations of all populations 

sampled for this study. 
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Table 1. Description of the codes for populations of Actinotus helianthi used in both 

experiments. 

 

Population code Population location IBRA bioregion 

C11 Pilliga Nature Reserve, Coonabarabran Brigalow Belt South 

C21 Pilliga Nature Reserve, Coonabarabran Brigalow Belt South 

C31 Coonabarabran Brigalow Belt South 

C42 Pilliga Nature Reserve, Coonabarabran Brigalow Belt South 

C52 Coonabarabran Brigalow Belt South 

GR1 Georges River National Park Sydney Basin 

HN1 2 Hawks Nest NSW North Coast 

MD11 Manly-Warringah War Memorial Reserve Sydney Basin 

MD21 Manly-Warringah War Memorial Reserve Sydney Basin 

MD31 Manly-Warringah War Memorial Reserve Sydney Basin 

MD41 2 Manly-Warringah War Memorial Reserve Sydney Basin 

MD52 Manly-Warringah War Memorial Reserve Sydney Basin 

MEN1 Mendooran Road, Mendooran Brigalow Belt South 

MW2 Grevillea Avenue, Minnie Water NSW North Coast 

PB1 2 McKay Reserve, Palm Beach Sydney Basin 

SH1 Sydney Harbour National Park Sydney Basin 

TUN1 Tuncurry NSW North Coast 

TUN22 Tuncurry NSW North Coast 

UL1 Ulladulla Sydney Basin 

W11 Wyrrabalong National Park, Norah Head Sydney Basin 

W21 Wyrrabalong National Park, Bateau Bay Sydney Basin 

WOL1 Wollemi National Park Sydney Basin 

YEN1 Yengo National Park Sydney Basin 

StarB1 ‘Starbright’ cultivar n/a 
1 fruit sourced from this population was used in Experiment 1. 
2 fruit sourced from this population was used in Experiment 2. 
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three biogeographic regions: Sydney Basin, NSW North Coast and Brigalow Belt South. 

Each biogeographic region is further divided into a number of sub-bioregions. Bioregions act 

as a surrogate for complex climate, edaphic and biotic patterns as defined by the Interim 

Biogeographic Regionalisation for Australia, and are derived using distribution information 

of climatic, geological, geomorphological and biological elements (Dunlop and Brown 2008).  

 

 Field collections were made between 13 November 2010 and 12 February 2011. 

Mature fruits were collected from primary umbels across ten randomly selected plants (with 

at least 200 fruits collected from each plant) within each population. Fruit were stored and 

equilibrated in a dry room (15% rH; 15°C) in the NSW Seedbank at the Australian Botanic 

Garden, Mount Annan until the experiment commenced in April 2011. 

 

 The cultivar ‘Starbright’ was included in this study as it is propagated by tissue 

culture and, therefore, used as a genetically consistent ‘control’ comparison with wild 

collected populations. Fruit of ‘Starbright’ was obtained from a bulk collection across 

multiple plants made in November 2010. To avoid any potential performance bias when 

grown in the common environment, ‘Starbright’ was not included in any analyses. 

 

 Two-hundred fruit from each of the ten plants from the 18 populations were tested for 

germination using the following protocol. For each plant-population combination, four 

replicates of 25 fruit were sown into 9 cm sterilised plastic Petri dishes containing a water 

agar medium (7 g L-1), and a further four replicates of 25 fruit were sown onto a 1% smoke-

water (Seed Starter, Kings Park and Botanic Garden, Perth) agar medium made according to 

the procedure outlined in Emery and Lacey (2010), giving a total of 1,140 dishes. Petri dishes 

were sealed using plastic wrap and subjected to a constant temperature of 15°C with a 12 

h/12 h light and dark photoperiod, according to protocols developed by Emery et al. (2011). 
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Fruit were checked for germination every 2-3 days until day 45, following an initial two week 

incubation period for embryo elongation, a requirement for morphophysiologically dormant 

species (Baskin and Baskin 1998). Due to the large number of dishes, non-germinated seeds 

were not checked for viability at the end of the trial.  

 

 Germinated seeds with a radicle < 5 mm long were removed from the agar using fine 

forceps and transplanted into individual 25 × 50 mm plugs in 105-plug seedling trays. A total 

of 20 germinated seeds from the smoke-water treatment for each plant-population 

combination were transplanted to the trays, giving a total of 3,600 seedlings. Seedling trays 

were Papertec Plug Packs (Highsun Express, Brisbane, Australia) containing a 1:1 soil mix of 

peat and perlite and pH balanced to 5.5. The soil mix was encased in a sheet of biodegradable 

and root-penetrable paper, which reduces water use and allows the plugs to be removed from 

the tray without touching and/or damaging the plants. 

 

 The trays were placed on benches with a thermal mat in a glasshouse at the Australian 

Botanic Garden, Mount Annan and mist-watered for the first four weeks and lightly hand-

watered there-after. The plants were fertilized with a foliar spray-application of the soluble 

fertiliser Aquasol™ (Hortico®, Australia) from the time of leaf emergence. After 75 days, the 

seedling trays were removed from the glasshouse and transferred into a polyhouse and were 

watered every second day. Individual plant height was recorded at 90 days after transplanting 

as a measure of performance. Plant survival was monitored fortnightly until the experiment 

was concluded at 153 days.  

 

SPSS Statistics 21 software package (IBM, New York) was used for statistical 

analysis. We used univariate linear mixed models with Type III Sum of Squares to analyze 

variability in three early fitness components. For germination and growth at day 90, we tested 
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for differences within and between populations with plants nested within populations. To 

examine germination and growth at a regional scale, we tested for differences within and 

between bioregions and sub-bioregions with sub-bioregions nested within bioregions. Four 

bioclimatic variables (mean annual temperature, mean maximum temperature of the warmest 

month, mean temperature of the wettest quarter, and mean temperature of the warmest 

quarter) and estimated plant abundance were included as covariates in the germination and 

growth models. Abundance was excluded as a covariate from the latter, as it was deemed to 

be unlikely to influence growth of the F1 generation. Climate covariates were determined by 

running a Pearson’s correlation coefficient analysis on 19 climate factors (Hijmans et al. 

2005). A value of ≥ ± 0.75 was employed to identify highly correlated variables (Dormann et 

al. 2013).  

 

We used an estimated performance measure for survival which was calculated as 

follows for each population: gsm × ji. Where gsm is the proportion of germinated seeds in the 

smoke-water treatment and ji is the proportion of surviving plants at the conclusion of the 

experiment. Performance over time was analyzed as a repeated measure across populations 

and ranged between 1 (100% population survival) to 0 (0% population survival). 

 

Experiment 2: insect abundance and seed set 

Nine A. helianthi populations from three bioregions were sampled in NSW (Fig. 1; Table 1). 

Field observations were made between October and November, 2012 to coincide with 

primary (peak) flowering. At each population, six randomly selected plants were tagged and 

all umbels at anthesis – or which had stigmas present – were tagged. Plant height (height), 

number of umbels (umbels), and the number of flowering umbels (flower) were recorded for 

each tagged plant. Each tagged plant was observed for ten minutes by two individuals and 

any insect visits to tagged umbels were recorded. After visiting a tagged plant for the first 
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time, an insect was tracked and the number of umbels subsequently visited on the same plant 

was recorded. In order to account for any temporal variation, the six tagged plants were 

monitored throughout the day in a randomized order at 1000, 1200, 1400, and 1600. Three 

populations (MD4, MD5, and PB) were surveyed for three consecutive days. It was then 

determined that only Coleoptera and Thysanoptera differed significantly between survey days 

within a population. Therefore, it was deemed that one day of surveying for subsequent 

populations was sufficient to encompass the diversity of floral visitors. Individuals of the 

most common insects were opportunistically collected from A. helianthi plants at each site in 

between surveys for identification in the lab.  

 

 Following the final survey, tagged umbels which had pre-receptive stigmas were 

protected from further insect visits by encasing the umbels with organza bags. This allowed 

fruit to develop unhindered while all fruit are captured inside the bag when they detach from 

the maternal plant. Fruit were collected in January, 2013. Seed set was recorded as the 

proportion of viable seed per umbel. A viable seed was identified as dark brown in colour and 

hard when a small amount of force was applied with fine forceps. Seeds that could be bent, 

squashed or were pale in colour were recorded as non-viable. 

 

 Data matrices for plant traits within populations, insect floral visitor abundance and 

seed set were summed by plant (six replicates per population) and analyzed in PRIMER 

(Clarke and Gorley 2006) and PERMANOVA+ (Anderson et al. 2008).  The plant trait data 

were normalized and converted to a resemblance matrix using the Euclidean distance 

measure. The insect abundance data were square-root transformed to limit bias from highly-

abundant groups and converted to resemblance matrices using the Bray-Curtis similarity 

measure. Seed set data were also square-root transformed and a resemblance matrix was 

created using the Euclidean distance measure.  
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 To test for among population-differences in relation to the three response variables; 

insect diversity, plant traits and seed set, separate one-way Analysis of Similarity (ANOSIM) 

models were run, each using a thousand permutations.  We used distance-based redundancy 

analysis (dbRDA) to identify plant traits which were correlated with insect abundances, and 

to determine correlations between seed set and insect groups. Significant correlations were 

determined when P ≤ 0.05. 

 

Results 

Experiment 1 

Mean percent germination between populations ranged from 0.2 ± 0.1 % (MD4) to 64.2 ± 2.3 

% (PB; Fig. 2). Germination increased with the smoke-water stimulus for all 18 populations, 

with final germination ranging from 59.3 ± 4.1 % to 97.5 ± 0.6 % (Fig. 2). Germination 

tested on water agar varied by individual plant from 1 % in MD4 to 81 % in GR, and between 

5 % in TUN to 82 % in C1 on smoke-water agar. Germination exhibited significant 

interactions between agar type and the 17 wild populations (P < 0.001) and between agar type 

and plants within populations (P < 0.001). Plant height ranged from 19.9 ± 1.0 mm (MD2) to 

46.3 ± 4.1 mm (W1; Fig. 3). Populations, and plants within populations, had significantly 

different levels of growth at 90 days (P < 0.001). At the end of the experiment on Day 153, 

‘Starbright’ had the highest performance of 0.519 relative to the other populations. By 

comparison, final performance of the 17 field-collected populations at Day 153 ranged from 

0.008 to 0.355 (Fig. 4). A significant interaction between time and population also affected 

performance (P < 0.001). 

 

Germination differed significantly between bioregions and between sub-bioregions 

within (P < 0.001). Climate and abundance covariates were also significant in this model (P <  

91 
 



 

 

 

 

 

 

 

 

 

Fig. 2. Final mean percent germination for population of Actinotus helianthi. Populations are 

grouped by bioregion. Grey bars represent a 7 g L-1 agar with 10 ml L-1 smoke-water 

concentrate germination medium, and open bars represent a 7 g L-1 water agar germination 

medium. Bars are mean ± s.e. 

 

Fig. 3. Mean plant height per population of Actinotus helianthi. Populations are grouped by 

bioregion. Bold bar represents the ‘Starbright’ cultivar. Bars are mean ± s.e. 
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Fig. 4. Proportion of surviving plants per population at day 153. Populations are grouped by 

bioregion. Dashed line and bold bar represent the highest performance of the ‘Starbright’ 

cultivar (0.519). 
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0.001). Plant growth at day 90 was significantly different among sub-bioregions within 

bioregions (P < 0.001), but not between bioregions (P = 0.063). All four climate covariates 

were significant in the model (P < 0.001). 

 

Experiment 2 

The total number of recorded visits per day ranged between 93 and 460 (181 ± 23), 

and the total number of visits per population ranged between 93 and 565 (301 ± 57). Apiodea, 

Coleoptera, Curculionoidae, Diptera, Formicidae, and Thysanoptera were the major insect 

groups and comprised an average of 96.6 ± 1.6% of the total abundance of visitors at each 

population. Some of the most common insect visitors to A. helianthi included Apis mellifera, 

Exoneura bicolor, Ischiodan scutellaris, Mordella leucosticte and Tomoxioda aterrima. Bees 

visited around three times more umbels per plant (3.19 ± 0.29) than all other groups. 

Populations varied significantly in their species diversity of insect visitors (Global R = 0.55, 

P = 0.001). From the pairwise tests, only three population pairings were not significantly 

different (C5 and MEN, HN and TUN2, and MEN and TUN2). Average seed set of a 

population ranged from 62 ± 10% to 90 ± 2% (Fig. 5), and was significantly different among 

the surveyed populations (Global R = 0.19, P = 0.001). Diptera were the only insect group 

which displayed a positive correlation with average seed set, accounting for 11% of the 

variation in this value. 

 

The nine populations exhibited significant variation in their plant traits between sites 

(Global R = 0.32, P = 0.001). Average plant height in a population ranged from 60.83 ± 12.47 

cm to 133.50 ± 8.22 cm. The average number of umbels per population ranged from 15 ± 

2.14 to 76.33 ± 18.9, and the average number of umbels in flower per population ranged 

between 5.67 ± 1.64 to 37.50 ± 8.79 (Fig. 6). All three plant traits were significantly 

associated with the insect abundances (R2 = 0.17, P = 0.023). Plant height was the most 
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Fig. 5. Mean seed set of nine Actinotus helianthi populations. Bars are mean ± s.e. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Mean and standard error values for three plant traits at nine populations of Actinotus 

helianthi. Populations are grouped by bioregion. Back lines: mean above-ground plant height; 

open bars: mean number of umbels per plant; stippled bars: mean number of umbels in flower 

per plant.  
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influential of the three traits, accounting for 11.6% of the variation (Fig. 7). 

 

Discussion 

Early performance traits 

We have shown that plants from populations of A. helianthi grown in a common environment 

differed in early life-history traits of germination, growth and seedling survival. These early-

expressed traits are important as they will determine which individuals persist and, therefore, 

influence the capacity of a population to respond to changes in the local environment.  

 

The differences between populations we recorded from our common environment 

indicate that genetically-fixed variation could cause differential survival rates when seeds are 

dispersed to novel environments. The grouping of populations within bioregions and sub-

bioregions was not a simple predictor for performance in the common environment, but there 

was evidence of population-dependent differences in growth at the small spatial scale of sub-

bioregions. There was also an indication of early plant growth rates converging across 

bioregions (P = 0.063). This could then translate into differences among populations in adult 

reproductive traits. For example, a comparative study of the difference in fitness between 

provenances of Themeda triandra (previously T. australis) demonstrated that locally-adapted 

plants had superior reproductive traits than non-local plants, in terms of their percent 

flowering, flowering time, above-ground biomass and culm weight (P < 0.001) (Hancock and 

Hughes 2014). It should be noted, however, that initial differences in reproductive output 

could converge after multiple years, although the degree of convergence is likely to be 

species-dependent (Hancock et al. 2013). Therefore, it would be beneficial to follow growth 

over several years, or ideally the entire life-time to determine how the early differences in 

performance recognized at the finer scale of sub-bioregions, manifested later in life and if it
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Fig. 7. Distance-based redundancy analysis (dbRDA) ordination and visualization of insect 

abundances fitted with plant traits as vectors for nine populations. Plant height (x-axis) 

explains 11.6% of the total variation, and number of umbels, plotted on the y-axis, explains 

3.9% of the variation. C5 (triangle), C6 (inverted triangle), HN (square), MD4 (diamond), 

MD5 (circle), MEN2 (plus), MW (cross), PB (asterisk); TUN2 (outline triangle). 
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was correlated with similar differences in reproductive traits. 

 

Above-ground height is a plant architectural trait which can vary in response to the 

environment (Sultan 2000), often displaying a plastic response when examined in 

experimental conditions (Pigliucci et al. 1997; Pigliucci and Schlichting 1996). Plant height 

and overall growth rate increase the plant’s competitive advantage, particularly when seeds 

are dispersed into established ecosystems. In our study, mean plant height varied significantly 

between sub-bioregions and among the populations within, despite the readily available light 

and lack of inter-plant competition. Sultan (2000) noted that the timing of a developmental 

plastic trait such as height can also be plastic. In other words, plants might display plasticity 

for height in the early stages of growth, or variability in time of onset can exist between 

different genotypes or populations (Bell and Sultan 1999). Vile et al. (2006) showed that for 

34 Mediterranean herbaceous species, the timing of anthesis for 50% of a population was 

dependent on the maximum plant height. A more recent study of six northern hemisphere 

grass and forb species found an overall positive correlation between the maximum height of 

plants, time to 90% of maximum height and the time of onset of flowering (Sun and Frelich 

2011). Specifically, plants which grew faster earlier also tended to reach their maximum 

height and reproductive capability earlier. In our study, there was some indication that 

differences in early growth rates began to disappear at a regional scale. However, following 

this into the reproductive stage was not possible. While we could not examine the impact of 

plant growth on the reproductive output of A. helianthi, such data would complete the 

generational process and are important for predicting plant performance under prolonged 

disturbance or increased competition. This is especially pertinent since our results indicate 

that differences in early growth may not be apparent at coarser regional scales.  
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Germination success varied between populations and between plants within 

populations. Moreover, we found that while the addition of smoke-water stimulated seed 

germination, it was unable to eliminate the variation observed between and within 

populations. Population differences in germination success have previously been recorded in 

both annual and perennial plant species, including, Saxifraga hirculus, Biscutella didyma, 

Bromus fasciculatus and Hymenocarpos circinnatus (Ohlson 1989; Petrů and Tielbörger 

2008). Seed dormancy and germination are heavily reliant on climatic variables, thus some 

degree of regional differences might be anticipated (Baskin and Baskin 1998; Petrů and 

Tielbörger 2008). The differences between populations expressed in this common 

environment indicate that genetic variation could account for variable survival rates when 

seeds are dispersed to novel environments. As seeds used for this study were collected from 

the wild, it is also possible that these differences reflect genetic variation among populations 

and/or maternal effects of different genotypes within populations (Donohue et al. 2005).  

 

In addition to population factors, our results also indicate that the local climate of the 

maternal environment plays a role in both germination and early growth. Specifically, 

intimate relationships between the seed and climatic variables, such as temperature, have 

been widely documented across species (Probert 2000). This was also supported by the 

significance of the climate covariates included in our model. A study by Qaderi and Cavers 

(2002) reported consistent and significant variation in germination among one natural and 

two transplanted populations of Onopordum acanthium sampled repeatedly over four years. 

Germination success was positively correlated with mean daytime temperature during seed 

maturation on the maternal plant (Qaderi and Cavers 2002). By comparison, rainfall often 

displays a more unpredictable relationship with plants (Noe and Zedler 2001). For example, 

Petrů and Tielbörger (2008) found no obvious relationship between the first rainfall event 

and germination in three annual species. Therefore, a combination of factors exists that can 
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override climatic gradients, underlining the importance of including both climatic and local 

environmental factors (population traits) to better define the role of local adaptation in the 

species’ response. That A. helianthi populations express differing germination responses to 

fire suggests that other factors in the maternal environment (e.g. temperature and 

precipitation) have a strong impact on germination of the progeny. Such variation is 

important when attempting to predict temporal changes to populations throughout the 

landscape. 

 

Apart from the ‘Starbright’ cultivar, overall survival of juvenile plants was poor in the 

sampled populations. Survival is often overlooked in common garden studies despite being 

an important plant fitness trait (McCarragher et al. 2011). Germination alone does not give an 

accurate portrayal of fitness, as seeds will germinate when conditions meet dormancy 

relaxation requirements. However, the duration of suitable conditions varies, making growth 

and/or survival difficult if an individual cannot adapt. Low survival could reflect the quality 

of the common garden environment for A. helianthi. Indeed, the superior performance of 

‘Starbright’ seedlings provide a relevant comparison as it has been bred from a maternal wild 

population as a vigorous and disease-resistant ‘cultivar’ for commercial sale (Offord and 

Bullock 2009), and is a ‘gold standard’ to test against wild populations in managed 

experimental conditions such as in this study. While seedling survival is likely to vary 

between years, the overall population differences observed in this study warrant further 

investigation using a reciprocal transplant experiment to examine survival under field 

conditions among and within regions to examine the impact of local climate. This would 

complement our findings. 
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Insect abundance and seed set 

We have shown that average seed set success differs significantly between populations. 

Additionally, despite showing around 50% similarity among populations, insect abundance 

was site-specific. Six insect groups comprised between 84% and 99% of the total insect 

abundances across sampled populations. We are confident that our results are representative 

of main visitors to A. helianthi. Therefore, differences in visitor numbers might be due to 

variation in the local climate. The populations surveyed occur in localities which vary by 

around 4°C in average daily temperature during summer. The development and activity of 

insects are highly sensitive to climate, particularly temperature. This relationship between 

insects and climate is exemplified in bees and butterflies. In California, for example, 

butterflies were appearing earlier in the season in association with both higher winter 

maximum temperatures and less winter rainfall (Forister and Shapiro 2003). Specifically, a 

faster growth rate of larvae was associated with increasing temperature. While this pattern 

was not significantly correlated, the trend was positive over three decades (Forister and 

Shapiro 2003). The emergence of the small white butterfly (Pieris rapae) and the honey bee 

(Apis mellifera) in Spain were influenced by mean spring temperatures; both species were 

appearing up to six days earlier per decade (Gordo and Sanz 2006). While it is likely that the 

response of an insect species to temperature is dependent on its life-cycle development, even 

small changes in the local climate will influence the interaction between plant and visitor 

(Forister and Shapiro 2003; Gordo and Sanz 2006; Hegland et al. 2009). 

 

Insect visits to A. helianthi plants were influenced by plant traits, and there was an 

indication from the results that taller plants with larger primary floral displays were more 

attractive to insects. Similar results were reported in waratahs by Pyke (1981), who found 

inflorescence height and the number of flowers per inflorescence to have a positive linear 

relationship with fruit set, regardless of the total number of inflorescences. Plants with a 
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larger number of flowers are well-documented to attract insects at a greater rate than plants 

which produce a smaller number (Brys et al. 2008). This results in higher plant fitness due to 

the increased number of visits by potential pollinators. Conner and Rush (1996) identified a 

positive relationship between flower number in Raphanus raphanistrum (wild radish) and the 

number of visits of syrphid flies over a three year period. Similarly, visits by small bees 

increased by 63% with a one standard deviation increase in flower number (Conner and Rush 

1996). In the perennial herb, Wurmbea dioica the number of visits per plant had a significant 

positive correlation with flower size (Vaughton and Ramsey 1998). The authors note that this 

association was largely due to bees and butterflies (P < 0.01), however there was also an 

indication that flies might also favour larger floral displays or associated plant odours (P = 

0.08). We postulate that plant height and floral display size are unlikely to be the most 

important plant traits for attracting visitors to A. helianthi. 

 

The plant traits recorded in our study only accounted for 17.4% of the total variation 

in insect visitors. While this could be due to a short sampling period, it could also be due to 

other (unmeasured) plant or population attributes. For example, higher plant density has been 

reported to be associated with increased visits by pollinators and subsequent seed set (Kunin 

1997; Mustajärvi et al. 2001). In Brassica kaber, seed-set was influenced by plant density, 

with sparse populations recording poorer seed set, possibly mediated by self-incompatibility 

(Kunin 1993). Plant density specifically affects visits by solitary and social bees (P < 0.05 

and P < 0.01, respectively), and, to a lesser extent, flies (Kunin 1997). Interestingly, 

Mustajärvi et al. (2001) found bumblebees were more likely to visit sparse populations of 

Lychnis viscaria than dense populations. While this could be due to plants within low density 

populations having larger flowers (Klinkhamer and de Jong 1990), it might, also, be specific 

to the type of insects which are visiting. Regardless of the type of effect, studies have clearly 
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demonstrated that plant density is an important factor that should be included in reproductive 

studies. 

 

The relationship between Diptera and seed set suggests that for A. helianthi seed set 

could be, in part, predicted by the abundance of flies visiting plants. Diptera abundance was 

also positively correlated with Apiodea abundance. On average, bees visited three times more 

umbels per A. helianthi plant than any other group of floral visitor, and are well known to be 

one of the most effective pollinators of plants. Whether the abundance of flies is a proxy for 

bee abundance and, subsequently, reproductive success, warrants further study, and might 

prove vital for the future persistence of this species. However, we note that different 

pollinators may vary substantially in how effective they are in transferring pollen, with flow 

on effects to seed set and seed quality. This means that caution is warranted when directly 

comparing visitation with pollination. Visitation provides a useful indication of potential 

reproductive difference, and future studies examining the pollen presence on visitors 

compliment and build on the hypotheses from this study. 

 

Conclusions 

Traits associated with the seed stage represent the most sensitive part of the plant life-cycle 

that can have an impact on its overall life-history (Ågren and Schemske 2012; Donohue et al. 

2005). The results from this study suggest that the progeny of A. helianthi populations could 

be adapted to their local environment. This constraint might negatively affect populations that 

need to migrate to new suitable habitats in order to survive under changing climate. In 

addition, variation in plant traits for A. helianthi can occur at multiple scales. We have 

illustrated that the populations of a species are interacting in different ways with their local 

environments. Identifying the relationships between early performance traits and the 

environment are required to unravel and identify the mechanisms that permit populations to 
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migrate and/or adapt under changing environments. Future data on species with varying life 

histories will enable us to understand what common plant traits are important for species 

persistence, and whether there are any trends among these traits. We expect that significant 

variation observed in early performance traits and the reproductive stage of A. helianthi and 

other species will have significant consequences for its ability to disperse and colonize novel 

environments. 
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Chapter V 
EXPERIMENTAL EVIDENCE CONFIRMS THE INTERACTIVE EFFECT OF SOIL 

AND CLIMATE ON PREDICTED PLANT DISTRIBUTIONS 

 

Abstract 

Predictive climate models are useful for quantifying changes to geographic distributions by 

correlating species presence with their associated climatic variables.  However, models that 

use only climatic data fail to fully account for other non-climatic attributes that might 

significantly influence future geographic occurrence. Caution is warranted, therefore, when 

interpreting bioclimatic models that do not incorporate a broader set of ecological factors. To 

further understand the impact of including non-climatic factors, such as edaphic attributes in 

predictive models, we used a series of iterative experimental data sets to compare and assess 

the predictive precision of our models. We used contemporary and historical geographic 

records of the plant species Actinotus helianthi coupled with bioclimatic data, to generate 

predicted habitat suitability using four IPCC AR5 climate scenarios in MaxEnt. Using these 

projections, seedling emergence and growth was tested in soil in two common garden 

environments from four local sites, and twelve predicted sites, where suitable climate was 

calculated to occur in 2070. Seedling emergence was significantly influenced by population 

and origin of soil. Multivariate analyses produced a model which identified pH, sodium (Na – 

sodicity), salinity and phosphate levels (PO4) as best explaining the patterns in seedling 

growth. Consequently, we added soil pH and soil sodicity as spatial layers to the initial 

bioclimatic model to produce a new (climate and soil) model. The climate-only model over-

predicted geographic areas with high suitability (60-100% suitability) in three of the four 

climate scenarios. These results illustrate the capacity to improve the precision and validity of 
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predictive bioclimatic models by incorporating experimental and/or field evidence to better 

represent the ecological preferences of species. 

 

Introduction 

Spatial variation in temperature and rainfall are altering species fitness, forcing some to 

migrate to higher altitudes or south to cooler temperatures, while others will become 

restricted to their current climatic tolerance or suffer from local extinctions (Bakkenes et al. 

2004; Stocker et al. 2013). Species distribution models (SDMs) are common practice for 

quantifying and predicting this variation (Elith et al. 2006; Hijmans and Graham 2006; 

Thuiller et al. 2008). Traditionally, these predictive studies have correlated distribution shifts 

with climatic envelopes (also referred to as bioclimatic models). An accepted assumption of 

these models is that they treat the species as a single entity, irrespective of any population or 

environmental variability (Araújo and Peterson 2012; Hampe 2004; Heikkinen et al. 2006). 

Regardless of assumptions, models and their programs (such as the very popular MaxEnt) are 

an important tool for improving management and conservation strategies for species by 

providing a means to explore the relationship between a species and its climate envelope 

(Chapter 2). However, it is important that model predictions are subsequently validated and 

improved with experimental evidence which demonstrate the impact of other limiting 

environmental factors. 

 

The ecological preferences of plant species can impact their successful establishment 

and persistence. In particular, environmental factors which influence the reproductive niche 

of a species are arguably the most important to understand. Such factors are often neglected 

in predictive studies due to a lack of available data. Consequently, studies examining the 

response of plant species to limiting environmental factors have only recently received 

attention (Bertrand et al. 2012; Condit et al. 2013; Dubuis et al. 2013; Thuiller 2013). In 
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particular, edaphic characteristics, such as soil pH, moisture and content are known to vary 

and affect the reproductive niche of plants, and in turn, limit the ability to colonize and 

become established in new environments (Coudun and Gégout 2007; Coudun et al. 2006; 

Pickett and Bazzaz 1976; Pierce et al. 1999). Specifically, pH is reported to control the 

uptake of minerals by plants and has been correlated with several other edaphic variables 

(Schoenholtz et al. 2000). For example, Pakeman et al. (2012) used a suite of 12 flowering 

species with differing seed sizes and dormancy types to demonstrate that the ‘optimal’ model 

for seedling survival and viability was found to be in soils with high pH, coupled with low 

moisture-content and C:N ratio. The distribution of tree species in the Panama forests have 

also been reported to be regulated by a combination of soil moisture and phosphorus, with 

many species having a specific tolerance for concentrations of the latter (Condit et al. 2013). 

The level of phosphorus in soil is also an important limiting factor for the establishment of 

many Western Australian plant species (Lambers et al. 2010). 

 

As populations move, they have the potential to follow their current climate envelope 

or shift into new niches, with the fitness of a population dependent on whether the incumbent 

plants have a capacity to grow and reproduce in novel sites. A continuum of responses would 

be expected across individuals and among populations. These responses would depend on a 

tolerance for persisting in areas where nutrients are not limiting or whether the fundamental 

traits of the plant allow it store nutrients in structures, to survive in nutrient-poor 

environments (Dubuis et al. 2013; Pellissier et al. 2010). Therefore, while the effects of soil 

may not be apparent in shaping plant distributions, it can instead impact at the population 

level by imposing a selection pressure which influences population abundance. 

 

In this context, the soil environment is crucial to the successful dispersal of 

populations in new locations and presents a good opportunity to validate model predictions. 
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Soil spatial data are also now readily available and can be included as layers in predictive 

models. However, while the soil environment is now accepted as an important factor in 

shaping species distributions, the degree to which edaphic variables drive a species’ 

distribution is unknown.  

 

Actinotus helianthi is a perennial sub-shrub native to the eastern states of Australia 

between the New South Wales (NSW) South Coast and central Queensland (QLD). The 

species predominantly grows on sandstone-derived soils in sclerophyll ecosystems, and is one 

of the dominant species following fire. Actinotus helianthi populations exhibit different 

growth forms throughout its distribution, which is not driven by the local climate (Chapter 2). 

Furthermore, differences in germination and early growth and survival among populations in 

a common environment suggest that the species may have fixed genetic ecotypes (Chapter 4). 

However, it is not known whether A. helianthi plants have the capacity to grow and colonize 

non-local sites. In this study, we assessed the precision of bioclimatic models by comparing 

climate-only models with climate and soil models developed using experimental evidence. 

We used contemporary and historical geographic records of the plant species A. helianthi, 

coupled with bioclimatic data, to generate predicted habitat suitability using four IPCC AR5 

climate scenarios in MaxEnt. We experimentally tested the intraspecific variation in response 

to different edaphic environments in a widely-distributed plant species by growing seed in 

soil samples collected from four local sites, and twelve non-local sites where suitable climate 

was predicted to occur in 2070. We then used the results from our experiment to include two 

limiting soil factors within the bioclimatic models.  

 

Therefore, the aims of this study were iterative: (1) to predict and quantify the spatial 

extent of suitable habitats in the future using an optimized bioclimatic (climate-only) model, 

(2) to use the predicted suitability index coupled with land-use maps to determine an 
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appropriate direction for soil sampling transects from four current population sites, (3) to 

examine seedling performance across populations between local and novel soils and 

determine whether any differences can be related to edaphic variables, and (4) to assess the 

precision of the climate-only model with a climate and soil model. 

 

Materials and methods 

Climate-only models – issues related to the quality and collection bias of herbaria data in 

predictive models are well-documented in the current literature (Hijmans et al. 2000; 

Kadmon et al. 2004; Loiselle et al. 2007). However, sampling bias can be reduced by using a 

larger subset of records (Kadmon et al. 2003). We cross-referenced a total of 539 herbarium 

records collected from the Australian Virtual Herbarium (AVH; http://avh.ala.org.au/) in 

August, 2010. We ‘cleaned’ the data by eliminating all duplicate records as well as compiler 

records whose location coordinates did not match the description after cross-checking. 

Compiler records are generated as a ‘best estimate’ of GPS coordinates and so may be less 

accurate than records logged by the collector. A new database of 137 A. helianthi AVH 

records was combined with 40 field records made between 2011 and 2013 giving a total of 

177 presence records. 

 

 Habitat suitability models were generated using MaxEnt v3.3.3k 

(http://www.cs.princeton.edu/~schapire/maxent/). MaxEnt is a machine-learning environment 

which estimates the likelihood of occurrence using the principle of maximum entropy. The 

program uses a number of limitations to match an environmental variable with its empirical 

average under the overarching distribution (Loiselle et al. 2007; Phillips et al. 2006). We 

used MaxEnt because this method does not require absence records, and it has a proven track 

record for large comparative studies (Elith et al. 2006; Hernandez et al. 2006). To investigate 

the effect of climate on the distribution of A. helianthi, we used bioclimatic variables derived 
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from the WorldClim database v1.4 (www.worldclim.org). Each variable is a global climate 

layer set out in a 2.5 arc-minute (5 km × 5 km) spatial resolution grid (Hijmans et al. 2005). 

These layers were clipped to Australia for the background landscape and prepared in ArcGIS 

v10.1 (ESRI, 2012). Seven bioclimatic variables were included in the final model as they 

were hypothesized to influence the distribution of the spring and summer flowering A. 

helianthi, and each had a Pearson’s correlation value of ≤ ± 0.75 with other climate variables 

(Dormann et al. 2013; Elith et al. 2010). The variables retained were: temperature 

isothermality, mean temperature of the driest quarter, mean temperature of the warmest 

quarter, mean temperature of the coldest quarter, mean annual rainfall, mean rainfall of the 

driest month, and rainfall seasonality (Appendix 3). The model was run using the cross-

validation data method in MaxEnt to train the model. We allowed the model to have enough 

time for convergence by using a maximum of 5000 iterations. The model was replicated 25 

times. Area under the ROC curve (AUC) was used as a measure of model performance 

(Phillips et al. 2006). Raes (2012) noted that the maximum AUC value is not 1, but rather 1-

a/2; where a represents the species realized niche. Even though the use of AUC as an 

indicator of performance in presence-only models is not accurate, the aim of our study was 

neither to compare model performance nor to produce an ‘optimal’ model. Because AUC is 

the standard measure in MaxEnt, coupled with its widespread use in the previous studies, it 

was suitable for this study to assist with determining subsequent field collection sites. 

 

We then predicted the future distribution of A. helianthi at 2030, 2050 and 2070. 

Bioclimatic layers have been derived for four future climate scenarios from the 

Intergovernmental Panel on Climate Change (IPCC) 5th generation report (AR5). The four 

scenarios are referred to as Representative Concentration Pathways (RCP). These scenarios 

represent the predicted levels of radiative forcing due to atmospheric constituents, such as 

CO2, and measured in Watts per metre squared (Wm-2) by 2100. These forcings take into 
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account the vast range of plausible scenarios that include socioeconomic and technological 

developments (Moss et al. 2010). For example, RCP 2.6 represents a low-level scenario that 

results in 2.6 Wm-2 forcing. RCP 4.5 and 6.0 are medium-level scenarios that stabilize by 

2100, and RCP 8.5 is a high-level forcing that is predicted to continually rise throughout the 

21st century (Van Vuuren et al. 2011).  Future bioclimatic data were downloaded from the 

Climate Change, Agriculture and Food Security website (CCAFS; www.ccafs-climate.org). 

The future data used in this study were derived from the CSIRO’s Mk3.6 climate model. This 

model has been built from the Mk3.0 model and is most relevant to Australia and adds new 

ocean, sea-ice and soil-canopy models as well as including an interactive aerosol scheme. 

(Gordon et al. 2002; Jeffrey et al. 2013). The data were also clipped to the same extent as the 

current bioclimatic layers. 

 

Field collections – Seed was collected from four A. helianthi populations in January, 2013. 

Two populations (C4 and C6) occurred in the central-west Pilliga region of New South Wales 

(NSW), and the remaining two were situated in the NSW north coast (TUN and HN) (Fig. 1). 

The two regions represent the maximum longitudinal extent of the species’ distribution. 

Populations within each region were approximately 65 km apart. Seed collections were stored 

in paper bags in a dry room (15 °C, 15 % r.h.) until sowing in June, 2013. 

 

Soil sites – Non-local sites for soil collection were determined by overlaying model 

projections and land use maps in ArcGIS. For each population, a ‘line of best estimate’ was 

drawn from the current population location (i.e. local site) to the closest area with the highest 

suitability prediction for 2070 as according to the RCP2.6 (‘best case’) scenario, and was in 

an area of ‘natural vegetation’ (Fig. 1). Sites were labeled at 1 km, 10 km and 40 km from the 

local site, giving a total of 16 sites. A 40 km distance was deemed appropriate as it 

represents, on average, around a 500 m migration/dispersal event each year. A non-local site  

111 
 

http://www.ccafs-climate.org/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Map of locations where soil was collected. Arrows indicate the direction of sampling 

from home site following the trend in suitable climate from 2000 to 2070 using the ‘best 

case’ RCP2.6 scenario. 
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was deemed suitable for potential colonization if it satisfied two criteria: (1) an area of 

natural sclerophyll vegetation with minimal disturbance, and (2) accessible by car or on foot. 

When a site did not meet the criteria, the next closest suitable site was selected within a 2 km 

radius. 

 

A 30 metre transect was set up at each of the four local and twelve non-local sites 

running parallel to any visible gradient. The use of a transect permits bulk soil from novel 

locations to be collected across a suitable site, rather than just a single point. In addition, A. 

helianthi populations can cover a large area, so a single soil block collection might not be 

representative of the range of the local edaphic environment. Approximately 200g of soil was 

collected at two metre intervals along the transect starting at zero. At each collection point, 

any leaf litter was removed and the top 5cm of soil was then excavated using a metal 

container and shovel. Bulk soil from a site was stored in sealed plastic bags.  

 

Soil experiment – a sub-sample of soil from each field site was sent to Sydney Environment 

& Soil Laboratory (SESL) at Thornleigh, Australia for complete chemical and physical 

analysis. A dataset of 23 edaphic variables was created from the results of the external soil 

analysis, and is summarized in Table 1. A potting mix currently used at The Australian 

Botanic Garden, Mount Annan to grow A. helianthi was also included in the design as a 

standard for ‘optimal’ soil conditions. Seed from a population was sown in its local soil (sL), 

soil 1 km away (s1), soil 10 km away (s10), soil 40 km away (s40), and the common potting 

mix (sC). We used a factorial design to examine the effects of soil on seedling emergence. 

There were five replicate pots (120 mm × 50 mm forestry tubes) labeled for each population-

soil combination, giving a total of 100 pots. Each pot contained nine seeds sown in a 3×3 

grid. Since the plants were only grown to an early seedling stage, any detrimental effects 

from density and, therefore, intra-specific competition was deemed to be minimal. The pots 
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Table 1. Summary of the 23 soil variables used in the study. C1: Coonabarabran 1; C2: Coonabarabran 2; HN: Hawks Nest; TUN: Tuncurry. 

 pH 
(H2O) 

pH 
(CACl) Salinity Na Cl Mg K Ca Al% H% eCEC NO3 PO4 SO4 Fe Mn Zn B Clay 

Content 
Particle 

Size EC OC% OM% 

C1 
(Local) 5.9 4.6 0.02 10 30.1 24.5 22.7 75.6 1.4 50.1 6.9 0.8 1.7 0.6 16 4.2 0.4 0 25 1 0.19 3 5.1 

C1 
(1km) 7.1 7 0.13 10.9 24.1 48.3 21.3 303.4 0 0 9.9 1.2 2.9 0.6 25.4 10.2 0.2 0 25 1 1.24 2.6 4.4 

C1 
(10km) 5.8 4.6 0.02 6.4 44.9 14.9 16.9 31.7 3.9 62.2 5.1 0.9 0.8 0.6 14.7 3.2 0.1 0 25 2 0.19 2 3.5 

C1 
(40km) 5.6 4.4 0.02 3.3 33.5 15.1 17.8 34.9 3.2 59.1 4.7 0.3 0.5 0.6 15.1 4.2 0.1 0 25 1 0.19 2.2 3.8 

C2 
(Local) 4.8 3.8 0.03 5.3 28.9 13.6 25.9 25.7 17.3 64.3 8.8 0 1.3 0.6 49 3 0.5 0 15 3 0.42 6.1 10.4 

C2 
(1km) 5.7 4.8 0.02 2.8 19.3 16.9 14.6 94 0.7 45.4 6.1 0.6 6.6 0.6 21.8 10.8 0.3 0 15 1 0.28 2.4 4.1 

C2 
(10km) 50.6 4.9 0.07 9.5 30.7 322 253 1248 0.3 33.2 14.5 18 26.1 3.6 122.5 42 1.3 0 25 2 0.67 4.6 7.9 

C2 
(40km) 6.1 5.5 0.05 5.4 19.1 58.1 70.8 257.8 0 0 9.8 1.9 1.7 0.6 24.5 72.8 1.7 0 30 2 0.43 2.8 4.8 

HN 
(Local) 5.3 3.9 0.02 23.7 16.4 27.5 8.3 81.2 0.4 50 6.8 0 0.2 0.6 7.1 0.8 1.2 0 15 1 0.28 3.9 6.6 

HN 
(1km) 5 3.6 0.02 14.2 9.9 12.2 5.1 49.5 0.8 62.9 5.2 0.3 0.1 0.6 6.9 0.5 0.4 0 15 1 0.28 3.5 5.9 

HN 
(10km) 5 3.5 0.02 8.2 9.6 4.9 2.9 18.4 2.8 72.4 2.9 0.3 0 0.6 7.5 0.1 0.3 0 15 3 0.14 1.2 2.1 

HN 
(40km) 5.5 4.2 0.02 3.8 10.1 6.1 3.2 21.1 1.4 38.6 1.4 0 0 0.6 6.3 2.4 0.5 0 5 1 0.23 2.6 4.3 

TUN 
(Local) 5.5 4.2 0.02 2.8 10.6 9 10.9 23 6.7 13.3 0.3 0.9 0 3.2 25.1 1.1 0.7 0 5 1 0.23 0.2 0.4 

TUN 
(1km) 5.6 3.9 0.01 5.7 11 6.5 3.3 20.5 1.4 34.3 1.4 0.3 0 0.6 3.4 0.3 0.1 0 15 1 0.14 1.2 2.1 

TUN 
(10km) 4.7 3.8 0.08 94.2 61.1 67 21.3 29.1 15.9 49.1 12 0.3 0.6 1.7 98 1.7 0.2 0 30 2 0.69 7 12 

TUN 
(40km) 5.5 4.7 0.07 94.4 52.9 106.5 35.9 134.5 1.9 38.8 14.7 0.3 1 1.9 69 4.8 2.4 0 30 2 0.6 6.3 10.7 

 
 



were transferred to a growth chamber at the University of Sydney (USyd) set to a 17 °C/24 

°C cycle. This reflects average temperatures in March (early autumn) for the two coastal 

populations. The light regime was kept to a 12 h on/12 h off cycle. To compare experimental 

conditions with the ambient environment, another 100 duplicate pots were transferred to the 

nursery at the Australian Botanic Garden, Mount Annan (MtAn). These pots were kept 

outside and protected from rain by a clear plastic sheet. The pots at each location were 

watered using 5 L of water every 2-3 days. Ambient temperature was recorded at each site 

using a Thermochron iButton. Because we were examining emergence and not germination, 

we attempted to maximize the likelihood of germination by treating the soil with germination 

promoter in the form of a 1:100 smoke-water solution on the first and fifth days (Emery and 

Lacey 2010). Seedling emergence was recorded weekly from day 20, with final emergence 

recorded after 90 days. Non-germinated seeds were carefully exhumed from the soils, and 

seedlings were grown for a further 90 days. All seedlings were then carefully exhumed from 

the soil and stored between Kimwipe paper (Kimberly-Clark Corporation, NSW) at room 

temperature for six months. Dried seedlings were then measured for length, and dry biomass 

was determined for both shoots and roots. 

 

In SPSS v22 (IBM Statistics, 2013), univariate general linear models (GLMs) were 

initially run with the emergence data split by site location (i.e. USyd and MtAn) to analyze 

data by population and soil. A linear mixed model (LMM) was run using the complete 

emergence data as the response variable to assess potential location (i.e. temperature) 

differences. Site location was included as a fixed factor with population and soil site used as 

random covariance parameters. To determine whether any edaphic variables could explain 

the variation in plant biomass, we used multivariate analyses in PRIMER (Clarke and Gorley 

2006) & PERMANOVA+ (Anderson et al. 2008). The soil factors were normalized and a 

resemblance matrix was calculated using Euclidean distance. Plant biomass data were square-
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root transformed and resemblances among samples were calculated using the S15 Gower 

measure. Patterns in the edaphic data were displayed using a Principal Components Analysis 

(PCA) and the biomass data were displayed and checked for similarity using a non-metric 

multi-dimensional scaling plot (MDS). A multivariate distance-based linear model (dbLM) 

was performed using the edaphic variables to explain the resemblances in the biomass data. 

The dbLM uses permutations to assess the relationship between a multivariate data matrix 

and one or more predictor variables. 

 

Climate-and-soil models – these models were generated exactly as the Climate-only models, 

but with the following addition. Spatial layers for soil pH and soil sodicity (Na) were derived 

from the Harmonized World Soil Database v1.2 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). 

These data were resampled in ArcGIS using the ‘nearest’ function from 30 arc-second grids 

to 2.5 arc-minute grids to match the bioclimatic data, and, therefore, satisfy the requirement 

in MaxEnt for input layers to have matching resolutions. 

 

 Comparisons between the climate-only and climate-and-soil models were made by 

calculating the differences in the probability of suitable habitat (P(suitability)). Spatial 

outputs were organized into five categories of P(suitability), ranging from 0% to 100%, and 

each category was compared amongst models. All area calculations were performed in 

ArcGIS. 

 

Results 

The total area from the minimum convex polygon of Actinotus helianthi occurrences 

encompassed 454,580km2 (Fig. 2). The AUC for the climate-only model was 0.981 ± 0.011, 

indicating that the model performed better than random. Mean rainfall of the driest month 

and mean temperature of the driest quarter were the two variables which contributed the most  
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Fig. 2. The minimum convex polygon enclosing all mapped occurrences of Actinotus 

helianthi encompasses an area of 454,580 km2. 
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to the overall model (Table 2). Predicted presence was highest when mean rainfall of the 

driest month was > 80mm and mean temperature of the driest quarter was < 15°C. The spatial 

output produced through ArcGIS indicated an overall trend of suitable habitats retracting 

south-south-east to the east coast of Australia (Fig. 3). While the four climate scenarios 

differed in output, the total area of P(suitability) declined in all scenarios between 44.5% 

(RCP4.5) and 67% (RCP8.5) by 2070. All four scenarios depicted an increase between 271% 

and 625% in the highest suitable habitats (80-100%) by 2070 (Fig. 4A).  This equated to 

between 1% (RCP2.6) and 4% (RCP8.5) of the total predicted suitable area (20-100%) by 

2070. All other projections, except 60-80% P(suitability) for RCP2.6 and RCP4.5, showed a 

decline in area by 2070 (Fig. 4A) 

 

Mean ambient temperature at USyd and MtAn sites for the growing period were 20.4 

± 4.6 °C and 16.6 ± 8.8 °C, respectively. At MtAn, seedling emergence varied between 8 ± 

2% (HN s40) to 47 ± 11% (TUN s40; Fig. 5). Seed from C6 and TUN had greater emergence 

on non-local soil than their local soil. Seed from three populations (excluding C6) showed 

greater emergence when grown in potting mix than their local soil. At USyd, seedling 

emergence ranged from 4 ± 3% (TUN s40) to 71 ± 13% (C6 sC; Fig. 5). Seeds from C6, HN 

and TUN experienced greater emergence on at least one non-local soil than on their local soil. 

Percent emergence also increased in all four populations when seeds were sown in the potting 

mix compared to the local soils. A significant interaction between population and soil site 

was identified at both MtAn and USyd sites (P< 0.001 and P = 0.044, respectively). When 

combined in the linear mixed model, the two sites were significantly different (P< 0.001). 

The covariate factors of population and soil were not found to be significant (P = 0.375 and P 

= 0.362, respectively).

118 
 



 

 

Table 2. MaxEnt output of individual contributions of the included variables from the climate-only and climate and soil models. 

 

 

Variable 
Climate-only Climate and soil 

Percent contribution Permutation importance Percent contribution Permutation importance 

Mean rainfall of the driest month 51.9 0.4 46.6 3.6 

Mean temperature of driest quarter 24 11.5 27.2 9.4 

Mean annual rainfall 15.3 77.7 15.1 65.3 

Mean temperature of warmest quarter 5.8 5 4.3 7.4 

Rainfall seasonality 1.5 0.7 2.6 0.7 

Mean temperature of coldest quarter 1 3.4 1.1 11.1 

Soil pH - - 1.7 1.4 

Soil sodicity (Na) - - 1.3 1.3 

Isothermality 0.5 1.4 0.1 0 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Predicted change in distribution of Actinotus helianthi under the four AR5 climate scenarios (2.6, 4.5, 6.0 and 8.5). Different habitat suitability 

categories are derived from the probability of suitability (P(suitability)) from the climate only model.  

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Percent change in area of Actinotus helianthi from the current distribution under the 

four AR5 climate scenarios for the climate only (A) and climate and soil (B) models at 

different categories of habitat suitability (P(suitability)). 
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Fig. 5. Final percent seedling emergence at MtAn and USyd at day 100 across soil sites for 

each of the four local populations. Common potting mix (sC), local soil (sL), soil 1 km away 

(s1), soil 10 km away (s10), and soil 40 km away (s40).  
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There was an indication from the MDS plot of a longitudinal gradient of sampling 

from coastal clusters (left) to inland clusters (right). However, sites associated from three of 

the four populations area spread across the MDS plot (Stress = 0.08; Fig. 6). Pronounced 

variation in edaphic conditions across C6 and TUN sites was observed in the PCA plot (Fig. 

7). The HN sites followed a gradient in edaphic conditions, while the separation of the C4 1 

km was associated with site soil pH being non-acidic (7.1). When analyzed independently, 

five edaphic factors (salinity, Mg, percent Hydrogen, Mn and electrical conductivity) were 

significantly associated with the biomass resemblance data at P < 0.05, and a further seven 

factors (pH, Na, NO3, PO4, SO4, Zn and organic carbon) at P < 0.01. The multivariate dbLM 

produced a model which included pH, salinity, Na and PO4 to best explain the patterns in the 

biomass data (R2 = 15.1, P < 0.001). 

 

When soil pH and soil sodicity layers were added to the climate layers, the AUC of 

the new MaxEnt model was 0.981 ± 0.011, matching that of the climate-only model. Mean 

rainfall of the driest month and mean temperature of the driest quarter were the two variables 

which contributed the most (46.6% and 27.2%, respectively) to the overall model (Table 2). 

Soil pH and soil sodicity contributed 1.7% and 1.3%, respectively. Probability of presence 

was highest when soil sodicity was between 8% and 17%, and soil pH was negatively 

correlated with predicted presence. The climate and soil models illustrated suitable habitats to 

again retract south-south-east to the coast (Fig. 8). Total area of P(suitability) declined 

between 42.1% (RCP4.5) and 63% (RCP8.5) by 2070. All four scenarios predicted an 

increase between 149% and 371% in the highest suitable areas (80-100%) by 2070, equating 

to between 1.3% (RCP2.6) and 4.1% (RCP8.5) of the total predicted suitable area (Fig. 4B). 

All other combinations of P(suitability) and climate scenario were predicted to decline in area 

by 2070. 
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Fig. 6. Non-metric Multi-Dimensional Scaling (MDS) plot of the plant biomass data. C4 (▲); 

C6 (▼); HN (■); TUN (♦).  
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Fig. 7. Principal Components Analysis (PCA) displaying the patterns in the edaphic data. 

Some sites are missing from the data due to no emerged seedlings. C4 (▲); C6 (▼); HN (■); 

TUN (♦).
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Fig. 8. Predicted change in distribution of Actinotus helianthi under the four AR5 climate scenarios (2.6, 4.5, 6.0 and 8.5). Different habitat suitability 

categories are derived from the probability of suitability (P(suitability)) from the climate and soil model

 
 



Comparisons between the climate-only and the climate and soil models identified the 

former to over-predict P(suitability). The climate-and-soil model predicted greater total 

suitable area to be retained by 2070 for all four scenarios (Fig. 9). Areas which were 

predicted to have the highest P(suitability) (80-100%) for the RCP2.6, RCP6.0 and RCP8.5 

scenarios were over-predicted in the climate-only model by 240%, 199% and 254%, 

respectively (Fig. 10). Conversely, areas with the highest suitability in the RCP4.5 were 

under-predicted in the climate-only model by 4%. Areas projected to have a 60-80% 

P(suitability) were also over-predicted in the climate-only model in the RCP2.6, RCP4.5 and 

RCP8.5 scenarios by 45%, 50% and 39%, respectively (Fig. 10). The same areas in the 

RCP6.0 scenario were under-predicted by 0.2%. Least-suitable areas (0-20%) were 

consistently and slightly over-predicted across the four climate-only models (0.29 ± 0.07%). 

Mid-ranged suitable habitats (20-40%) were consistently under-predicted by the climate-only 

models (9.7 ± 4%). 

 

Discussion 

To progress our ability to understand the potential ecological impact of changing 

environments, it is crucial to identify the factors which might limit successful colonisation by 

species. In our study, including soil factors improved the projections of the climate-only 

model in three of the four climate scenarios. This is consistent with several previous studies 

that have added soil characteristics in distribution modelling (Coudun et al. 2006; De Frenne 

et al. 2014; Dubuis et al. 2013; Titeux et al. 2009). In a novel outcome, we validated 

experimentally, the need to include soil factors in the final model by growing seed in soil 

from sites which were predicted to have suitable climate in the future. The inclusion of the 

ecologically-appropriate edaphic variables was also robust as there was no change in the 

AUC between models. 
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Fig. 9. Difference between the two models for the change in percent of total area of 

P(suitability) (20-100%) between 2000 and 2070 for the four AR5 scenarios. A positive value 

represents the climate-only model predicting a larger area to be retained at a time step than 

the climate-and-soil model. A negative value represents the climate-and-soil model predicting 

a larger area to be retained at a time step than the climate-only model. 
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Fig. 10. Percent differences in the areas of suitable habitat between the climate only and 

climate and soil model projections from the current distribution. A positive value indicates an 

over-prediction of area from the climate only model, and a negative value indicates an under-

prediction. 
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Soil interacted with climate to impact seedling emergence, and as anticipated, the soil 

environment also influenced seedling growth. There was no obvious advantage of growing on 

local soil from the patterns in seedling emergence across sites, indicating a capacity of 

Actinotus helianthi plants to successfully colonize non-local soils. In a similar study with the 

Holarctic grass, Millium effusum, the percentage emergence in seedlings and time to 

emergence were significantly lower and slower, respectively, in local compared with non-

local soils (De Frenne et al. 2014). The effect of location also had a strong influence on 

seedling emergence of A. helianthi, which was higher across all soils at USyd, excluding 

TUN sites. Seeds were sown in soils during mid-winter, and night temperatures at MtAn were 

as low as 2.5 °C (compared to the minimum 17 °C at USyd). This could have slowed the 

emergence of A. helianthi seedlings at MtAn since faster embryo development and hypocotyl 

elongation occurs at warmer temperatures (Emery et al. 2011; Forcella et al. 2000; Walck et 

al. 2011). Therefore, while temperature could have affected performance and seedling 

emergence, the extent of its effect on A. helianthi will be population-dependent. Temperature 

effects on emergence were reported in the study by De Frenne et al. (2014), who highlighted 

the need to not only determine colonization in non-local soils, but also from the impact of the 

local climate from origin populations.  

 

Four edaphic variables were identified as best explaining the variability in plant 

growth. Soil pH is perhaps the most important and easily quantifiable variable, and has been 

documented to be correlated with other edaphic variables. For example, Goldberg (1982) 

noted pH to be significantly correlated with calcium and magnesium in soils along the Pacific 

slopes of Sierra Madre. The author noted that a boundary between deciduous and evergreen 

species was explained by soil pH – a direct response to soil fertility due to its correlation with 

calcium (Goldberg 1982). Soil pH has also been reported to have a close relationship with 

both seedling biomass and height in M. effusum and Vincetoxicum incetoxicum spp. (De 
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Frenne et al. 2014; Magidow et al. 2013). The importance of soil acidity is expected as it 

indirectly affects nutrient availability for plants. Low pH can reduce the available P or N, 

through the creation of ionic complexes that cannot be used by plants. High pH can prevent 

the release of ions which also causes a negative impact on plant growth (Gobat et al. 2004). 

 

Like most terrestrial plant species, A. helianthi growth was negatively correlated with 

soil sodicity and salinity. Many of Australia’s plants are adversely affected by these two 

properties. Australian sodic soils are defined as having an exchangeable sodium percentage 

(ESP) of ≥ 6 (Isbell 2002). Sodicity is associated with low water availability and reduced of 

microbial activity (Rengasamy 2002). Furthermore, these soils are often structurally 

degraded, exhibiting poor soil porosity, and N deficiency (Naidu and Rengasamy 1993; 

Rengasamy 2002). Salinity did not contribute to the climate and soil models, and was 

therefore removed for the final model. Since A. helianthi does not occur on these soils, we 

could expect the MaxEnt model might not be capable of detecting the fine-scale variation 

identified in our statistical analyses. Whether higher-resolution models (e.g. 1 km × 1 km 

grids) can pick up this level of variation requires further comparative investigation.  

 

Phosphate (PO4) was positively correlated with plant growth. Thuiller (2013) notes 

that some elements, including phosphorus, are not always identified as important edaphic 

factors due to the fact that level vary throughout the growing season. A previous study by von 

Richter and Offord (2006) tested the effects of slow release fertilizer on A. helianthi. The 

authors reported greater flower, bud and stem production when plants were treated with 

fertilizer. Furthermore, application rate of fertilizer was positively correlated with plant 

height, as well as flower, bud and stem production (von Richter and Offord 2006).  It has also 

been demonstrated that soil phosphate increases in the short-term following fire (DeBano 

1991; Schafer and Mack 2010). Much of this increase can be attributed to the ash layer which 
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is then leached into the top soil following rainfall (DeBano 1991). Since A. helianthi 

germination is known to increase significantly across populations following fire (Emery and 

Lacey 2010), it could be expected that subsequent growth is positively correlated with 

phosphate. That ‘time since fire’ might be substituted for PO4 in a predictive model would 

require further investigation as these data were not available for this study. 

 

Most of the differences between the climate-only and climate and soil models were in 

areas that were predicted to be most suitable (i.e. 60-100% P(suitability)). Climate-only 

models have a tendency to over-predict suitability due to the inherent assumption that each 

presence record is treated the same (Araújo and Peterson 2012).  Furthermore, the broad 

geographic extent of climatic factors means that they have a poor capacity to restrict the 

extent of suitability at local (i.e. population) scales. However, including more limiting 

environmental factors, such as soil, provide a tighter constraint to model projections. In a 

study of 115 plant species, pH and N were reported as improving the predictive power of 

topo-climate models (Dubuis et al. 2013). When combined with climate, pH was the second 

most important variable, despite its influence varying across species and their ecological 

preferences (Dubuis et al. 2013). Including the edaphic dimension in climate models has 

permitted an interactive effect which has improved model projections for Acer campestre and 

Quercus pubescens in France (Bertrand et al. 2012; Coudun et al. 2006).  In the present 

study, despite contributing only 3% to the overall model, the soil layers constrained three of 

the four modelled climate scenarios enough to reduce the areas with 80-100% P(suitability) 

by an average of 231%. In light of our experimental results, we are confident that the 

precision of the climate and soil models is greater than that of the climate-only models. 

 

Given the limitations of using climate alone in distribution models, there are also 

limitations associated with the choice of global climate model (GCM). The choice of GCM is 
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likely to affect the scope and complexity of any interpretation of the data, and the best 

model(s) may potentially vary between regions.  Uncertainty arises from the inherent 

differences in emissions scenarios and regions (Irving et al. 2012; Kang et al. 2002), and the 

IPCC have stated that global climates are likely to increase in variability, which may then 

cause uncertainty among projections (Stocker et al. 2013). We used the Mk3.6 model as it is 

based on Australia’s natural climate and rainfall patterns that are associated with the El Niño 

Southern Oscillation (ENSO) (Jeffrey et al. 2013).  For Australia, the model predicts an 

increase in drought-like conditions for south-west Western Australia and south-east Australia 

during 1981 to 2005 that reflected the observed climate in these areas over the time period 

(Syktus et al. 2011). While there was a second CSIRO model, ACCESS1.3, that is also 

relevant to Australia, the required spatial data was not available for this study. This model is 

defined as an ‘aspirational model’ and differenced from Mk3.6 as it takes advantage of new 

atmospheric physics (Bi et al. 2013). Importantly, however, the purpose of our study was to 

highlight the importance of including soil factors in a distribution model, and not to make 

comparisons among GCMs. 

 

In summary, these results illustrate the capacity to build on the initial outputs of 

bioclimatic models by incorporating experimental evidence to better represent the ecological 

preferences of species. Despite the inherent assumptions of bioclimatic models that have been 

outlined in several studies (Hampe 2004; Heikkinen et al. 2006), these models are still widely 

used and remain an important means to explore a species relationship with climate. Models 

which consider climate to be the large-scale driver of a species distribution often accept other 

factors such as soil to be influential at a local scale. Contrary to this notion, we have 

demonstrated that the incorporation of soil factors acts as a limitation to the predicted 

suitability of habitats for a widely-distributed species. In the context of future management, 

the improved precision enables more efficient determination of suitable areas for 

135 
 



translocations, relocations and conservation areas. While we have demonstrated the 

importance of the edaphic environment for a unique species, it could be expected these 

factors might have an even greater impact on species which have a more restricted 

distribution. We also accept that soil factors are unlikely to remain stable in the future, 

particularly in Australia given the prevalence of fire and changes in land use (e.g. agriculture, 

grazing and mining). Therefore, developing dynamic soil predictions would be an important 

next step to further improve model precision.  
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Chapter VI 
HERBARIA AS RESOURCES TO EXTRACT PLANT TRAIT DATA TO INFORM 

PREDICTIONS OF CHANGED DISTRIBUTIONS FROM BIOCLIMATIC MODELS 

 

Abstract 

Climate is a strong selective force in the geographic distribution of species, yet the utility of 

correlating climate factors with species presence records to predict current or future 

occurrence has been questioned. Herbarium records are commonly used in bioclimatic 

models as points of occurrence, thus allowing for presence across geographic space to be 

interpolated using similarity in climate. These models can then be used to extrapolate to 

predict future presences outside of the original geographic space. Herbarium specimens 

present an excellent opportunity to explore the relationship between plant traits with both 

climate and non-climate factors. In this study, we provide an overview of how specimen data 

have been previously used in bioclimatic modelling and other historical studies. We then 

propose a use of herbarium specimens by collecting trait data and test their relationship with 

local climate. Such an approach is embedded within ecological biogeography where patterns 

in trait diversity are linked with patterns of species occurrence across space. We identified 

five, eight and three climate envelopes for A. forsythii, A. minor and A. suffocatus, 

respectively. The Analyses of similarity showed these climate envelopes to not be 

significantly associated with the plant trait data from A. forsythii, A. minor and A. suffocatus 

(P = 0.559, P = 0.84 and P = 0.247, respectively). We have illustrated that the capacity to 

detect patterns between plant traits and climate may be dependent on the spatial distance 

where specimens have been collected from. By exploring the relationship between plant traits 
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and their associated local climate, we can then make informed decisions regarding the 

capacity for changes to a species distribution.  

 

Introduction 

Bioclimatic modelling (BM) has been used to predict the impacts of temperature and rainfall 

parameters on species occurrence (Elith and Graham 2009; Franklin 2009). These models use 

a correlative analysis to make a predictive assessment of the impact of future environmental 

scenarios on the distribution of a species (Sommer et al. 2010). Coupled with improvements 

to GIS mapping and the availability of environmental data, BMs can also be applied to other 

fields, such as evolutionary biology, examining such phenomena as hybrid zones (Kozak et 

al. 2008) or the spread of disease (Kearney et al. 2009). The adaptability of BMs to a wide 

range of different research fields implies that an understanding of the required data and 

modelling type for the intended application is important. In particular, BMs rely heavily on 

the quantity and accuracy of the input data to avoid issues associated with biased sampling 

and statistical uncertainty surrounding means derived from a low sample size (Hernandez et 

al. 2006; Stockwell and Peterson 2002; Wisz et al. 2008). 

 

The source of species occurrence data can be broadly divided into two methods; 

observational ecological surveys and collections of herbarium or museum specimens. Both 

approaches now typically include accurate GPS spatial locations but past records may have 

been only map references or general localities with wide margins of spatial uncertainty. 

Ecological surveys of permanent plots and long-term studies provide an even richer 

understanding of occurrence, as the persistence of a species at the locality is known directly 

(Lindenmayer et al. 2012). Due to time constraints, logistical reasons or financial limitations, 

occurrence records may be sparse, incomplete or only encompass a small proportion of a 

species distribution (Willis et al. 2003). This leads to a poor understanding of a species actual 
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distribution, often referred to as a ‘Wallacean shortfall’ (Mokany and Ferrier 2011). Future 

information may be substantially improved by widening the sources of records. For example, 

public databases of species records such as the Atlas of Living Australia (Atlas of Living 

Australia, 2014) draw from the traditional herbarium or museum records but are also being 

supplemented by citizen science observations that are then verified by experts before being 

ingested into the online resources.  

 

Beyond the issues of the quantity or quality of the data, a basic assumption of BMs is 

that all occurrence records are equivalent in terms of the information they contribute on the 

environments experienced by the species. This overlooks the extra certainty of a fit to 

environment provided by a large population compared to a few scattered individuals that may 

not persist. Collections from the edge of a range compared to central or throughout the range 

may provide different information for predictive modelling. Further, BMs assume that a 

species is at equilibrium with climate, thereby occurring in all climatically suitable areas 

(Hutchinson 1957). This approach ignores the potential for species to not occupy some 

climatically suitable areas due to variations in traits, such as dispersal, or reproductive traits 

which may, in part, define the species adaptive potential (Araújo and Pearson 2005). With 

uncertainty surrounding whether BMs should be performed, it is difficult for researchers to 

build on previous methods to subsequently improve BMs so they may compliment empirical 

evidence.  

 

With the arrival of online databases, such as TRY: Plant Trait Database (Kattge et al. 

2011) that provide data for a large number of plant traits, we propose the following question: 

to what extent can trait data extracted from herbarium species be used to reduce the 

uncertainties in BMs? A plant collected for depositing in a herbarium consists of a physical 

sample, and that material will of course include important traits such as leaves and usually 
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also inflorescences, flowers or even seeds. The presence of flowers, or fruit indicate the 

phenological state of the individual at the time of collection, and such observations contribute 

to documenting the potential impact of climate change in altering phenology of that species 

(Chambers and Keatley 2010; Chuine 2010; Primack et al. 2004).  

 

Typically, plant samples accompanied by information recorded about the habitat are 

often geo-referenced, permitting the data to be used in spatial modelling. Older records, 

however, may be missing locality data or have only broad locality details that may, 

nonetheless, still be valuable for modelling. For example, herbarium records for some species 

span several hundred years, providing a long-term dataset with which to study changes in 

plant traits over time. In addition, records are also often collected throughout a species 

geographic range allowing for some inferences on spatial or population trait differentiation to 

be made.  

 

Herbarium specimens have previously been used to collect data to determine the 

impacts of global warming on phenology (Miller-Rushing et al. 2006), invasive plant spread 

(Fuentes et al. 2013), changes to flowering time (Bolmgren and Lönnberg 2005; Hart et al. 

2014; Primack et al. 2004), species range shifts (Applequist et al. 2007; Elith and Leathwick 

2007), changes to plant traits (Dalrymple et al. 2015; Molnár et al. 2012; Parkhurst 1978) and 

harvesting effects on plant size (McGraw 2001). Perhaps the greatest value of using herbaria 

as data sources is when the data are examined over a temporal scale to illustrate a 

measureable impact on plant phenology. For example, Dalrymple et al. (2015) report three 

asexual plant species have shown significant change up to 561% in leaf area, and another 

species had declined in height by 75% per 100 years. Using herbaria data, Molnár et al. 

(2012) note pollination mode and life span of orchids to have greatest associated relationship 

with an advancement of flowering time.  However, it is important to note that variations in 
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trait values recorded from herbaria data cannot be extrapolated as being either adaptive or 

plastic (Dalrymple et al. 2015), rather these data provide a useful means to explore 

relationships between plant traits and climate. 

 

There are several benefits to using herbarium specimens. First is the capacity to 

independently verify records. When herbarium specimens have been taxonomically verified 

through expert identification, collections of endemic species will be highly reliable (Ter 

Steege et al. 2000). Secondly, improving model precision by manipulating or otherwise 

removing records that are inaccurate due to inconsistencies in cataloguing or coarse-

resolution sampling (Austin 1998). Finally, the potential of attaining large sample sizes 

means that uncertainty surrounding the performance of BM outputs is also minimized. While 

this is also true for ecological survey data, herbarium records have the major benefit of often 

being already available for use, as well as being collected over a temporal scale. Regardless 

of the data source, however, ecological niches of species are often highly complex and large, 

large sample numbers, either through herbaria or surveying, may be required in order to 

encompass the range of environments that the species can survive (Hutchinson 1957). 

 

Despite potentially involving large numbers of individuals, models which use 

biological data from herbarium collections can also suffer from sample bias (Delisle et al. 

2003; Loiselle et al. 2007). For example, locations of records are often clumped in areas with 

easy accessibility (e.g. roads and fire-trails). Furthermore, some models are unable to 

delineate sample bias from model outputs as clumped distributions are often associated with 

better data fitting (i.e. higher AUC values) (Luoto et al. 2005; Segurado and Araújo 2004). 

Additionally, most collections are targeted for individuals that are flowering or fruiting to 

incorporate reproductive characteristics. There is uncertainty surrounding using specimens 

for flowering responses to climate without any field observations of populations (Miller-
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Rushing et al. 2006). Although the collected specimen may have flowers, there is often no 

indication whether any other individuals in the population were also flowering. Additionally, 

both observational and herbaria data are also presence-only records, and very few species will 

have absence records available from surveys. While presence-only models can compensate 

the lack of absence data by generating pseudo-absences, the selection and manipulation of 

absences needs careful consideration so they may help to minimise the effect of sampling 

bias in presence records (Radosavljevic and Anderson 2014; Warton and Aarts 2013). 

Therefore, issues regarding the collection and sampling of both presence and absence records 

can be related to how the model deals with such data. 

 

However, uncertainty remains regarding if extracting trait data from herbarium 

specimens can provide a resource for assessing the uncertainty between climate and 

phenology, and, therefore, potential changes to modelled distributions. Here, we propose a 

method of extracting and testing phenological trait data from herbarium specimens to inform 

researchers as to whether climate can predict the patterns in plant traits. To illustrate this, our 

aim was to sample plant trait data extracted from herbarium specimens of three Actinotus 

species to then determine whether patterns in plant traits were explained by macroclimatic 

factors. Long-term average climate variables are publically accessible and are common 

practise for bioclimatic modelling (Hijmans et al. 2005). If our approach could be used to 

detect whether patterns in species traits are associated with their local climate, it could greatly 

improve our ability to determine whether macroclimatic or topoclimatic factors drive a 

species distribution (Slavich et al. 2014). If traits are not associated with climate, then we 

argue that BMs may predict inaccurate future shifts in distributions. We have previously 

documented climate envelopes to be poorly associated with A. helianthi plant trait values 

recorded in the field (Chapter 2). As A. helianthi is widespread and occurs over a latitudinal 

range of 14 degrees it is perhaps in hindsight not unexpected that there is little pattern of 
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plant traits in relation to local climate. However, this finding may not extend to species that 

are more restricted in their distribution. To test this idea we selected three other Actinotus 

species that are more restricted in their spatially distribution and that have partially sympatric 

distributions and thus experience a similar range of climates. By testing three species with 

restricted distributions, our aim was to determine whether species with restricted spatial 

distributions have plant trait values that are related to the local climate. It was predicted that 

life-history might affect a species interaction with climate. Therefore, each species was 

selected as having a different life-history, as well as occurring in different bioregions. 

 

Materials and methods 

Plant specimens from the National Herbarium of New South Wales and the John Ray 

Herbarium (The University of Sydney) were used in this study. A total of 24 Actinotus 

forsythii Maiden & Betche, 60 A. minor Sm. and 20 A. suffocatus Hook.f. specimens were 

sampled (Fig. 1). A. forsythii is a fire-ephemeral herb up to 50 cm in height, recorded from 

the Sydney Basin and South Eastern Highlands bioregions (IBRA, 2007) in New South 

Wales (NSW) as well as east Gippsland (Victoria). The species comprises a single tap root 

and inflorescences protrude from a central rosette of compound leaves at ground level 

(Benson and McDougall 1993). Flowers have small pink petals which give the capitulum a 

characteristic pink hue (Fig. 2A). A. minor is a perennial herb comprising wiry branches up to 

a height of 50 cm, and is endemic to the Sydney Basin, Brigalow Belt South and South 

Eastern Highlands bioregions (Benson and McDougall 1993). The species can persist in the 

landscape as seed in the soil seedbank or by re-sprouting following fire. A. minor has small 

clusters of apetalous flowers approximately 12 mm in diameter (Robinson 2003) (Fig 2B). 

Umbels contain 6-12 central hermaphroditic flowers surrounded by up to 50 peripheral 

staminate flowers (Willmott 2000). Both A. forsythii and A. minor occur on nutrient-poor, 

Hawkesbury-derived sandstone soils. Both species have flowers arranged into densely packed  
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Fig. 1. Locations of sampled herbarium specimens compared to their known distributions. 

Known records were downloaded from the Atlas of Living Australia (www.ala.org.au).
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Fig. 2. A capitulum of Actinotus forsythii (A), Actinotus minor (B), and Actinotus suffocatus 

(C). Photos by Nathan Emery. 

  

145 
 



umbels, with central female flowers surrounded by male-only (staminate) flowers. Both have 

umbels which are pseudanthia. A. suffocatus is a rosette-forming herb to 5 cm tall, found in 

the sub-alpine regions of Tasmania (TAS). The umbel is 1 cm wide and contains 5-10 

flowers, and subtended by green involucral bracts. The species has long, rhizome-bearing 

roots and plants form dense mats along the ground (Fig 2C).  

 

Current baseline climatic data comprising 19 variables were downloaded from the 

WorldClim online database (www.worldclim.org) at the highest resolution available (30 arc-

second; 1km2 grids). These data are the most current long-term (1950 to 2000) climate 

averages currently available. Although some specimens were originally sampled pre-1950, 

we made the assumption that the WorldClim climate averages were representative of the 

historical local climates. The climate data were clipped to Australia, and climate values were 

extracted for each species spatial presence record using ArcGIS v10.1 (ESRI, 2012). In SPSS 

v21 (IBM, 2012), we ran univariate correlations using Pearson’s coefficient to check for 

collinearity between the climatic variables for the three datasets. Due to low sample sizes, we 

used a conservative value of ≥ ± 0.85 to determine collinear variables (Dormann et al. 2013; 

Elith et al. 2010). A total of four, six and three climate variables were retained for A. 

forsythii, A. minor and A. suffocatus, respectively (Table 1; Appendix 4). 

 

Six plant traits were measured on each specimen (Table 1). Average leaf length was 

highly correlated with longest leaf length, and the former was not included in the analysis. 

Specimens that were missing data from more than one trait were removed from the database, 

leaving a total of 19 A. forsythii, 53 A. minor and 20 A. suffocatus specimens for analysis. 

 

For each species, the trait and climate datasets were imported into PRIMER v6.1.16 

(Clarke and Gorley 2006) & PERMANOVA+ v1.0.6 (Anderson et al. 2008). Trait data were  
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Table 1. Plant trait and climate variables used in this study. Trait variables in bold were used 

included in analyses for all three species. Plant trait measurements are in mm. Capitulum 

width was measured as the distance from one bract tip to the opposite, including the umbel. 

 

Plant traits Climate variables 

Umbel no. on specimen Annual mean temp. *+^ 

Umbel width Mean diurnal range 

Capitulum width Isothermality * 

Average leaf length Temp. seasonality 

Length of longest leaf Max. temp. warmest month 

Width of longest leaf Min. temp. coldest month + 

 Temp. annual range 

 Mean temp. wettest quarter 

 Mean temp. driest quarter 

 Mean temp. warmest quarter * 

 Mean temp. coldest quarter 

 Annual rainfall *+^ 

 Rainfall of wettest month ^ 

 Rainfall of driest month * 

 Rainfall seasonality 

 Rainfall wettest quarter 

 Rainfall driest quarter 

 Rainfall warmest quarter *+ 

 Rainfall coldest quarter 

* denotes climate variable was used for Actinotus minor. 
+ denotes climate variable was used for Actinotus forsythii. 
^ denotes climate variable was used for Actinotus suffocatus.  
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normalised before resemblances were calculated using the Euclidean Distance measure. 

Resemblances were also calculated for normalised climate data using Gower’s dissimilarity 

measure (Gower 1971). Climate resemblances were then run through an agglomerated 

Hierarchical Cluster Analysis (HCA). Samples were grouped into ‘climate envelope clusters’ 

if the resemblances had at least an 85% similar climate. The trait datasets and their respective 

climate envelopes were then projected and visualised in a Multi-Dimensional Scaling (MDS) 

analysis. One-way Analyses of Similarity (ANOSIM) tests were performed for each of the 

datasets using the climate envelopes as predictors of plant traits. We then ran Distance-based 

Linear Models (dbLM) to determine which climate factors, if any, were significantly 

correlated with the plant trait resemblances. 

 

Results 

The average number of umbels per specimens was 39.58 ± 8.22, 8.11 ± 1.81, and 0.9 ± 0.1 

for A. forsythii, A. minor and A. suffocatus, respectively (Table 2). Similarly, the other four 

trait values were representative of plant size, with A. forsythii having larger umbels, 

capitulums and leaves than A. minor and A. suffocatus (Table 2). From the HCAs, five, eight 

and three climate clusters for A. forsythii, A. minor and A. suffocatus, were identified 

respectively. The climate envelopes showed poor differentiation across two-dimensional 

space in the MDS plots (Stress = 0.09, 0.15 and 0.08 for A. forsythii, A. minor and A. 

suffocatus, respectively; Fig. 3). Results from the ANOSIMs identified the respective climate 

envelopes to not be significantly associated with the trait data for A. forsythii, A. minor and A. 

suffocatus (P = 0.559, P = 0.84 and P = 0.247, respectively). Consequently, no climate 

variables were significantly correlated with either A. forsythii or A. suffocatus. A significant 

model was identified with A. minor, which comprised mean temperature of the warmest 

quarter and isothermality (P = 0.007). The correlation of this model was weak (R2 = 0.106).  
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Table 2. Mean and standard errors for the five plant traits used for analysis. The oldest and 

most recent collection years from the sampled specimens are given. 

 A. forsythii (n = 19) A. minor (n = 53) A. suffocatus (n = 20) 

Range of collection dates 
(years) 1906 - 2010 1900 - 2010 1960 - 2005 

Umbel no. on specimen 39.58 ± 8.22 8.11 ± 1.81 0.9 ± 0.1 

Umbel width (mm) 15.16 ± 1.01 10.73 ± 0.45 3.05 ± 0.33 

Capitulum width (mm) 8.37 ± 0.53 4.94 ± 0.17 1.6 ± 0.27 

Length of longest leaf (mm) 48.16 ± 4.32 21.98 ± 0.98 5.95 ± 0.21 

Width of longest leaf (mm) 18.79 ± 3.02 12.79 ± 0.67 1.9 ± 0.12 
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Fig 3. Multidimensional Scaling (MDS) plots of Actinotus forsythii (A), Actinotus minor (B), 

and Actinotus suffocatus (C). The trait resemblance data are visualised in space by climate 

envelopes. Traits were number of umbels on specimen (umbels), umbel width (umbelwidth), 

capitulum width (capitulum), length of longest leaf (longleafL), width of longest leaf 

(longleafW). Symbols represent the different climate envelopes for each species. CEs: climate 

envelopes. 
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Discussion 

We have illustrated that plant traits can be successfully extracted from herbarium specimens 

for use in climate studies. Furthermore, we were able to collect data from specimens which 

represented the known distributions of each of the three Actinotus species. When analysed, 

we demonstrated that climate had little predictive power on the plant traits recorded. Since all 

three species have geographically-restricted distributions, which encompass between two and 

five bioregions, it is possible that climate is too broad to be influential at such a fine scale. 

Actinotus helianthi, which is known to occur across a wider geographic extent (14 

bioregions) than the three Actinotus species tested here, also showed little relationship 

between plant traits and climate envelopes (Chapter 2).  

 

 While A. helianthi traits were recorded in the field, for annuals or fire-ephemerals, 

such as A. forsythii, herbaria records may be more abundant and easily accessible than field 

observations, providing greater power and precision to phenological studies of such species. 

Specimens may also extend well into the past and contain phenological data from numerous 

records across the species known distribution. However, we do not discount the importance 

of field records. Both observational and vouchered data are subject to uncertainties. For 

example, if examining the effects of climate on flowering times, peak flowering is only 

approximated by a herbarium specimen, and could be missed by up to several weeks (Miller-

Rushing et al. 2006). For this reason, the number of umbels counted on each specimen is 

unlikely to be indicative of the total number or reproductive effort of the whole plant. 

Furthermore, it may be unreasonable to suggest from one or two collected specimens from an 

area that they are indicative of peak flowering within the population. Without any descriptive 

observational data on the local population and habitat, it is then difficult to extrapolate any 

generalisations about intra- and inter-population variation in plant traits. Further 
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investigations are required to determine the relative importance of these uncertainties, and 

how they may subsequently influence BMs. 

 

 When interpreting our results, it is important to note that we assumed that the climate 

baseline averages between 1950 and 2000 would be representative of the local climate of 

each herbarium specimen, regardless of the year it was collected in. We made this assumption 

so our results would be relevant for distribution modelling, as these data are commonly used 

in BMs (Hijmans et al. 2005). While we could have also used the appropriate annual climate 

data for each recorded specimen, it would then be difficult to standardise these data as spatial 

layers for modelling using the same herbarium records. Additionally, for this study we 

examined the variation in plant traits across a spatial extent to create climate envelopes rather 

than the relationship between traits and climate over time. Some species have records that are 

poorly represented over time. For example, the 20 A. suffocatus records had been collected in 

either 1960 or 2005.  However, to limit the uncertainty of our assumption, future studies 

could examine and compare bioclimatic averages as well as annual climate variables where 

temporal historical records are available. 

 

It has long been a criticism of BMs that they do not, or are unable to, incorporate 

factors which vary at finer geographic scales (Luoto and Heikkinen 2008; Pearson and 

Dawson 2003). Several factors have been shown to be more influential at a local scale when 

compared with climate, which can influence distributions at a macro-scale. These may also 

have contributed to the variation exhibited between the traits recorded in our study. For 

example, when land-cover was added to climate variables in a hierarchical model approach, 

the predictive power was found to increase in two plant species in Britain, Rhynchospora 

alba and Salix herbacea (Pearson et al. 2004). Specifically, their model was better able to 

determine areas with suitable climate but unsuitable land-cover at the finest resolution of 1 
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km, but not at 10 km. The authors state that factors, such as land cover, should be modelled at 

fine scales in order to represent the variation across the landscape. When performing BMs at 

course resolutions, it is possible for a saturated prediction of suitability due to ‘suitable’ 

patches of land cover existing in cells that contain presence records (Pearson et al. 2004). 

However, it is suggested that models which use multiple topological variables, such as land 

cover, geology and elevation, can outperform models which use land cover only (Illán et al. 

2010; Slavich et al. 2014). This is likely to be more important for species that are present in 

mountain areas, such as the three species in this study. 

 

We cannot also discount the potential of soil to be influencing plant traits at the local 

level. Indeed, climate alone has been documented to poorly predict species distributions when 

direct soil factors are added to the original climate model (Dubuis et al. 2013). Indeed, we 

have previously demonstrated that A. helianthi plant traits were better predicted by soil type 

and bioregions than climate (Chapter 2). Climate was also reported to over-predict the extent 

of future suitable habitats of A. helianthi when soil factors were added to the model (Chapter 

5). At a rudimentary level, plants are impacted by soil pH as it controls the release of 

important ions (Gobat et al. 2004). Dubuis et al. (2013) reported soil pH, and to lesser extent 

Nitrogen, significantly improved model accuracy over BMs when tested across 115 plant 

species. Model improvement was not ubiquitous across species, rather soil factors were 

important for plants with low surface leaf area or high leaf dry matter content (Dubuis et al. 

2013). These traits are common to species which uptake nutrients slowly and are often found 

on acidic and nutrient-poor soils (Pellissier et al. 2010). Furthermore, the capacity of a plant 

to change its traits to better suit different soil environments is likely to be species specific 

(Hancock et al. 2013). Since we have determined that climate factors are not correlated with 

A. forsythii and A. suffocatus traits (and only very slightly with A. minor traits), the next step 

would be to test other ‘environmental envelopes’, such as soil, topology, or bioregions.  
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Herbarium specimens represent a large source of data which can then be used to 

improve bioclimatic modelling by indicating whether finer scale climatic data are needed, or 

even whether climate data influence those particular plant traits in a predictable way. The 

capacity for species to adapt traits to environmental factors will play an important role in 

species persistence and, therefore, the distribution across the geographic landscape. For the 

three Actinotus species used in our case study, we have demonstrated that climate may be too 

broad to be associated with traits for plant species which have restricted distributions. This 

raises the question of whether more fine-scale environmental factors, such as soil, might be 

better suited to examining plant trait variation. While our approach may be novel, we have 

outlined a foundation and encourage further testing on a wider array of species with varying 

life-histories, as well as screening for relationships between traits and non-climate factors 

across multiple species.  
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Chapter VII 
GENERAL DISCUSSION 

 

Main findings 

Species Distribution Models (SDMs) are an integral part of ecological management in 

predicting the impact of future environmental conditions on species or communities. Starting 

with known records of occurrence, is it possible to ask what drives the extent of the 

geographical distribution and is that closely related to known differences in environmental 

factors? Presumably, at larger spatial scales, climate plays some role in setting the context for 

whether the conditions support the continued persistence of a species. However, if a species 

exists as multiple populations, each with its own locally different environmental conditions, 

what can we expect in any mapping of occurrence to present or future climate envelopes?  

 

The obvious utility of SDM approaches means that it is also necessary to examine the 

model assumptions. As with all models, there is a balance between the level of generality of 

broad models that may lack predictive power (Evans et al. 2013) and highly specialised 

models that require copious amounts of data to parameterise them, and yet risk overfitting 

complex data (Lonergan 2014). We also need to be aware of instances where the quality of 

the information in terms of the spatial resolution of either the occurrence records or the 

climatic data may impact on the predictions. Therefore, it is vital to test the extent that some 

of the basic assumptions might have on model predictions in order to improve model outputs. 

To this end, I identified several areas where progress could be made, and appropriate 

experimental integration with SDMs can be used to address these. Using Actinotus helianthi 

Labill. as a model system, I examined several factors relevant to ecological preferences of 
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species, including whether: (1) phenological traits could be predicted by climate factors, (2) 

early performance traits, such as germination and survival, were genetically fixed factors, (3) 

insect visitor abundance and diversity were site-specific, and what effect this might have on 

reproductive success, (4) edaphic characteristics limited the capacity of the species to 

colonise new, climatically-suitable habitat, and (5) patterns in plant trait data extracted from 

herbaria specimens could be related to macroclimatic factors. 

 

 Species are defined by their populations, which are defined by the individuals and 

their traits. Although the major assumption of most SDMs is that populations will respond to 

climate in the same way, it is apparent that populations are not equivalent in their plant traits. 

There was little evidence to support a strong match between climate and the phenotypes of 

plants at a given location. It is expected that populations experience different climates 

throughout a species distribution. In this case, if populations exist across a wide temperature 

range, then individuals must be able to survive at different temperatures. However, the 

capacity of individuals to thrive in different temperatures will vary across populations, and 

not all temperatures within the species range will be equally suitable for all individuals. For 

example, plants at the margins of their distribution range may have a more narrow range of 

suitable temperatures for survival then individuals towards the centre of the distribution 

(Bridle et al. 2010; Eckhart et al. 2011). Without the capacity to match climate with 

individual traits, the main premise of SDMs is less compelling.  

 

Species with wide geographic distributions experience a wide range of climates, and 

thus provide an appropriate system to explore the relationships among environmental 

variables, traits and ecological interactions. This study used a model system to test several 

assumptions surrounding SDMs, and then build on macroclimatic models by incorporating 

limiting environmental data. Firstly, phenology, which is expected to be closely linked to 
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climate as flowering and other events can be highly seasonal in many species (Chambers and 

Keatley 2010), was shown to have a poor relationship with local climate for A. helianthi. 

Furthermore, I obtained similar results when using traits extracted from herbarium specimens 

of A. forsythii, A. minor and A. suffocatus. Secondly, recruitment is also expected to be 

strongly influenced by the environment in plants (Ooi et al. 2009; Ooi et al. 2012; Walck et 

al. 2011). If so, then early stages of the life cycle should be closely matched to their local 

environment. The early performance traits of A. helianthi significantly varied at multiple 

scales, including plant, population and bioregion (according to the Interim Biogeographic 

Regionalisation of Australia). Thirdly, if phenotypes are well matched to the environment, 

then species interactions may also be matched to local conditions, but these may be affected 

by changing climate. Seed set varied among populations and local climate was found to be 

partially influential. While insect abundance and diversity differed among sites, there was an 

indication that higher seed set, and, therefore, reproductive output, was positively associated 

with the presence of flies. Low reproductive output suggests that there is a poor match 

between individuals and their environment, signaling the possibility of poor persistence in the 

future. That fact that A. helianthi is partially reliant on interactions with insects for its 

reproductive output suggests the species may be unlikely to expand its range beyond that of 

its visitors. Finally, even if a species can disperse into new environments, individuals must 

already possess the traits to successfully colonise these areas. The success of plant colonising 

an area is largely influenced by the physical and chemical properties of the soil. The edaphic 

environment is one of the most commonly recognised environmental variables that can limit 

a species distribution (Thuiller 2013). A. helianthi seedlings emerged and grew at 

significantly different rates across local and nonlocal soils, and showed no adaptive 

advantage on local soil. Furthermore, soil pH, sodicity, salinity and phosphorus were 

associated with A. helianthi seedling emergence and growth. Distribution models which 

included some of these important environmental variables predicted a more restricted extent 
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of suitable habitat in the future. In particular, areas with high suitability were found to be 

over-predicted when the environmental variables were added to the model. Taken together, 

the results from this thesis provide strong evidence that throughout the geographic 

distribution, populations are not necessarily at equilibrium with climate, nor are they likely to 

respond in a similar fashion to changes in environmental conditions. These population 

differences suggest that purely correlative climate SDMs do not encompass the dynamic 

processes that represent the relationship between a species and the environment. 

 

Implications for Species Distribution Models 

Understanding the factors that limit a species distribution is fundamental to ecological 

management. Specific niche is likely to be extremely complex in nature, and, therefore, 

extensive experimentation is required to test the validity of the assumptions inherent in SDMs 

(Hutchinson 1957). Thus, studies investigating potential changes to plant and animal 

distributions using climate alone have less predictive certainty. It is evident from this thesis 

that topological factors are better suited to defining species distribution than macroclimatic 

factors. Macroclimatic factors are broad-scale climate factors which have been derived from 

weather stations around the world (Hijmans et al. 2005; Slavich et al. 2014). However, 

macroclimatic variables are too broad to successfully interpolate other topological factors, 

such as elevation, slope, aspect and light availability (i.e. canopy cover), which can influence 

climate and operate at a finer spatial resolution (Austin and Van Niel 2011b; Harris et al. 

2014; Slavich et al. 2014). The question of what spatial resolution is most appropriate has 

been raised throughout this thesis, and warrants further attention. Here, I discuss why spatial 

resolution in SDMs is important. Coupled with this, I then argue that if climate is included in 

SDMs, then an appropriate assessment of what macroclimatic data must be made to best 

represent the study area. For this reason, I outline the rationale for the choice of 

macroclimatic data used in the analyses of A. helianthi populations. Similar decisions were 
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made for each experiment, where appropriate, so that the most accurate and current climate 

data were used. 

 

Recent studies have suggested that climate is not the most influential factor at a 

regional (i.e. ≥ 50km2 spatial grid size) or finer resolution scale (i.e. ≤ 10 km2 spatial grid 

size) (Pearson and Dawson 2003). Rather, topological environmental factors are more 

important as these directly influence the microclimate through changes in the landscape, such 

as slope, aspect or altitude (Slavich et al. 2014). If these topological factors are shown to be 

important predictors resulting in different interpretations of the species response to future 

climate, then climate-only models need to be verified with these factors. For example, the 

extent of predicted optimal habitats for Eucalyptus fastigata was almost four-fold more than 

that of the climate-only model when several landscape variables (such as radiation, 

topography and lithology) were included in a generalized additive model (GAM) (Austin and 

Van Niel 2011a). Topography, in particular, was highly significant and demonstrated the 

species preference for gullies. This led to strong differences between models at the 

distribution margins, mainly due to the landscape variables buffering the species against 

changing climate (Austin and Van Niel 2011a). Similar outcomes have been recorded in 

mobile (animal) species. For two species of kangaroo, Macropus rufus and M. fuliginosus, 

non-climate factors were highly influential on the model fit and performance at a 50 km 

resolution but not at finer resolutions (Harris et al. 2014). This is likely due to the movement 

patterns of the species being better modelled at the landscape scale rather than a local scale 

(Harris et al. 2014). These studies demonstrate that models which do not include topological 

factors can often produce interpretations which are unnecessarily pessimistic. I also 

demonstrated this to be the case for A. helianthi when soil factors were added to the climate-

only model (Chapter 5).  
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The importance of scale for non-climate factors has been shown in bird distributions 

across Europe. At resolutions of 10 km and 20 km, 90% and 88% of models had an increase 

in cross-validation performance when land-cover was added to the BMs (Luoto et al. 2007). 

Climate was postulated to be the major factor of bird distributions at coarser scales, as the 

addition of nonclimate factors made no improvement to model performance at 40 km and 80 

km resolutions (Thuiller et al. 2004a). These results are likely to be consistent across most 

widely-distributed or highly mobile species, as land-cover and even other topological factors 

are likely to exhibit some degree of heterogeneity within a grid cell which covers a spatial 

extent of ≥ 40 km. Therefore, when modelling species over a regional extent, such as A. 

helianthi, it is important that the appropriate resolution is used so that environmental 

heterogeneity is successfully represented in the model. 

 

 The geographic extent of a model, as well as what resolution to use will be partly 

dependent on the availability and quality of data. For presence records, ad hoc herbarium 

collections and ecological observations are supplemented by public record databases (i.e. 

citizen science). However, environmental data are also needed when distributional data are 

recorded. Although more environmental data are becoming available online for use in 

models, they are often not at a scale that could be recorded when a species is recorded or 

collected for herbaria. This means that for many fine resolution models, we are using 

interpolated data, which is not ideal. Spatial climate data may also suffer similar issues at fine 

resolutions (Hijmans et al. 2005).  

 

In this thesis, I obtained baseline (current) climate data at a global extent from the 

WorldClim online database (www.worldclim.org). These data are derived from global 

climate stations and represent the climate averages between 1950 and 2000 (Hijmans et al. 

2005). WorldClim data are commonly used in SDMs in the published literature, and the most 

160 
 

http://www.worldclim.org/


recent data were employed in this thesis. However, there is uncertainty surrounding whether 

climate baselines such as the 1950-2000 or 1960-1990 periods should be used when species 

data are being collected from the 21st century. To examine this, Roubicek et al. (2010) tested 

the 30- and 50-year baselines against custom decadal climate time steps up to 2005 and found 

model performance to be consistently higher across decadal baselines for five Australian crop 

species. Furthermore, these results were consistent across both tropical and temporal climates 

in Australia (Roubicek et al. 2010). Climate baselines are of pivotal important in SDMs as 

the International governmental Panel on Climate Change (IPCC) AR5 has indicated that 

global climates are expected to increase in variability (Stocker et al. 2013). By contrast, both 

the IPCC and World Meteorological Organisation (WMO) recommend using a 30-year 

climate baseline for future projections (i.e. 1960-1990). For this reason, it is appropriate to 

question whether we are under-valuing the impact of climate on species distributions, and, 

therefore, over-estimating future distributions. If the variance across current global climates 

can be used in SDMs, then climate at finer scales may be found to impart a comparable 

impact to nonclimate factors. 

  

 The choice of climate model will affect the outcomes of SDMs and the best model is 

likely to vary for each region. As the development of climate models is itself an area of 

specialty, most biologists choose from available models that have been verified for the study 

region. For my thesis, I used the CSIRO’s Mark 3.6 climate model for future climatic 

conditions. The Mk3.6 model is the most current climate projection model, which includes 

improved ocean, sea-ice and soil-canopy data generated from the Mk3.5 model. The Mk3.6 

model includes a new aerosol treatment and radiation pattern in the projections of the four 

Representative Concentration Pathway (RCP) scenarios (Jeffrey et al. 2013). There are 

dozens of submitted models based on the RCP scenarios of the IPCC AR5; however, the 

CSIRO’s Mk3.6 model is most relevant for Australia as it focuses on Australia’s natural 
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climate and rainfall variability associated with El Niño Southern Oscillation (ENSO) (Jeffrey 

et al. 2013). There is also a second CSIRO model built from Australian climate and weather 

modelling, ACCESS1.3, which is defined as an ‘aspirational model’ and takes advantage of 

new atmospheric physics (Bi et al. 2013). Although the appropriate spatial data was not 

available when it was required for Chapter 5, the progress of these and other models will help 

to improve future model predictions. 

 

 Species distributions are determined by their niche, which is defined by the 

interactions of numerous environmental conditions (Higgins et al. 2012; Hutchinson 1957). 

Now is the opportunity to develop methods to build on climate-only SDMs to include other 

important niche factors. Recent studies have started to include environmental factors in 

models by initially confirming their importance using ecological knowledge from 

experimental testing (Dubuis et al. 2013; Eckhart et al. 2011; Harris et al. 2014). While I 

have demonstrated the importance of species traits and interactions in defining the variation 

that exists among populations, I have also shown how the inclusion limiting environmental 

factors (soil) changes the original climate-only SDM projection. This has also been 

demonstrated in other recent studies of plant distributions (Coudun et al. 2006; De Frenne et 

al. 2014; Dubuis et al. 2013).  

 

While these studies are timely and pertinent, there is still further work needed. One of 

the greatest knowledge gaps is often precise biological information of a species. Higgins et 

al. (2012) remind us that we are ultimately modelling the responses of individuals to future 

conditions. Only when the variation among individuals is minimal, or can be expressed by a 

generalist or surrogate factor, such as growth rate, should we then focus on the population 

responses (Higgins et al. 2012). Demographic factors link the Hutchinsonian niche with 

species range dynamics by combining the persistence of a population, measured by its growth 
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rate (i.e. abundance), with the relationship between predicted dispersal and environmental 

variability (Schurr et al. 2012). Understanding a population’s growth rate requires an 

extensive knowledge of the phenology, reproductive traits and environmental conditions that 

determine the overall birth and death rates of individuals over time (Schurr et al. 2012). 

However, the success of this approach was demonstrated by Eckhart et al. (2011) who 

manipulated their SDMs based on the demographic data they had previously recorded. 

Specifically, the authors compared a control SDM with a filtered model using only presence 

records from populations which had a positive growth rate, and a model that weighted 

records based on their quartiles of the growth rate (Eckhart et al. 2011). Both the filtered and 

weighed models predicted a greater decline in suitable habitat due to precipitation and 

topology being more important factors than for the control model (Eckhart et al. 2011). This 

approach can be referred to as a stochastic spatio-temporal model (Marion et al. 2012) that 

better matches the dynamic nature of a species biology. It is through these approaches that we 

should be targeting efforts for future data collection and experimentation. 

 

Future directions 

This thesis creates exciting avenues for future avenues of exploration. In particular, I have 

demonstrated several methodologies that can be used to provide experimental evidence of the 

influence of climate and nonclimate factors on species distributions (Chapters 2–6). These 

types of approaches are necessary steps towards enhancing the predictions of SDMs. Future 

work requires an integration of biological population data that furthers our understanding of 

what limits a species niche. Here, I discuss some important areas which should be 

investigated further to help develop dynamic SDMs. These are logical next steps following 

the experiments which have been undertaken in this thesis.  
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Experimental data 

It is important for data to be collected or recorded across multiple populations that are spread 

throughout the species known geographic distribution. However, this is not always possible 

due to financial or logistic restrictions. Therefore, we should be open to the usefulness of 

citizen science databases to help collect species presences, such as the Atlas of Living 

Australia (www.ala.org.au, 2014). Furthermore, other databases which store species data, 

such as the plant trait database TRY (Kattge et al. 2011), can be used to extract information 

for SDMs. The types of data needed are those that can help determine the variation that exists 

among individuals and can then be extrapolated to potential population effects. These build 

on the experiments undertaken in this thesis. 

 

Firstly, experiments which examine the thermal tolerance of seed dormancy and 

germination would help to determine the upper limit for a species to survive under increasing 

future temperature. These data would be crucial for species whose distribution occurs over a 

topologically-variable extent, such as mountain regions. To understand the relationship 

between climate and topology, Ooi et al. (2012) examine how an increase in atmospheric 

temperature would impact soil temperatures, and, in turn, how that would affect seed 

dormancy trait in Acacia suaveolens and Dillwynia floribunda. The authors note that soil 

temperatures increased by 1.5 times that of atmospheric temperatures. While there was no 

clear effect on seed dormancy and viability, there was a positive relationship between 

dormancy release and heat wave conditions (Ooi et al. 2012). This study exemplifies the 

value of performing experiments to elucidate the mechanistic relationship(s) between the 

environment and species traits by indirectly examining the effects of local climate. 

Furthermore, the response of both species exhibited a positive correlation between heat 

treatment and the temperature of the maternal environment, which indicates that the 

populations may be locally adapted (Ooi et al. 2012) through an epigenetic mechanism. A 
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reduction in dormancy could have detrimental effects on seed bank longevity, particularly if 

conditions deteriorate after germination and before successful reproduction by the 

germinants.  

 

Species in alpine environments represent extreme cases where the capacity for range 

shifts is limited under changing climate. These species often require a burst of cold 

temperatures to stimulate their seeds to germinate. For these species, it is important to 

determine whether shorter winters might have detrimental effects on species recruitment. In 

the alpine herb Aciphyllya glacialis, however, shorter periods of cold stratification were not 

detrimental to germination, indicating that a shorter winter season is unlikely to affect the 

succession rate of this species (Hoyle et al. 2014). However, this is not always the case, as 

Aegopodium podagraria required a longer period of cold stratification before germination 

occurred (Vandelook et al. 2009). While changes in temperature are expected to cause 

changes in recruitment rates so too will rainfall, as well as the duration of climatic conditions 

which are suitable for dormancy to be released. Germination as well as early growth and 

survival are the stages most sensitive to change, and play an important role in maintaining 

population growth rates.  Identifying the climatic tolerance for a species will illuminate any 

restriction on the spatial extent of its distribution shifts in the future. 

 

  Secondly, to enhance future distribution predictions, several models have been 

enhanced by the inclusion of plant traits. Increasingly, there are also on-line databases that 

aim to provide extensive global trait data, such as the plant trait database TRY (Kattge et al. 

2011). Violle et al. (2014) argue that the notion of plant functional traits could be used as a 

means to move beyond a species by species approach, and work towards a ‘common 

currency’ among species. The authors state that such an approach will better present a species 

by species comparison, leading to an integrated framework for assessing the environmental 
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effects on biodiversity. A number of studies have illustrated these points. For example, Albert 

et al. (2010b) illustrate that a single plant trait can exhibit significant variation among 

individuals within a population. Reich et al. (2014) report several needle traits in 

gymnosperms to show significant intraspecific variation with latitude. Duoma et al. (2012) 

used four functional plant traits, including stem-specific density and three nutrient traits, in a 

community habitat distribution model to determine how they affected model performance in 

predicting different vegetation types. Similarly, Pollock et al. (2012) quantified seed mass, 

surface leaf area (SLA) and plant height for 20 species of Eucalyptus across environmental 

gradients. By using an approach that combined plant traits with multiple environmental 

variables, the authors determined that taller plants exhibited a positive relationship with solar 

radiation and rainfall gradients. Taller plants with low SLA were predicted to perform better 

in areas which also had fine-textured soil (Pollock et al. 2012). The information derived from 

these trait-based distribution studies permit the modeler to better evaluate the capacity of a 

species to colonise novel habitats than using physical data alone. 

 

 Thirdly, a common interest of some models is not where the species are found, rather 

where they might be. These studies often examine the translocation of a species using SDM 

outputs as guides to subsequently evaluate and optimise experiments to determine the 

tolerance of species to new environments. Since SDMs identify other habitats that are 

climatically similar to those where the species is currently known to exist (Araújo and 

Peterson 2012), this presents the possibility for the species to be translocated to predicted 

areas. Hancock and Hughes (2014) recently demonstrated that there was no advantage in 

using individual local provenance for restoration projects. Specifically, the authors found no 

significant difference between individuals from different populations of Eucalyptus 

tereticornis and Themeda triandra in terms of non-reproductive growth and survival. 

However, modelled suitable habitats with the intention for translocating a species are made as 
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areas which are only abiotically suitable. Therefore, the predictions do not take into account 

any biotic restrictions or interactions (Araújo and Peterson 2012). These impacts must be 

investigated to determine the risks of translocating to ‘predicted suitable’ locations, 

particularly if the species is rare or endangered. Reciprocal transplantation of seed between 

coastal and inland populations of A. helianthi in order to examine reproductive success was 

beyond the scope of the study time-frame, but highlights the need for longer-term field 

validation of plant biology to enhance the accuracy of model predictions. 

 

 Finally, genetic characterisation of individual plants and populations would further 

complement the results in this thesis. Due to time and financial limitations, I was unable to 

examine the genetic diversity of populations. Higgins et al. (2012) state that in order to 

understand the origin of a species distribution, there must be an understanding of how its 

niche occurred and evolved. Again, this can be examined at an individual level. The 

interaction between an individual and its environment depends on the species traits and the 

evolution of those traits determines the evolution of its niche (Higgins et al. 2012). Whether 

the macroclimate, in terms of temperature and rainfall, drives evolutionary preferences of 

species provides an insight into the potential rate of diversification through subsequent niche 

evolution (Schnitzler et al. 2012). Therefore, it is important that the genetic basis for species 

traits is determined, and that studies to use cross-discipline techniques to produce estimates of 

species fitness (Dostálek et al. 2010). For example, a genetic study on the waratah (Telopea 

speciosissima) identified three population groups (Rossetto et al. 2011). One population was 

genetically isolated by the edaphic environment whereas the remaining two groups shared 

some genetic similarity from intermediate populations along an altitudinal gradient. These 

results indicate that population genetic studies have the capacity to provide evidence for 

population persistence as well as the capacity for reproductive outcrossing. Despite the 

importance of combining demographic data with genetic diversity, there is an obvious dearth 
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of studies which examine both (Oostermeijer et al. 2003). Ideally, these data would be 

collected across multiple environments where a species is present, as well as environments 

that have not been colonised by the species, but are predicted to be suitable in the future.  

 

 We expect that populations will not respond similarly to environmental change, and 

population abundance may not necessarily be a proxy for genetic diversity (Dostálek et al. 

2010; Oostermeijer et al. 1994). For example, if populations have formed from a recent 

common ancestor, then they are unlikely to show poor gene flow (Leimu and Mutikainen 

2005). Similarly, self-compatible species are unlikely to exhibit a strong relationship between 

population size and genetic diversity (Leimu et al. 2006). There are also several genetic 

techniques that can facilitate significant progress when employed alongside ecological 

experiments. The availability of molecular protocols and techniques to identify single-gene 

markers (or single nucleotide polymorphisms, SNPs) for specific traits means that genetic 

diversity within a species can be easily mapped. This is especially true for electrophoretic 

methods for examining the genetic diversity in allozyme loci (Hamrick and Godt 1996). 

Techniques, such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), can be used to quickly and effectively identify differences in seed proteins, thereby 

providing an indication of the level of diversity (Ferguson and Grabe 1986). The 

development of next generation sequencing (NGS) has also provided a cheaper, faster and 

comprehensive method of analysing large numbers of DNA sequences and producing genetic 

maps (Bräutigam and Gowik 2010). This augments SDS-PAGE to enable to rapid genome 

screening and estimation of genetic diversity in individual populations. Furthermore, 

quantitative trait loci (QTL) can be identified to determine which loci contribute to particular 

phenotypic traits (Nordborg and Weigel 2008). For example, Huang et al. (2010) identified 

QTLs which were responsible for several early fitness components at the seed stage, 

including a single QTL that explained almost 14% of the variation in the ability of seeds to 
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germinate. For these reasons, it is strongly encouraged that genetic data should be generated 

in tandem with ecological studies. Specifically, demographic data from both field and genetic 

experiments will permit more informative demographic simulations and SDMs. 

 

Model manipulation 

To better evaluate model predictions, more refined modifications and improvements should 

be made to popular SDM programs, such as MaxEnt. While the benefits and superiority of 

MaxEnt have been detailed in the thesis, the capacity to further improve the mechanical 

process of the model warrants discussion. 

 

 MaxEnt is a machine-learning program and like most computer models its 

performance is only as good as the input data used (Phillips et al. 2006). Furthermore, 

MaxEnt is a presence-only model, which means it suffers from several critical issues. A meta-

analysis by Yackulic et al. (2013) illustrated that almost 90% of published studies which used 

MaxEnt were likely to suffer from sampling bias due to misconceptions or by ignoring the 

controls for background absence sampling. Perhaps more alarming was that over 50% of the 

sampled papers incorrectly addressed MaxEnt’s output as probability of occurrence instead of 

probably of occupancy (Elith et al. 2011; Yackulic et al. 2013). Therefore, as implemented in 

this thesis, for presence-only models such as MaxEnt, it is recommended that studies examine 

and apply appropriate model refinement and optimisation for the available species occurrence 

dataset. Ideally, protocols tested across multiple species to examine effects of sample size and 

spatial autocorrelation would improve the level of correlation among environmental 

variables. 

 

 Since most presence record databases are built from samples that were collected 

without any stratified design, some discrimination of the data is appropriate. Austin and 
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Heyligers (1989) used a set of transects directed along multiple environmental gradients 

(gradsects) in attempt to encompass greater variation in the vegetation in New South Wales. 

The authors report that the gradsects succeeded in capturing the variability of the study region 

when compared across different rock-derived landscapes. However, the capacity to perform 

such surveying is often very limited, and the financial costs of such practises can be easily 

underestimated (Austin and Heyligers 1989). Bias can also be minimised during the model 

tweaking in MaxEnt by using sample bias grids or controlling the selection of background 

absence points. Syfert et al. (2013) used a sample bias grid to prevent MaxEnt from selecting 

background points from grid cells which did not contain at least one presence record. When 

implemented, mean ‘average under the ROC curve’ (AUC) value significantly improved for 

both herbarium and ecologically-sampled data when sampling bias was neutralised (Syfert et 

al. 2013).  

 

Further improvements can also be made when mechanistic data or models are 

incorporated (Elith et al. 2010). However, if these are not available, then attention should be 

given to spatial extent of background samples in these instances. Radosavljevic and Anderson 

(2014) tested several geographically structured methods to partition occurrence records into 

four distinct regions or spatial subsets (bins) using a k-fold cross-validation technique. 

Occurrences were then divided randomly so that each subset contained an equal number of 

records. However, since this approach modifies niche estimates, it is important to then mask 

out environmental data for MaxEnt to perform its background sampling. This avoids any 

environmental bias, thereby mimicking the likelihood that a species currently inhabits less 

than its fundamental niche (i.e. realized niche). These new advances are encouraging signs 

towards further optimising and enhancing SDMs. Furthermore, new tools are now becoming 

available that can assemble spatial and bioclimatic dataset and develop software that 

enhances the integration of these data into modelling programs. A good example of this is the 
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ecosystem Modelling and Scaling Infrastructure Facility (eMAST; www.emast.org.au). In 

light of these recent developments, it would be beneficial to return to the MaxEnt model used 

in Chapter 5 and to implement some of these advances to further improve the model’s 

projections. 

 

Data quality 

As discussed above, irrespective of the modifications and improvements made to modelling 

programs, the final output will be only as good as the data used. Ecological surveys are 

presence-absence data and are, therefore, the most useful in SDMs. However, for the majority 

of species, records are available as presence-only records. Specimens stored in herbaria or 

museums represent a physical confirmation of a presence record, and can be independently 

identified or corrected to account for changes in taxonomy (Delisle et al. 2003). Sampling 

biases inherent with most herbarium records are well-documented in the literature (Delisle et 

al. 2003; Elith and Leathwick 2007; Loiselle et al. 2007). However, I have demonstrated that 

plant traits extracted from herbarium specimens can be used in multivariate climate models 

(Chapter 6).  

 

Building on this principle, I strongly encourage collectors to record environmental 

factors when sampling species in the landscape. As an example, a simple estimation of 

species abundance and population extent would enable opportunities to model the 

relationship between distribution and population size (Brown 1984; Van Der Wal et al. 2009; 

Young et al. 2012). Duff et al. (2012) illustrated that the influence of abundance on the 

distribution of the species would depend on whether there were different environmental 

factors driving presence and abundance. For example, while climate was the main factor 

affecting the distribution of Xanthorrhoea australis, soil and vegetation were the main 

determinants of abundance (Duff et al. 2012). Other data which would prove informative 
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include a list of dominant species in the area, a qualitative (or, where possible, a quantitative) 

description of the soil, and an indication of any phenological event (i.e. peak flowering). 

Furthermore, systematically recording search intensity and recording absences from locations 

would be beneficial towards directing models where pseudo-absences should be chosen, since 

the selection method may constrain the output (Chefaoui and Lobo 2008). This may become 

more important in the future if absences are more prevalent in the future, if a species cannot 

cope with climate change. 

 

 Given the importance of using sound science to inform decision and policy making, it 

is necessary that we make full use of the global herbaria resource. Now is the perfect time to 

update the protocols for recording environmental data when collecting a sample species, as 

historical records have moved their data to online databases, such as Australia’s Virtual 

Herbarium (AVH), hosted by the Atlas of Living Australia (www.ala.org.au) and Climate 

Watch (www.climatewatch.org.au). During my fieldwork, I recorded estimates of species 

abundance, percentage of mature plants in the population, and population extent. I included 

these factors in some of these data analyses. These methods will reduce model uncertainty. 

Ultimately, achieving this will require the cooperation and collaboration of different scientific 

disciplines in order to maximise resources and optimise efforts for synergistic and meaningful 

outcomes. If we consider SDMs simply as tools that assist in our understanding of the factors 

that limit the species niche, then the focus should be on the acquisition of credible and 

comprehensive biological data and the best way to collect it. 

 

Conclusion 

Distribution models are now common throughout the scientific literature. However, there is 

still a need for further development and improvements. My thesis provides a means to 

experimentally test the assumptions inherent in most SDMs by analysing and determining the 
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environmental and biotic factors that limit the geographic distribution. Furthermore, I have 

shown how environmental topological factors can be added to a bioclimatic model. The 

importance of climate will depend on the geographic scale used by the modeler. While 

bioclimatic models should not be discounted, it is important for the modeler to outline their 

questions and use quality data that provide the most informative predictive summary. For A. 

helianthi, traits associated with the seed and seedling stage are highly variable and potentially 

exhibit a genetically fixed type. Coupled with growth rates varying among local and non-

local soils, populations may struggle to disperse into novel environments. If populations are 

unable to adapt to the changing window of future climates then it could be predicted that 

populations may become locally extinct.  

 

 SDMs are powerful tools that help to fill gaps in the species data through the 

inclusion of assumptions; however, they cannot be the sole focus underpinning decisions for 

conservation and management. Rather, models and their assumptions should be challenged 

with the inclusion of species and environmental data. The main conclusion of these 

arguments is that for all species, developments should be made towards incorporating the 

mechanistic factors which define the niche of a species. When we examine a species ‘niche’, 

we are in fact defining the spatial extent of suitability for reproductive success based on 

ecological concepts and factors associated with individuals and populations. Therefore, it 

makes sense that our predictions are made following the investigation of appropriate 

ecological research so that subsequent modelling techniques have reduced predictive 

uncertainty and are more likely to be validated in the field. 
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Appendix 1 – List of field locations of Actinotus helianthi populations which were sampled. 

Number Popn code Location Latitude Longitude Abundance 

1 AHAR01 Anvil Rock Lookout; Anvil Rock Rd; Blue Mountains NP; from hat hill 
Rd; Blackheath -33.60 150.34 1000 

2 AHBW01 On a granite outcrop in Broadwater State Forest; at the back of 201 
Glenlyon Rd; Stanthorpe -28.63 151.91 1500 

3 AHC01 Pilliga Nature Reserve; 40km N of Coonabarabran on Newell Hwy; on the 
side of the road -30.95 149.42 3000 

4 AHC02 Pilliga Nature Reserve; 37km N of Coonabarabran on Newell Hwy; on the 
southern ridge -30.98 149.42 2000 

5 AHC03 Coonabarabran lawn cemetary; northern side; adjacent to Columbian wall -31.25 149.29 1000 

6 AHC04 Along the Newell Hwy c. 70km N of Coonabarabran; Piliga Nature 
Reserve -30.68 149.55 500 

7 AHG01 On a granite outcrop E of track to Underground Creek; c. 100m from 
intersection with Dr Robert's Waterhole -28.83 151.97 30 

8 AHGR01 Georges River National Park; on south side of Georges River immediately 
adjacent to northbound lanes on ridge -33.98 151.03 160 

9 AHHN01 Myall Lakes NP; along Mungo Track entrance from Mungo Brush Rd; ca. 
300m from golf course -32.66 152.18 1500 

10 AHLP01 2.3km along track to Lockley's Pylon; Blue Mountains NP -33.64 150.37 1000 

11 AHLP02 East side of Lockley's Pylon on the edge of the track at fork to Blue Gum 
Forest; Blue Mountains NP -33.63 150.36 200 

12 AHMD01 Manly Dam; SE side on edge of track at intersection between the circuit 
track and Dam wall track -33.78 151.25 2000 

13 AHMD02 Manly Dam; along bike trail from entrance at Cootamundra Drive -33.77 151.25 3000 

14 AHMD03 Manly Dam; along Alambie Rd; between Alambie Rd and fire trail from 
Martin Luther Ln -33.76 151.25 3000 

15 AHMD04 Manly Dam; ca. 500m along track going N from the western side; 2km 
from Wakehurst Pkwy and Warringah Rd -33.77 151.23 157 

16 AHMW01 Mount White; on eastern side of gravel road to Greenmans Valley Caravan 
Park; off Morgans Rd -33.46 151.17 500 

17 AHPB01 Palm Beach; McKay Reserve on corner of Cynthea Rd and Ebor Rd -33.61 151.33 1000 

18 AHSH01 Sydney Harbour NP; Grotto Point Reserve at the end of Culter Rd; along 
Manly Spit walk towards Manly -33.81 151.26 2000 

19 AHSR01 Along the northern base of Spyglass Rock; Salvator Rosa section of 
Carnarvon National Park -24.82 147.20 463 

20 AHTUN01 On sub-divided land block left of Chapmans Rd; from Lakes Way; 
Tuncurry -32.16 152.49 4000 

21 AHUL01 ca. 5km S of Ulladulla from 80/60km speed sign to Princess Street; on 
embankment on E side of road -35.39 150.45 300 

22 AHW01 Wyrrabalong NP; Pelican Beach Rd; on the right 100m from intersection 
with Central Coast Hwy; Magneta -33.29 151.55 1000 

23 AHW02 Wyrrabalong NP; Central Coast track; ca. 300m from Crackneck Lookout -33.40 151.48 10000 

24 AHWOL01 Wollemi NP; Putty Rd; 200m S of Morilla Rd -33.51 150.82 280 

25 AHWOL02 Wollemi NP; Putty Rd facing NE at High Wollemi 2389/122 entrance; 
73km N of Wilburforce on the left -33.04 150.68 200 

26 AHYEN01 Yengo NP; 80km N of Wilburforce; along Putty Rd; on E side of road on 
ridge -33.12 150.70 3000 

27 AHWAT01 Along the Princes Highway; c. 2km S of Waterfall on E side of road -34.15 150.67 120 

28 AHTUN02 Along Parr Road; adjacent to cemetary and substation; Tuncurry -32.16 152.49 1000 

29 AHBS01 Baradine State Forest -30.91 149.09 100 

30 AHC05 c. 15km N of Coonabarabran on Newell Highway; E side of road; Pilliga 
State Forest -31.07 149.39 3000 



Number Popn code Location Latitude Longitude Abundance 

31 AHRNP01 c. 500m along Bungoona Track from the Park Research Centre; Royal 
National Park -34.06 151.06 50 

32 AHRNP02 Along Sir Bertram Stephens Drive; c. 1km S of Garie Beach Road turnoff; 
along roadside in several patches; Royal National Park -34.17 151.04 50 

33 AHA01 At the end of the road to overflow campsite at Arakoon Gaol; Arakoon -30.88 153.07 500 

34 AHMIN01 Along the headland side of Grevillea Avenue; Minnie Water -29.78 153.30 500 

35 AHMEN01 On E side of road to Mendooran; c. 37km N of Mendooran; Mendooran 
Road -31.53 149.26 5000 

36 AHPAT01 c. 200m S of the turnoff to Pearl Beach; Patonga Drive; Brisbane Waters 
National Park; E side of road -33.54 151.30 500 

37 AHTH01 Ku-Ring-gai Chase National Park; Terrey Hills; c. 200m along fire trail 
entrance on N side of Booralie Road; 200m from Kallaroo Rd travelling W -33.68 151.21 200 

38 AHMD05 Manly Dam; SE side on edge of track immediately adjacent to the N side 
of the dam wall -33.77 151.25 1000 

39 AHC06 c. 2km N of Coonabarabran on Newell Highway; E side of road -31.23 149.32 150 

40 AHMEN02 On W side of road to Mendooran; c. 45km N of Mendooran; Mendooran 
Road -31.51 149.27 136 



 

Appendix 2 – Pearson’s correlations for the climate data. Significant correlations (i.e. ≥ ± 0.85) are in bold.  

 Bio1 Bio5 Bio6 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio16 Bio17 Bio18 elevation 

Bio1               
Bio5 0.4277              
Bio6 0.6385 -0.4033             
Bio8 0.6223 0.8225 -0.0798            
Bio9 0.8247 -0.0707 0.8850 0.0964           

Bio10 0.8284 0.8572 0.1161 0.8663 0.4187          
Bio11 0.8802 -0.0477 0.9206 0.2451 0.9540 0.4673         
Bio12 -0.0315 -0.8613 0.7162 -0.6086 0.4210 -0.5452 0.4206        
Bio13 0.0205 -0.7594 0.6868 -0.5495 0.4291 -0.4597 0.4298 0.9610       
Bio14 -0.1399 -0.7890 0.5860 -0.6170 0.2845 -0.5412 0.2643 0.8290 0.7242      
Bio16 -0.0888 -0.8460 0.6265 -0.6060 0.3435 -0.5775 0.3463 0.9716 0.9677 0.7024     
Bio17 -0.0862 -0.8192 0.6550 -0.6060 0.3539 -0.5321 0.3374 0.9134 0.8171 0.9636 0.8042    
Bio18 -0.2501 -0.8486 0.4584 -0.6608 0.1703 -0.6743 0.1677 0.9074 0.8958 0.6304 0.9669 0.7185   

elevation -0.7785 -0.0532 -0.7775 -0.2896 -0.8089 -0.4823 -0.8526 -0.2955 -0.2833 -0.2766 -0.1762 -0.3070 0.0042 
 

 

 



 

Pearson’s correlations for the climate data for the larger populations only. Significant correlations (i.e. ≥ ± 0.85) are in bold.  

 
Bio1 Bio5 Bio6 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio16 Bio17 Bio18 elevation 

Bio1 
              

Bio5 0.2553 
             

Bio6 0.7206 -0.4764 
            

Bio8 0.4579 0.7285 -0.1194 
           

Bio9 0.8099 -0.2439 0.9161 -0.1257 
          

Bio10 0.7806 0.8014 0.1383 0.7641 0.3380 
         

Bio11 0.9004 -0.1878 0.9467 0.1203 0.9413 0.4321 
        

Bio12 0.1071 -0.8964 0.7587 -0.5677 0.5524 -0.5091 0.5159 
       

Bio13 0.1066 -0.8180 0.7117 -0.5656 0.5281 -0.4699 0.4924 0.9513 
      

Bio14 0.2681 -0.7403 0.8059 -0.4586 0.6615 -0.2963 0.6048 0.9265 0.8408 
     

Bio16 -0.0651 -0.9387 0.6270 -0.6171 0.3896 -0.6475 0.3621 0.9736 0.9532 0.8332 
    

Bio17 0.2195 -0.7736 0.7867 -0.4865 0.6304 -0.3482 0.5690 0.9344 0.8268 0.9768 0.8396 
   

Bio18 -0.3056 -0.9471 0.4075 -0.6717 0.1623 -0.7999 0.1192 0.8853 0.8513 0.7159 0.9580 0.7201 
  

elevation -0.9099 -0.0590 -0.7994 -0.2921 -0.8388 -0.5958 -0.9027 -0.3256 -0.3359 -0.4360 -0.1729 -0.4022 0.0602 
 

 

 



 

 

Pearson’s correlations for the plant trait data. Significant correlations (i.e. ≥ ± 0.85) are in bold. For a description of variables see Chapter 2, Table 1. 

 height umbel stem leaf1 leaf2 leaf3 leaf4 diam condist leaf umbelstem abundance maturity 

height              

umbel 0.3586             

stem 0.2937 0.8649            

leaf1 0.2531 0.0532 0.0281           

leaf2 0.2219 0.0403 0.0231 0.8890          

leaf3 0.2184 0.0252 -0.0056 0.8549 0.8790         

leaf4 0.2199 0.0286 0.0127 0.8373 0.8626 0.8805        

stem 0.3639 0.7411 0.6916 0.0574 0.0608 0.0299 0.0409       

condist 0.0200 0.1312 0.1221 -0.1180 -0.1087 -0.1041 -0.1138 0.1460      

leaf 0.2404 0.0387 0.0152 0.9426 0.9568 0.9527 0.9435 0.0497 -0.1171     

umbelstem 0.1956 0.2271 -0.0498 0.1479 0.1496 0.1518 0.1553 0.1454 0.0366 0.1593    

abundance 0.3087 0.0116 0.0348 0.1497 0.1563 0.1459 0.1543 0.1193 -0.2376 0.1597 -0.0028   

maturity 0.3718 0.0852 0.1109 -0.0224 -0.0428 -0.0335 -0.0499 0.0126 0.1055 -0.0393 0.0000 0.0815  
 

 
 



Appendix 3 – Pearson’s correlations for the MaxEnt models in Chapter 5. Significant correlations (i.e. ≥ ± 0.75) are in bold. 

 Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19 

Bio1                    

Bio2 0.005                   

Bio3 0.639 0.069                  

Bio4 -0.173 0.944 -0.232                 

Bio5 0.486 0.845 0.232 0.768                

Bio6 0.643 -0.750 0.385 -0.819 -0.308               

Bio7 -0.101 0.986 -0.097 0.981 0.806 -0.812              

Bio8 0.821 0.477 0.510 0.337 0.817 0.180 0.390             

Bio9 0.832 -0.060 0.515 -0.180 0.374 0.600 -0.144 0.619            

Bio10 0.846 0.509 0.466 0.377 0.873 0.168 0.431 0.951 0.694           

Bio11 0.891 -0.434 0.614 -0.599 0.044 0.904 -0.536 0.510 0.766 0.516          

Bio12 0.140 -0.869 0.133 -0.889 -0.713 0.722 -0.887 -0.340 0.208 -0.343 0.524         

Bio13 0.141 -0.689 0.141 -0.725 -0.575 0.574 -0.710 -0.254 0.175 -0.258 0.445 0.934        

Bio14 -0.135 -0.741 -0.190 -0.612 -0.637 0.506 -0.706 -0.457 0.024 -0.438 0.186 0.676 0.504       

Bio15 0.216 0.500 0.350 0.319 0.414 -0.285 0.432 0.392 -0.061 0.343 0.001 -0.312 -0.058 -0.750      

Bio16 0.150 -0.762 0.196 -0.822 -0.651 0.633 -0.794 -0.283 0.135 -0.307 0.492 0.943 0.957 0.490 -0.015     

Bio17 -0.069 -0.805 -0.107 -0.711 -0.679 0.587 -0.782 -0.453 0.114 -0.492 0.286 0.790 0.626 0.945 -0.743 0.583    

Bio18 0.095 -0.651 0.217 -0.731 -0.606 0.510 -0.689 -0.249 0.067 -0.318 0.400 0.827 0.872 0.319 0.146 0.919 0.425   

Bio19 0.063 -0.830 0.000 -0.769 -0.650 0.683 -0.824 -0.373 0.258 -0.338 0.418 0.862 0.710 0.891 -0.680 0.672 0.968 0.495  

 



 
Appendix 4 – Pearson’s correlations for the climate variables for Actinotus forsythii in Chapter 6. Significant correlations (i.e. ≥ ± 0.85) are in bold.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19 

Bio1                     

Bio2 0.75                    

Bio3 0.89 0.702                   

Bio4 .354 0.868 .338                  

Bio5 0.922 0.944 0.82 0.674                 

Bio6 0.842 .278 0.729 -.203 0.572                

Bio7 0.64 0.985 0.58 0.929 0.886 .127               

Bio8 0.966 0.89 0.853 0.582 0.988 0.675 0.814              

Bio9 0.859 .321 0.706 -.116 0.605 0.975 .181 0.712             

Bio10 0.978 0.867 0.874 0.54 0.979 0.713 0.782 0.998 0.748            

Bio11 0.979 0.603 0.872 .157 0.826 0.932 0.473 0.893 0.933 0.916           

Bio12 -0.664 -0.942 -0.512 -0.855 -0.888 -.196 -0.963 -0.824 -.240 -0.788 -0.509          

Bio13 -.283 -0.725 -.087 -0.81 -.588 .179 -0.812 -0.488 .139 -.435 -.111 0.89         

Bio14 -0.828 -0.932 -0.665 -0.76 -.957 -.433 -0.913 -0.936 -0.496 -0.914 -0.705 0.952 0.737        

Bio15 0.945 0.905 0.883 0.623 .980 0.633 0.828 0.989 0.676 0.988 0.865 -0.803 -.446 -0.917       

Bio16 -.344 -0.77 -.178 -0.807 -.644 .117 -0.844 -0.542 .101 -0.491 -.179 0.915 0.986 0.76 -0.502      

Bio17 -0.855 -0.93 -0.69 -0.718 -.971 -0.48 -0.903 -0.95 -0.525 -0.93 -0.742 0.951 0.729 0.994 -0.923 0.763     

Bio18 -.384 -0.648 -.145 -0.589 -.603 -.045 -0.704 -0.523 -.029 -0.478 -.264 0.845 0.928 0.71 -.443 0.947 0.737    

Bio19 -0.78 -0.951 -0.624 -0.799 -.947 -.355 -0.945 -0.908 -.404 -0.88 -0.646 0.984 0.804 0.99 -0.886 0.833 0.99 0.78   



 

Pearson’s correlations for the climate variables for Actinotus minor in Chapter 6. Significant correlations (i.e. ≥ ± 0.85) are in bold. 

 Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19 

Bio1                     

Bio2 -.129                    

Bio3 .733 .28                   

Bio4 -.425 .914 -.084                  

Bio5 .707 .595 .716 .328                 

Bio6 .897 -.553 .494 -.765 .329                

Bio7 -.332 .971 .060 .976 .429 -.712               

Bio8 .962 .108 .735 -.174 .860 .760 -.087              

Bio9 .959 -.357 .670 -.636 .500 .963 -.550 .849             

Bio10 .347 .331 .446 .153 .485 .146 .222 .405 .266            

Bio11 .983 -.300 .674 -.582 .569 .960 -.495 .899 .989 .283           

Bio12 .081 -.937 -.187 -.883 -.629 .482 -.929 -.171 .327 -.212 .252          

Bio13 .421 -.862 .041 -.888 -.290 .731 -.915 .206 .602 -.047 .558 .908         

Bio14 -.689 -.583 -.814 -.276 -.942 -.322 -.393 -.806 -.515 -.518 -.563 .582 .295        

Bio15 .935 .065 .819 -.234 .768 .754 -.150 .932 .862 .473 .887 -.030 .324 -.783       

Bio16 .457 -.811 .196 -.897 -.255 .740 -.898 .223 .654 .023 .593 .902 .964 .188 .396      

Bio17 -.609 -.676 -.767 -.386 -.952 -.212 -.505 -.755 -.411 -.481 -.467 .691 .408 .983 -.714 .321     

Bio18 .442 -.672 .293 -.781 -.191 .666 -.779 .225 .622 .123 .556 .822 .878 .079 .460 .964 .218    

Bio19 -.258 -.890 -.545 -.694 -.830 .177 -.787 -.465 -.026 -.416 -.090 .899 .713 .852 -.413 .637 .917 .506   

 

 

 



 

Pearson’s correlations for the climate variables for Actinotus suffocatus in Chapter 6. Significant correlations (i.e. ≥ ± 0.85) are in bold. 

 Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19 

Bio1                     

Bio2 -.853                    

Bio3 .928 -.597                   

Bio4 -.991 .914 -.871                  

Bio5 .976 -.718 .987 -.939                 

Bio6 .998 -.881 .906 -.997 .962                

Bio7 -.951 .973 -.767 .983 -.860 -.967               

Bio8 .999 -.878 .908 -.997 .963 1.000 -.965              

Bio9 .997 -.813 .952 -.979 .989 .992 -.926 .993             

Bio10 .997 -.813 .952 -.979 .989 .992 -.926 .993 1.000            

Bio11 1.000 -.852 .929 -.991 .976 .998 -.950 .999 .998 .998           

Bio12 -.578 .066 -.840 .465 -.742 -.531 .296 -.535 -.634 -.634 -.579          

Bio13 -.033 -.494 -.402 -.099 -.250 .023 -.279 .018 -.104 -.104 -.034 .835         

Bio14 -.559 .043 -.827 .445 -.726 -.512 .274 -.516 -.617 -.617 -.560 1.000 .847        

Bio15 .681 -.198 .905 -.579 .824 .639 -.420 .643 .731 .731 .682 -.991 -.754 -.988       

Bio16 -.444 -.090 -.745 .322 -.628 -.393 .144 -.397 -.506 -.506 -.445 .988 .910 .991 -.958      

Bio17 -.578 .066 -.840 .465 -.742 -.531 .296 -.535 -.634 -.634 -.579 1.000 .835 1.000 -.991 .988     

Bio18 -.578 .066 -.840 .465 -.742 -.531 .296 -.535 -.634 -.634 -.579 1.000 .835 1.000 -.991 .988 0.425    

Bio19 -.182 -.359 -.534 .050 -.391 -.126 -.133 -.131 -.251 -.251 -.182 .908 .989 .917 -.844 .962 .907 .907   
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