Kobe University Repository ：Kernel

タイトル Title	Chromosomal and molecular evolution in Brachyscome （Astereae）
著者 Author（s）	Watanabe，Kuniaki／Denda，Tetsuo／Suzuki，Yohei／ Kosuge，Keiko／Ito，Motomi／Philip S．Short／Yahara， Tahara
掲載誌•巻号・ページ Citation	In D．J．N．Hind and H．Beentje（eds．）Compositae： Systematics，1：705－722
刊行日 Issue date	1996
資源タイプ Resource Type	Journal Article／学術雑誌論文
版区分 Resource Version	publisher
権利 Rights	
DOI	
URL	http：／／www．lib．kobe－u．ac．jp／handle＿kernel／90001483

Create Date：2017－12－20

47. CHROMOSOMAL AND MOLECULAR EVOLUTION IN THE GENUS BRACHYSCOME (ASTEREAE)

Kuniaki Watanabe ${ }^{1}$, Tetsuo Denda ${ }^{1}$, Yoher Suzuki², Keiko Kosuge ${ }^{\text {¹ }}$, Motomi Ito 2, Phillp S. Short ${ }^{3}$ and Tetsukazu Yahara ${ }^{4}$
' Department of Biology, Faculty of Science, Kobe University, Tsurukabuto, 1-2-1, Kobe, 657, JAPAN
${ }^{2}$ Department of Biology, Faculty of Science, Chiba University, Chiba, 260, JAPAN
${ }^{3}$ National Herbarium of Victoria, Birdwood Avenue, South Yarra, Victoria, 3141, AUSTRALIA
${ }^{4}$ Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812, JAPAN

Abstract

Intrageneric circumscription, interspecific relationships and chromosomal and molecular evolution of the Australian Brachyscome were examined using data from restriction site analysis of chloroplast DNA, karyotype analysis and DNA sequence analysis of the alcohol dehydrogenase gene (adh). Molecular data indicate that the genus Brachyscome is divided into four clusters at the base. Two of them are composed of the members of subgenus Brachyscome and the remains the members of subgenus Metabrachyscome. Further, Davis' superspecific groupings are not fully supported. The base chromosome number in Brachyscome is 9 . The haploid chromosome numbers lower than 9 are the products of several independent dysploid reductions from $n=9$, resulting from very unequal reciprocal translocations with loss of centromeric fragments. Decrease in total karyotype length in some Metabrachyscome species with $n=9$ and some Brachyscome species with $n=6$ to n $=2$ correlates with the change of habit from perennial to annual in arid or seasonally dry conditions. In addition to the dysploid reduction in chromosome number, amphidiploidy also plays a considerable role in speciation in this genus. The interspecific relationships based on the amino acid sequences of the adh gene support those based on the karyotypes more than relationships inferred from fruit type and morphology. In contrast to the conservative nature of exon sequences of the adh gene, the intron length shows significant variation among species, due to inserted elements. Drastic genomic re-organization has occurred both at the molecular and chromosomal levels in the advanced species.

Introduction

Brachyscome Cass. is endemic to the Australasian region, and is predominantly Australian. This genus comprises about 80 species and occurs in a diversity of habitats from the high rainfall zones of the coasts and mountains to the arid regions of Central Australia. It has undergone substantial episodes of adaptive radiation and speciation in the widespread semideserts in Australia: Thus the study of this plant group might contribute to an understanding of the origin and evolution of Australian desert flora. This genus was divided into two subgenera by Davis (1948, 1949, 1955, 1959), Brachyscome and Metabrachyscome G.L.Davis, based on the presence or absence, respectively, of terminal appendages on the anthers. In addition, she grouped the species into six superspecies in the subgenus Brachyscome and five superspecies
in the subgenus Metabrachyscome. Davis gave heavy emphasis to fruit characters not only for species discrimination but also for the interpretation of phylogenetic relationships. This genus shows extraordinary chromosomal versatility, involving structural changes and variation in number from $n=15$ to $n=2$ as well as intraspecific polyploidy (Smith-White et al., 1970; Watanabe \& Short, 1992; Watanabe et al., 1996), and thus offers excellent opportunities to examine chromosomal evolution from a phylogenetic perspective. Davis' phylogenetic tree (Davis, 1948, Fig. 123) is not consistent with the data based on the chromosome numbers, habits, reproductive modes and geographical distributions (Smith-White et al., 1970; Watanabe \& Short, 1992; Watanabe et al., 1991, 1996, unpublished). Almost all the known species of subgenus Brachyscome with $n=9$ occupy mesic regions in the south-east temperate zone and have a perennial habit, basal rosette growth form, erect flowering peduncles, selfincompatibility and conspicuous flowers. In contrast, lower chromosome numbers in subgenus Brachyscome are often associated with annual habit and special habitats such as flood plains, arid or seasonally dry areas and mallees subjected to frequent natural burning.
To obtain a more accurate estimate of phylogenetic relationship and the evolutionary trend of several characters, we carried out cytological and molecular research.

Molecular phylogenetic tree based on restriction site mutations in chloroplast DNA

We have analysed the restriction site mutations in chloroplast DNA of 31 taxa, representing two subgenera and nine superspecies in this genus (Suzuki et al., unpublished). The genera Lagenifera Cass. (= Lagenophora) and Solenogyne Cass. have often been united and are putatively related to Brachyscome (Davis, 1950a, b). Hence, the Australian Solenogyne dominii L.G.Adams was included in the present analysis as the outgroup. Thirteen restriction endonucleases were used for digesting and fifteen clones from a lettuce chloroplast DNA clone bank (Jansen \& Palmer, 1987) were used as probes for southern hybridization. Parsimony analyses of the data matrix (Table 1) were performed using branch-and-bound searches of PAUP version 3.1 (Swofford, 1993). As the result, a total of 66 site mutations was identified, 31 of which were phylogenetically informative. We detected only one insertion/deletion, c. 400 bp deletion was present in 12 taxa at the position of lettuce chloroplast DNA probe 1 (Table 1, Character No. 1). Cladistic analyses yielded 220 equally most-parsimonious trees with length 37 steps and consistency index 0.865 . The strict consensus tree (Fig. 1) indicates that the genus Brachyscome is divided into four clusters at the base. Two of them are composed of the members of subgenus Brachyscome and the remains the members of subgenus Metabrachyscome. We cannot detect any synapomorphic mutations in chloroplast DNA to cluster B. dichromosomatica C.R.Carter representing the B. lineariloba complex with other members of the subgenus Brachyscome, although they have a terminal appendage on the anthers. One of the two Metabrachyscome clusters was composed of only the members of the superspecies trachycarpa. Except for this cluster, the superspecific circumscription of Davis is not fully supported. The base chromosome number for the Australian Astereae Cass. is regarded to be 9 based on its commonness (Smith-White et al., 1970; Watanabe et al., 1996). The tree supports a view that the base chromosome number in Brachyscome is also 9, and haploid chromosome numbers lower than 9 are regarded as the products of several independent dysploid reductions in several different lineages.

Mitotic metaphase karyotype of species

Conventional karyotype analyses were made on 54 taxa of Brachyscome and selected representatives of other Australian Astereae. Drawings are based on the mean of ten measurements. The reliability of the comparisons of the chromosome length measured in the respective species was partly confirmed in the hybrid cells of 35 successful interspecific or

Table 1. Matrix of restriction site data used in analysis of Brachyscome.

		Character number
	Taxon	11111111112222222222333
		12345678901234567890123456789012
1	Brachyscome dentata	
2	B. curvicarpa A	11000000000010001000000001000000
3	B. curvicarpa B	11000000001010001000000001000000
4	B. tetrapterocarpa	11000000001010001000000001000000
5	B. microcarpa	11000000001010001000000001000000
6	B. melanocarpa	10000000000010001000000001100000
7	B. multifida	10000000000010001000000001100000
8	B. multifida B	10000000000010001000000001100000
9	B. scapigera	10000000000010001000000001000000
10	B. graminea	10000000000010001000000001000000
11	B. debilis	$1 ? 000000000010001000000001000000$
12	B. muelleri	$1 ? 000000000010001000000001000000$
13	B. radicans	10000000000010000000000001000000
14	B. decipiens	00000001100010000000000001000000
15	B. readeri	00000001100010000000000001000000
16	B. nodosa	00000001100010000000000001010000
17	B. diversifolia	$0000000110001 ? ? ? 000000 ? ? 01000000$
18	B. goniocarpa	00000000000010000000101011001000
19	B. eriogona	00000000000010000000101011001000
20	B. smithwhitei	00000000000010000000000101001001
21	B. cardiocarpa	00000000000010000000000101001001
22	B. dichromosomatica	$0 ? 000000000010000 ? 00000001000000$
23	B. latisquamea	$0000000000000000000000000 ? 000000$
24	B. cheilocarpa	$0 ? 10100000000 ? ? ? 01 ? ? ? 00000010010$
25	B. ciliocarpa	$0 ? 101000000 ? 00110 ? 10000001010010$
26	B. halophila	$0 ? 101000000 ? 00110010000000010010$
27	B. iberidifolia	$0 ? 100000010000110 ? 0000 ? 000010010$
28	B. trachycarpa	$0 ? 1010000100000 ? ? ? 00010000000010$
29	B. ciliaris A	$0 ? 0101100001010001 ? 1010000000100$
30	B. ciliaris B	$0 ? 0101100001010001 ? 1010000000100$
31	B. ciliaris C	$0 ? 0101100001010001 ? 1010000000100$
32	Solenogyne dominii	$0 ? 010000000100000000 ? 10000000000$
	000000000000000000000000000000000	
		1

For each character, $0=$ plesiomorphy (same state as Solenogyne dominii); $1=$ apomorphy; ? $=$ missing data. Character 1 is c. 400 bp deletion.
cytotypic cross combinations (Watanabe et al., 1975, 1976, 1991, unpublished; Watanabe \& Smith-White, 1987). The parental morphology and size of metaphase chromosomes are maintained except that some of the NORs are frequently suppressed in some F_{1}-hybrids (Watanabe et al., 1991). The condensation pattern of the chromosomes from the two parental sources is quite distinct at late mitotic prophase and prometaphase when F_{1}-hybrids involve both the long chromosome species, such as B. eriogona (J.M.Black) G.L.Davis and B. lineariloba (DC.) Druce, and the medium-sized chromosome species (Watanabe et al., 1976;
super chromosome subspecies name clusters species number(a) genus

Fig. 1. Strict consensus tree for the 220 equally most parsimonious trees of Brachyscome. Bold line indicates the cluster of species which have same mutations. Numbers above the branches indicate the bootstrap values in 100 replicates and those below branches are the decay index values. Superspecies name and haploid chromosome numbers are given following each species name, B. multifida $\mathrm{A}=$ var. dilatata, $\mathbf{B}=$ var. multifida .

Figs. 2-17. Mitotic metaphase karyotype idiograms of Brachyscome and allied genera. 2. Olearia pimelioides $(2 n=18)$, 3 . Erodiophyllum elderi $(2 n=16)$, 4. Minuria leptophylla $(2 n=18), 5$. Vittadinia cuneata $(2 n=18)$, 6 . Solenogyne dominii $(2 n=18), 7$. Lagenifera stipitata $(2 n=18), 8$. Calotis cuneifolia $(2 n=16), 9$. Brachyscome decipiens $(2 n=18), 10 . B$. latisqamea $(2 n=18), 11 . B$. aculeata $(2 n=18), 12$. B. lyrifolia $(2 n=18), 13$. B. obovata $(2 n=18), 14$. B. trachycarpa $(2 n=18)$, 15. B. halophila $(2 n=18)$, 16. B. tatei $(2 n=18), 17$. B. iberidifolia $(2 n=18)$. Scale bar $=5 \mu \mathrm{~m}$.

Watanabe \& Smith-White, 1987). Otherwise, the hybrid chromosomes show almost synchronous condensation behaviour similar to that of the corresponding chromosomes in the parental material (Watanabe \& Smith-White, 1987; Watanabe et al., 1991). Among the Australian Astereae examined (Erodiophyllum F.Muell., Olearia Moench., Calotis R.Br., Minuria DC., Vittadinia A.Rich., Solenogyne and Lagenifera), the karyotypes of Lagenifera and Solenogyne closely resemble in chromosome size and morphology those of some taxa of Brachyscome (Figs. 2-17). Based on the karyotype comparison in allied genera and the extensive survey of chromosome number in Australian Astereae (Watanabe et al., 1996), we can safely conclude that the ancestral base number in Brachyscome is 9 .

The Brachyscome species with $n=9$ can be divided into two distinct groups by their chromosome length: medium-sized (Figs. 9-13) or short (Figs., 14-17). The total karyotype length of medium-sized chromosome species is nearly one and one half to twice the length of short chromosome species. Although the short chromosome species are confined to the subgenus Metabrachyscome, some of its other members, such as B. latisquamea F.Muell. (Fig. 10) and B. lyrifolia J.M.Black (Fig. 12), have medium-sized chromosomes. Since perennial or woody taxa of Australian Astereae have medium-sized chromosomes (Figs. 2, 3, 4, 6 and 7), the character state of "medium-sized chromosome" is considered to be plesiomorphic. The shortening of chromosomal and total karyotype lengths in some Metabrachyscome (Figs. 14, 15 and 17) correlates with the change of habit from perennial to annual as shown in Table 2. All species with $n=9$ have rather unimodal and symmetrical karyotypes (Fig. 40). The annuals Vittadinia cuneata DC. (Fig. 5) and Calotis cuneifolia R.Br. (Fig. 8) and the exceptional perennial Brachyscome tatei J.M.Black (Fig. 16) have shorter chromosomal and total karyotype lengths.

Table 2. The relationships between haploid chromosome numbers (n), total karyotype lengths (TKL) and habits in Brachyscome.

Perennials or Shrub	n	TKL $(\mu \mathrm{m})$	Annuals	n	TKL $(\mu \mathrm{m})$
Cluster 1					
B. multifida var. dilatata	9	66.96	B. muelleri	3	64.62
B. multifida var. multifida	7	55.60	B. tetrapterocarpa	4	49.16
B. scapigera	9	54.98	B. curvicarpa	4	47.54
B. melanocarpa	6	54.02	B. dentata	4	36.96
B. microcarpa	6	50.72	B. debilis	3	31.94
B. graminea	9	47.02			
mean	7.7	54.88	mean	3.6	46.04
Cluster 2	9	68.84	B. readeri	5	52.34
B. decipiens			B. nodosa	3	25.02
			mean	4	38.68
Cluster 3			B. halophila	9	40.52
B. latisquamea			mean	9	34.68
				9.86	37.60

Comparisons were made on the species karyotyped within each cluster in Fig. 1. There is a significant TKL difference at 5% between perennials and annuals by Mann-Whitney test.

Figs. 18-28. Mitotic metaphase karyotype idiograms of Brachyscome. 18. B. multifida var. dilatata ($2 n=$ 18), 19. B. multifida var. multifida $(2 n=14)$, 20. B. basaltica var. basaltica $(2 n=16), 21$. B. basaltica var. gracilis $(2 n=12), 22$. B. nova-anglica $\mathrm{A}(2 n=14), 23$. B. nova-anglica $\mathrm{B}(2 n=12), 24 . B$. microcarpa $(2 n=12), 25$. B. nova-anglica $\mathrm{C}(2 n=10), 26$. B. campylocarpa $(2 n=10), 27 . B$. eriogona $(2 n=8), 28$. B. muelleri $(2 n=6)$. Scale bar $=5 \mu \mathrm{~m}$.

In contrast to these unimodal and symmetrical karyotypes of species with $n=9$, the karyotypes in the species having haploid chromosome numbers lower than 9 are characterized as bimodal and asymmetrical (Fig. 40) with several distinctly longer chromosomes in the subgenus Brachyscome (Figs. 19-24). The chromosome numbers $n=8$ to $n=6$ seem best explained by reduction in number from 9 , accomplished by very unequal reciprocal translocations with loss of centromeric fragments. Decrease in chromosome number appears to have proceeded stepwise with one or more species at each step. Because the number of longer translocation chromosomes increases as chromosome number decreases from $n=8$ to $n=6$, this means that the decrease in chromosome number could occur without losing large pieces of chromatin in these processes. Some examples of dysploid reduction in B. multifida DC. $n=9$ (Fig., 18) to $n=7$ (Fig., 19), in B. basaltica F.Muell. $n=8$ (Fig. 20) to $n=6$ (Fig. 21) and in B. nova-anglica G.L.Davis $n=7$ (Fig. 22) to $n=6$ (Fig. 23) and $n=5$ (Fig. 25) are illustrated. These results also confirm that the dysploid reduction was achieved independently more than once and thus the lower chromosome numbers are suggested to have some selective advantage in their habitats. It is notable that the species with low chromosome numbers are largely confined to flood plains, arid or seasonally dry areas and mallees subjected to frequent natural burning. They are considered to be rapid colonizers, largely owing to their genetic conservatism. The natural disturbances such as fire, drought and flooding may temporarily denude a site of its biotic occupants and create ecological vacua serving as refuges for species with lessened chromosome numbers. Under the lessened biotic selective pressures of parasites, predators or competitors in such disturbed areas, these genetic systems that have restricted recombination (Grant, 1981; Levin, 1975; Glesener \& Tilman, 1978) would be favoured and tend to spread rapidly since their well-adapted biotypes would have higher reproductive potential.

As a result of successive chromosomal changes, karyotypes in the species with $n=8$ to $n=$ 3 became more asymmetrical as evolution progressed, shifting from metacentric to subtelocentric (Fig. 40A) and undergoing increasing differentiation in chromosome length between the translocated and nontraslocated chromosomes (Fig. 40B). But, symmetrical karyotypes again evolved in advanced species such as B. nova-anglica C with $n=5$ (Fig. 25)

Table 3. Relation to karyotype asymmetry and variance in chromosome size within genome to chromosome number in Brachyscome.

Taxa with higher chromosome numbers					Taxa with lower chromosome numbers				
	n		A	V		n		A	V
B. multifida var. dilatata	9	II	$\begin{aligned} & 0.178, \\ & 3.72 . \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.44 \end{aligned}$	B. multifida var. multifida	7	II	$\begin{aligned} & 0.220, \\ & 3.97, \end{aligned}$	$\begin{aligned} & 0.033 \\ & 1.84 \end{aligned}$
B. basaltica var. basaltica	8	II	$\begin{aligned} & 0.172, \\ & 2.97, \end{aligned}$	$\begin{aligned} & 0.025 \\ & 1.11 \end{aligned}$	B. basaltica var. gracilis	6	II	$\begin{aligned} & 0.352, \\ & 5.04, \end{aligned}$	$\begin{aligned} & 0.014 \\ & 2.69 \end{aligned}$
B. nova-anglica A	7	II	$\begin{aligned} & 0.221, \\ & 3.74, \end{aligned}$	$\begin{aligned} & 0.025 \\ & 1.80 \end{aligned}$	B. nova-anglica B	6	II	$\begin{aligned} & 0.306, \\ & 5.14, \end{aligned}$	$\begin{aligned} & 0.005 \\ & 1.57 \end{aligned}$
B. nova-anglica B	6	II	$\begin{aligned} & 0.306, \\ & 5.14, \end{aligned}$	$\begin{aligned} & 0.005 \\ & 1.57 \end{aligned}$	B. nova-anglica C	5	II	$\begin{aligned} & 0.162, \\ & 3.99, \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.36 \end{aligned}$

n : haploid chromosome numbers, A: average, V: variance, I : average of arm difference ratio (see Fig. 40A), II: average of chromosome length (see Fig.40B). Comparisons were made within the species complex.
There is no significant difference at 5% between higher and lower chromosome numbers by MannWhitney test.
, Hili:
|itii]
ifiti
32

Figs. 29-39. Mitotic metaphase karyotype idiograms of Brachyscome. 29. B. ptycocarpa $(2 n=12), 30 . B$. whitei $(2 n=10), 31$. B. angustifolia $(2 n=10), 32$. B. tetrapterocarpa $(2 n=8), 33$. B. curvicarpa $(2 n$ $=8)$, 34. B. dentata $(2 n=8)$, 35. B. papillosa $(2 n=8), 36$. B. chrysoglossa $(2 n=8), 37$. B. nivalis $(2 n$ $=22), 38$. B. radicans $(2 n=26), 39$. B. stolonifera $(2 n=30)$. Scale bar $=5 \mu \mathrm{~m}$.

Fig. 40. Karyotype asymmetry and variance in chromosome length within genome in Brachyscome species. A. Vertical axis shows the variance of arm difference ratio. Horizontal axis shows the average of arm difference ratio. B. Vertical axis shows the variance of chromosome length. Horizontal axis shows the average of chromosome length. $L i$: long arm length, Si : short arm length, Ci : chromosome length, n : haploid chromosome number within respective species. Note two extremes of the species with $n=9$ shown black circles and the species with lower chromosome numbers shown black squares have symmetrical karyotypes. The other species shown by triangles have rather asymmetrical karyotypes. Number on the symbol means haploid chromosome number.

Chromosome number ($2 n$)

Fig. 41. The relationships of total karyotype length $(\mu \mathrm{m})$, chromosome numbers ($2 n$) and habits. White large circles are other Australian Astereae excluding Brachyscome. The annuals Calotis cuneifolia ($2 n$ $=16)$ and Vittadinia cuneata $(2 n=18)$ shown black large circles have shorter total karyotype length. Black large boxes are the annuals Brachyscome lineariloba complex. Black large triangles are the annuals B. muelleri $(2 n=6)$ and B. eriogona ($2 n=8$). Large clear boxes are the perennial Brachyscome species with $2 n=22$ to $2 n=30$. Small boxes are Brachyscome species with $2 n=6$ to $2 n=18$. Black boxes mean they are annuals. Note that annuals, except the B. lineariloba complex, B. muelleri and B. eriogona, have shorter total karyotype length.
and B. ptychocarpa F.Muell. with $n=6$ (Fig. 29). There can be no doubt that Brachyscome chromosomes have often undergone successive changes of this kind moving at one time towards asymmetry and at another towards symmetry (Table 3).
The substantial reduction in total karyotype length in the Brachyscome species with $n=$ 6 to $n=2$, in addition to some Metabrachyscome species with $n=9$, also correlates with the change of habit from perennial to annual (Table 2). There appears to be an evolutionary trend towards decrease in the total karyotype length that is correlated with the trend from perennial to annual. Total karyotype length provides a good estimate of DNA content and genome size (Levin \& Funderberg, 1979), and annuals tend to have smaller genomes than perennials in general (Bennett, 1972). As exceptions, the annuals B. muelleri Sond. ($2 n=$ $6)$, B. eriogona $(2 n=8)$ and the B. lineariloba complex $B(2 n=12), C(2 n=16), D(=B$. breviscapis C.R.Carter, $2 n=8)$ and $\mathrm{E}(2 n=10)$ have extraordinarily longer chromosome and karyotype length (Fig. 41). Although the reasons why annuals such as B. muelleri and B. eriogona have such longer chromosome and karyotype length have not been explained at present, the increase in total karyotype length in the B. lineariloba complex is due to successive amphidiploidy. The apparent increase in drought resistance or water stress tolerance and of vigour and fecundity is certainly associated with an increase in chromosome number in the B. lineariloba complex (Watanabe \& Smith-White, 1987). These longer chromosomes show the distinct differential condensation pattern compared to the shorter chromosomes of other species with low chromosome number at prometaphase in the hybrid cells (Watanabe et al., 1976).
The B. lineariloba complex includes B. dichromosomatica $(2 n=4)$, . breviscapis $(2 \mathrm{n}=8)$ and B. lineariloba $\mathrm{E}(2 n=10), \mathrm{B}(2 n=12)$ and $\mathrm{C}(2 n=16)$. Brachyscome breviscapis $(2 n=$ 8) may be of amphidiploid origin between a species with two long early condensing chromosome pairs and another unknown B. dichromosomatica-like species with two mediumsized late condensing pairs. The additional medium-sized and late condensing chromosomes in B. lineariloba $\mathrm{E}(2 n=10), \mathrm{B}(2 n=12)$ and $\mathrm{C}(2 n=16)$ are also considered to be derived from the B. dichromosomatica-like parent (Watanabe \& Smith-White, 1987). The evidence that these chromosomal races and species have a recent amphidiploid origin involving B. dichromosomatica as a mother is supported by the possession of exactly the same restriction fragment patterns of chloroplast DNA in preliminary analysis. Brachyscome dichromosomatica can easily cross with other members of the subgenus Brachyscome and produce viable F_{1}-hybrids (Watanabe et al., 1976, 1991).
The chromosome condensation behaviour of B. dichromosomatica is similar to those of shorter chromosomes in the B. lineariloba complex (Watanabe \& Smith-White, 1987). The candidate of father species with longer chromosomes in the B. lineariloba complex may be the B. eriogona- or B. muelleri-like species. The view that these chromosomal races of the B. lineariloba complex have a recent amphiploid origin (Watanabe \& Smith-White, 1987) is also supported by the drastic increases of the total karyotype length, in contrast to the small difference between $n=4$ and $n=8$ in other species (Fig. 41).
There are other examples of amphidiploidy as a speciation process in this genus. Among the taxa having haploid chromosome numbers more than 10, B. diversifolia Fisch. \& Meyer ($2 n=24$), B. tenuiscapa Hook.f. var. tenuiscapa $(2 n=28)$ and B. cardiocarpa $(2 n=36)$ are clearly polyploid derivatives because other, lower, chromosome numbers were found in these taxa. However, the chromosome number $n=11$ for B. nivalis (Fig. 37), $n=13$ for B. radicans (Fig. 38) and $n=15$ for B. stolonifera (Fig. 39), are the only known chromosome numbers for their respective species. The species with $n=9$ have unimodal and symmetrical karyotypes as shown in Figs. 9-17 and the species with haploid chromosome numbers lower than 9 have bimodal and asymmetrical karyotypes as shown in Figs. 19-24 and 30. Thus the high chromosome numbers and bimodal and asymmetrical karyotypes in the species with n

Fig. 42. The fruit morphology of the Brachyscome dentata complex. A: B. tetrapterocarpa, B: B. curvicarpa, C: B. chrysoglossa, D: B. papillosa, E: B. dentata. Scale bar $=500 \mu \mathrm{~m}$.
$=11$ to $n=15$ support the view that they are of amphidiploid origin from the species having haploid chromosome numbers lower than 9. They are perennial, highly restricted in distribution and occur in specialized habitats.

The interspecific relationships of the B. dentata complex based on the $a d h$ gene sequences

Since the work by Davis (1948, 1949, 1955), a number of species complexes have been recognized within her superspecies (Smith-White et al., 1970; Stace, 1981; Watanabe \& Short, 1992). These include the B. dentata complex, which comprises the five species B. tetrapterocarpa G.L.Davis, B. curvicarpa G.L.Davis, B. chrysoglossa F.Muell., B. papillosa G.L.Davis and B. dentata Gaud. They have the same chromosome number, $n=4$, and similar winged fruits (Fig. 42). Brachyscome chrysoglossa has fruits and vegetative morphology resembling that of B. curvicarpa, except that the fruits are light brown and the ray florets are yellow in contrast to the dark brown or almost black fruits and white rays of the latter species.

 $-A T A T$
$--A T A T$ ATAG---CCAACAA 125 bp

Fig. 44. Strict consensus tree for 17 equally most parsimonious trees for the B. dentata complex based on the 77 amino acid sequences deduced from the 233 nucleotide sequences of $a d h$ exon 4 . Numbers above the branches indicate the bootstrap values in 100 replicates and those below branches are the decay index values.

Brachyscome tetrapterocarpa is indistinguishable from B. curvicarpa, except for the four distinct wings on the fruit. The fruit wing of B. dentata is irregularly dissected. Brachyscome papillosa has entire winged fruit but is similar vegetatively to B. dentata. The karyotype of B. tetrapterocarpa is similar to that of B. curvicarpa and the total karyotype lengths of both B. tetrapterocarpa and B. curvicarpa are distinctly longer than those of B. dentata, B. papillosa and B. chrysoglossa (Figs. 32-36). The karyotype of B. dentata is also similar to that of B. papillosa except that the long arm of Chromosome 2 is distinctly longer than that of Chromosome 1 in B. dentata, but these two long arms are almost the same length in B. papillosa. The karyotype of B. chrysoglossa is more similar to those of B. papillosa and B. dentata. All three species have the similar longest metacentric chromosome. In short, B. chrysoglossa is more similar to B. papillosa and B. dentata in karyotype but to B. curvicarpa and B. tetrapterocarpa in fruit and gross morphology. To clarify these interspecific relationships and differentiation at the molecular level, we have preliminarily compared the nucleotide sequences of a nuclear gene expected to show greater divergence than the chloroplast gene.

Primers for the $a d h$ gene were designed and PCR was performed. One to three PCR products per species were obtained from each of eleven species.

We determined sequences for three fourths of the 5 ' end of exon 4 and all of intron 3. The amplified segments of exon 4 are of uniform size with 233 bp; differences in fragment length are due to the differences in the length of intron 3 . The sequences of intron 3 are aligned to reduce the number of insertions and deletion but increasing the similarity (Fig. 43). They had adequate homology to achieve alignment, except for the presence or absence of long insertions (from 77 bp to 282 bp). These insertions were flanked by direct repeats of 5 to 12 bp , suggesting that these are inserted elements (Denda et al., 1995). Both B. chrysoglossa 2, 3, B. papillosa 2 and B. tetrapterocarpa 1 , and B. dentata 1 and B. papillosa 1 have similar insertions at exactly the same sites.

Among the 11 species sequenced for intron 3 , the inserted elements have been found only in those species with the advanced chromosome numbers such as $n=4$ and 3 in spite of the fact that the species with $n=9$ also have the same target sequences. It is interesting that the species with $n=9$ are conservative both at the chromosomal and molecular levels in comparison with those of species with the advanced chromosome number. Some chromosomal rearrangements may be caused by the activation of inserted elements at the molecular level as suggested by McClintock (1984).

We preferred the generation of a more refined phylogenetic tree based on amino acid sequences deduced from the nucleotide sequences because most of the site mutations in exon 4 were synonymous. Figure 44 is the strict consensus tree for 17 equally most parsimonious trees for the B. dentata complex resulting from a branch-and-bound search in PAUP version 3.1. Australian Solenogyne dominii was included in this analysis as the outgroup. Except for B. chrysoglossa 1, segments of different taxa form four clusters: B. tetrapterocarpa 1 and B. curvicarpa; B. dentata 1 and B. papillosa $1 ; B$. dentata 2 and B. papillosa $2 ; B$. chrysoglossa 2,3 and B. papillosa 3 . Thus B. chrysoglossa is more closely related with B. papillosa-dentata group than B. curvicarpa-tetrapterocarpa group. The former three species with the duplicated $a d h$ genes seem to have been derived recently from a common ancestor. This interspecific relationship based on the amino acid sequences of the $a d h$ gene supports those based on the karyotypes more than relationships inferred from fruit type and morphology. Thus, some fruit and morphological characters seem to have evolved in parallel.

Conclusions

The data presented here suggest the following conclusions:

1. The genus Brachyscome is divided into four clusters. Two of them are composed of the members of subgenus Brachyscome and the remains the members of subgenus Metabrachyscome.
2. Davis' superspecific groupings are not fully supported.
3. The base chromosome number in Brachyscome is 9 .
4. The chromosome numbers $n=8$ to $n=2$ are the products of several independent dysploid reductions from 9 , accomplished by translocation with loss of centromeric fragments.
5. Decrease in total karyotype length correlates with the change of habit from perennial to annual in arid or seasonally dry conditions.
6. Karyotype symmetry is highest in mesic, perennial species with $n=9$. The degree of karyotype asymmetry increases as the chromosome number decreases. The karyotype symmetry increases again in some of advanced species.
7. The taxa having $n=11$ to $n=15$ are of amphidiploid origin. They are highly restricted in distribution and occur in specialized habitats.
8. Interspecific relationships within the B. dentata complex based on the amino acid sequences of the adh gene support those based on karyotypes more than relationships inferred from fruit type and morphology. Some fruit and morphological characters have evolved in parallel in this species complex.
9. Genomic reorganization has occurred both at the molecular and chromosomal levels in the advanced species.

Acknowledgements

We are indebted to Prof. R.K. Jansen for providing lettuce cpDNA probes and Prof. D. J. Crawford for critically reading the manuscript.
This study is partly supported by a Grant-in-Aid for Field Research No. 04041071 and No. 02640540 from the Ministry of Education, Science and Culture, Japan.

References

Bennett, M.D. (1972). Nuclear DNA and minimum generation time in herbaceous plants. Proc. Roy. Soc. Lond., B. Biol. Sci. 181: 109-135.
Davis, G.L. (1948). Revision of the genus Brachycome Cass. Part. I. Australian species. Proc. Linn. Soc. New South Wales 73: 142-241.
Davis, G.L. (1949). Revision of the genus Brachycome Cass. III. Description of three new Australian species, and some new locality records. Proc. Linn. Soc. New South Wales 74: 145-152.
Davis, G.L. (1950a). A revision of the Australian species of the genus Lagenophora Cass. Proc. Linn. Soc. New South Wales 75: 122-132.
Davis, G.L. (1950b). Revision of the genus Solenogyne Cass. Proc. Linn. Soc. New South Wales 75: 188-194.
Davis, G.L. (1955). Supplementary notes on the genus Brachycome Cass. Proc. Linn. Soc. New South Wales 79: 203-210.
Davis, G.L. (1959). Two new Australian species of Brachycome Cass. (Compositae). Muelleria 1: 111-113.
Denda, T., Kosuge, K., Watanabe, K., Ito, M., Suzuki, Y., Short, P.S. \& Yahara, T. (1995). Intron length variation of the adh gene in Brachyscome (Asteraceae). Pl. Mol. Biol. 28: 1067-1073.
Glesener, R.R. \& Tilman, D. (1978). Sexuality and the components of environmental uncertainty: Clues from geographic parthenogenesis in terrestrial animals. Amer. Naturalist 112: 659-673.
Grant, V. (1981). Plant speciation. Ed. 2. Columbia University Press, New York.
Jansen, R.K. \& Palmer, J.D. (1987). Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. Curr. Genet. 11: 553-564.
Levin, D.A. (1975). Pest pressure and recombination system in plants. Amer. Naturalist 109: 437-451.
Levin, D.A. \& Funderberg, S.W. (1979). Genome size in angiosperms. Temperate versus tropical species. Amer. Naturalist 114: 784-795.
McClintock, B. (1984). The significance of responses of the genome to challenge. Science 226: 792-801.
Smith-White, S., Carter, C.R. \& Stace, H.M. (1970). The cytology of Brachycome. I. The subgenus Eubrachycome: a general survey. Austral. J. Bot. 18: 99-125.

Stace, H.M. (1981). Biosystematics of the Brachyscome aculeata (Labill.) Less. sensu G. L. Davis species complex (Compositae: Astereae). Austral. J. Bot. 26: 287-307.
Swofford, D.L. (1993). PAUP, phylogenetic analysis using parsimony, version 3.1. Illinois Natural History Survey, Champaign, Illinois.
Watanabe, K. \& Short, P.S. (1992). Chromosome number determinations in Brachyscome Cass. (Asteraceae: Astereae) with comments on species delimitation, relationships and cytogeography. Muelleria 7: 457-471.
Watanabe, K. \& Smith-White, S. (1987). Phyletic and evolutionary relationships of Brachyscome lineariloba (Compositae). Pl. Syst. Evol. 157: 121-141.
Watanabe, K., Carter, C.R. \& Smith-White, S. (1975). The cytology of Brachycome lineariloba. 5. Chromosome relationships and phylogeny of the race A cytodemes ($n=2$). Chromosoma 52: 383-397.
Watanabe, K., Carter, C.R. \& Smith-White, S. (1976). The cytology of Brachycome lineariloba. 6. Asynchronous chromosome condensation and meiotic behaviour in B. lineariloba $\mathrm{A}(n=2) \times$ B. compylocarpa $\mathrm{A}(n=4)$. Chromosoma 57: 319-331.
Watanabe, K., Short, P.S., Kosuge, K. \& Smith-White, S. (1991). The cytology of Brachyscome Cass. (Asteraceae: Astereae)., 11. Hybridisation between B. goniocarpa ($n=$ 4) and B. dichromosomatica ($n=2$). Austral. J. Bot. 39: 475-485.

Watanabe, K., Short, P.S., Denda, T., Suzuki, Y., Ito, M., Yahara, T. \& Kosuge, K. (in press). Chromosome number determinations in the Australian Astereae (Asteraceae). Muelleria.

