A taxonomic revision of the southern African endemic genus *Gazania* (Asteraceae) based on morphometric, genetic and phylogeographic data.

By Seranne Howis

Submitted in Fulfilment for the Degree of Doctor of Philosophy

Rhodes University Botany Department March 2007

Abstract

Gazania is a small genus of the subtribe Gorteriinae, tribe Arctoteae, that is endemic to southern Africa. The genus was last revised in 1959 by Roessler, who noted that delimitation of the species of *Gazania* can be "extraordinarily difficult".

Morphometric data was collected to test the reality of the 16 species as delimited by Roessler, who based species boundaries on morphological characters. Only six taxa were found to be morphologically distinct, while the remaining samples showed no species cohesion.

DNA sequence data from two nuclear spacer regions (ITS and ETS) and four chloroplast noncoding regions (the *trnL* and *rpS16* introns, and the *psbA-trnH* and *trnL-F* spacers) of 43 samples were utilised to create a species level phylogeny and to investigate correlations between genetically delimited units and morphologically defined taxa. DNA sequence data reveal that seven species (as delimited by Roessler) are morphologically and genetically distinct. The remaining nine of Roessler's species fall into a morphologically and genetically overlapping continuum that forms an ochlospecies.

Phylogeographic methods (based on an expanded ITS and ETS DNA sequence data set from 169 samples) were employed to further resolve the limits of species, with special focus on the clades within the ochlospecies. These genetically defined clades were correlated with their geographical distributions, and in combination with molecular dating techniques, used to elucidate the recent climatic or environmental factors that may have shaped the phylogeographic structure of the genus.

Phylogeographic patterns and molecular dating reveals that the genus *Gazania* is an example of a South African endemic clade that has undergone episodic cladogenesis in response to fluctuating climatic conditions over the last seven million years. The ochlospecies within *Gazania* is a result of repeated cycles of climate driven isolation in refugia and subsequent expansion and hybridization events during the Pliocene and Pleistocene. Comparisons with phylogeographic studies on other organisms reveal a common pattern indicative of the presence and evolutionary importance of an ancestral refugium in the arid Richtersveld / Namib region of southern Africa.

Acknowledgements

Thank you:

To my supervisor, Nigel Barker, without whom this would not have been possible.

To Robert McKenzie, Laco Mucina and Colleen Mannheimer, for collections of many distant samples.

To Syd Ramdhani and Ralph Clark, for finding the unfindable.

To Taryn Skikne and Leigh-Ann De Wet for moral support, bad movies and great food.

Contents

Abstract Acknowledgements

Chapt	er 1: General introduction		1
Aims		,	7

Chapter 2: Morphometric species delimitations

Introduction	8
Morphometrics	9
Sources and types of character data	10
Character selection	13
Analyses methods	13
Cluster Analysis	14
Principle Component Analysis	14
Methods	15
Morphological character selection and data collection	15
Discarded characters	24
Analysis of herbarium versus live specimens	25
Data sets	26
Data analysis	26
Normalization of data	26
Cluster Analysis	27
Principle Component Analysis	27
Results	
Test of normality	
Cluster Analysis	
Principle Component Analysis	41
Eigen values	49
Uninformative characters	49
Discussion	57
Non-distinct taxa	58
Comparative data signal between ratios and size data	59
Comparative analysis methods for morphometric analysis	59
Conclusion	59
Chapter 3: Molecular systematics of <i>Gazania</i> at the species level	
Introduction	61
DNA sequence data as a tool for reviewing existing taxonomy	62
The nuclear genome: Multicopy nuclear markers (ITS and ETS)	63
The chloroplast genome	65
Methods	68
Study samples	68
PCR amplification and sequencing	68
Primer development for ITS and ETS amplification and sequencing	69

Testing for incongruence74

Treatment of gaps

Phylogenetic analyses	76
Parsimony analysis	76
Bayesian analysis	77
Results and Discussion	78
Choice of data sets	78
Combining data sets	78
Testing for incongruence	79
Final data set composition, variability and informativeness	80
Analyses results: nrDNA data set	80
Parsimony analysis	80
Bayesian analysis	83
Correspondence between molecular phylogeny and taxonomy	83
Analyses results: cpDNA data set	85
Parsimony analysis	85
Bayesian analysis	85
Correspondence between molecular phylogeny and taxonomy	85
Composite total evidence phylogeny	88
Gaps in relation to species phylogeny	88
Polytomies	89
Gene trees vs species trees	93
Polyploidy	94
Caveats	94
Conclusion	95

Chapter 4: Phylogeography of Gazania

Introduction	96
Sources of genetic data	97
Application of phylogeographic methods to <i>Gazania</i>	
Methods	
Sampling	
Neighbor-Joining	
Neighbor-Net analysis	
Distribution maps	100
Morphometric comparison	100
Results and Discussion	107
Genetically discrete species	107
Neighbor-Joining analysis	107
Bayesian analysis	107
K-R clade	
Neighbor Joining analysis	112
Bayesian analysis	127
Neighbor-Net analysis	
Morphometric comparison	137
Caveats	144
Conclusions	144

Chapter 5: Recent evolutionary history of Gazania

Introduction	•••••••		
Geogr	raphy and climate as dr	iving factors in speciation	146
Popul	ation growth history		

Methods	.148
Geographical mapping	.148
Divergence time estimation	.148
Pairwise sequence divergences	.149
Results and Discussion	.150
Maps of genetically cohesive species	.150
K-R clade	.155
Divergence date estimates	.158
The effects of Pleistocene climate change	.163
Population history	.165
Congruent patterns in SA fauna/flora	.167
East-West split	.167
North-South split	.170
Caveats	.172
Conclusions	.173
Chapter 6: General conclusions	

Recent evolutionary history	178
Caveats	179
Morphological characters and species phylogeny	179
Valid taxonomic entities with genetic and morphological distinction	181
Problematic "species" lacking genetic and morphological distinction .	181
Morphological key to taxonomic entities within Gazania	184
Appendix 1: Morphological characters for each of Roessler's species	186 200
Appendix 2: Morphometric data set for Chapter 2	209
Appendix 3: Details of cpDNA primer screening for Chapter 3.	203
Appendix 4: nrDNA sequence data for Chapter 3.	225
Appendix 5: cpDNA sequence data for Chapter 3.	239
Appendix 6: Additional nrDNA sequence data for Chapter 4.	261

Chapter 1.

General introduction

"The existing treatment for *Gazania* can only be a preliminary revision, and can make no claims to finality." (Roessler, 1959, pp 100, translated from the original German).

Gazania Gaert. is a small genus of 16 species endemic to Southern Africa. The genus was named in honour of Theodorus Gaza, a 15th-century Italian scholar and translator of the works of Theophrastus, a man often called the "father of taxonomy" due to his works "On the History of Plants" and "On the Causes of Plants" which are considered by some to constitute the most important contributions to botanical science during antiquity and the middle ages.

The genus was last revised in 1959 by Helmut Roessler, although not with any overwhelming certainty, as the opening quote illustrates. The most commonly listed number of species for *Gazania* is 17, but Roessler indicated that the 17th species (*G. thermalis*) is *nomen subnudum*, and disregarded it as a valid species. No subsequent authors have lobbied for a revalidation of this species or offered a species description or type specimen. Roessler based his taxonomy on morphological characters from herbarium specimens, in conjunction with geographical distribution of these samples, and from this he outlined 16 species and ten subspecies.

The delimitation of both the genus *Gazania* itself and the species within it have long been and continue to be problematic. Many of the species in *Gazania*, and in the associated genera of the Gorteriinae (see below for details), have been moved from genus to genus, and many of them have multiple instances of synonymy. The species as accepted by Roessler are laid out in Table 1.1.

Gazania is a member of the tribe Arctoteae, subtribe Gorteriinae. The Gorteriinae also includes seven other genera: *Berkheya*, *Gorteria*, *Cuspida*, *Didelta*, *Heterorachis*, *Cullumia* and *Hirpicium*. Whilst Roessler noted that it is difficult to differentiate between "primitive" and "advanced" characters within a highly advanced family like the Asteraceae, he still used certain morphological features to rank the eight genera of the Gorteriinae from primitive to advanced. A graphical representation of the genera within the Gorteriinae based on Roessler's description of their relationships, ranked according to their morphological criteria, is presented in Figure 1.1.

Species	Subspecies
G. maritima Levyn	
G. rigens L.	uniflora (L.f) Roessler
	rigens
	leucolaena (DC.) Roessler
G. pectinata (Thunb.) Spreng	
G. linearis (Thunb.) Druce	linearis
	ovalis (Harv.) Roessler
G. ciliaris DC.	
G. caespitosa Bolus	
G. heterochaeta DC.	
G. schenckii O.Hoffm.	
G. leiopoda (DC.) Roessler	
G. othonnites (Thunb.) Less.	
G. jurineifolia DC.	jurineifolia
	scabra (DC.) Roessler
G. lichtensteinii Less.	
G. tenuifolia Less.	
<i>G. rigida</i> (Burm.f.) Roessler	
G. serrata DC.	
G. krebsiana Less.	krebsiana
	arctotoides (Less.) Roessler
	serrulata (DC.) Roessler

Table 1.1: Gazania species and subspecies as accepted by Roessler

Figure 1.1: Graphical representation of the genera within the Gorteriinae based on Roessler's description of their relationships, ranked according to their morphological criteria.

He considered *Berkheya* as the most primitive genus, with *Cullumia* was ranked as the next most primitive. *Didelta, Cuspida* and *Heterorhachis* were grouped together due to the uniformity of their achenes. He likewise groups *Gorteria, Hirpicium* and *Gazania* together. He considered *Gazania* as representing the endpoint of development, as the involucre shows the highest degree of fusion, in combination with the presence of "a remarkable capitulum with multicoloured petals, with basal eyespots at the base of the ray florets" (Roessler, 1959: p. 101).

While morphological data suggest that *Gazania* and *Hirpicium* are closely related genera (Roessler, 1959), genetic data suggests that *Gazania* is nested within *Hirpicium* (see Figure 1.2, Funk *et al.*, 2004). More recent molecular work by McKenzie on the placement of Gazania within the Gorteriinae shows the same result (Figure 1.3, McKenzie, unpublished data). The review by Karis (2006) of the genera of Gorteriinae, based on morphological characters, placed *Gazania* as sister to *Gorteria* and *Hirpicium*, rather than nestled within the latter genus (Figure 1.4).

Figure 1.2: Relationships of the genera of the Gorteriinae (from Funk et al., 2004.)

Roessler (1959) described *Gazania* as having two main habits. The presence of a shortened stem, with the leaves crowded into dense rosettes at the base, out of which a leafless unbranched stem arises to bear solitary inflorescences is found in 11 species (see Appendix 1); the other habit (shown by five species, see Appendix 1) is a developed stem, with leaves present more or less evenly along the stem. Roessler commented that the rosette habit was a characteristic of *Gazania* (but also observed in a few *Hirpicium* species) and the developed stem habit was a characteristic of *Hirpicium* (but also observed in a few *Gazania* species).

Figure 1.3: Relationships of the genera of the Gorteriinae, based on ITS data from McKenzie, unpublished.

Figure 1.4: Relationships of the genera of the Gorteriinae, based on morphological data (from Karis, 2006, Figure 4).

He separated *Hirpicium* and *Gazania* on the basis of two characters: pappus scales and involucral fusion. The number of rows of pappus scales differentiates the two genera, as *Gazania* has two rows of fully developed pappus scales, while *Hirpicium* has either one row, or one row of full developed scales with a second inner row of smaller scales. He noted that within the genus *Hirpicium* it could be assumed that the species without internal rows of pappus scales are derived in relation to the species with two rows, which is suggested by the occurrence of transition rows that should "certainly be considered as degenerated rows" (Roessler, 1959: p. 101).

Gazania has generalist pollinators (pers. obsv.) and wind dispersed seeds (pers. obsv.). It frequently colonizes disturbed areas, and grows well in poor soils. It has a short period between germination and seedset (under a year).

Aims of this research

All studies to date, be they molecular or morphological, have indicated that *Gazania* is monophyletic. However, within *Gazania*, species delimitations and relationships are not at all clear. Roessler recognised and delimited 16 species in *Gazania*, based on morphology. Some of these species are clearly morphologically and geographically distinct, but some species show overlaps in both morphology and geography. The overall aim of this research is to investigate Roessler's "preliminary revision" (Roessler, 1959) by means of three different approaches to the problem.

1) To use a morphometric data set of *Gazania* samples to test the validity of Roessler's species delimitations.

2) To use DNA sequence data to determine the status and relationships of the taxonomic entities ("species") as delimited by Roessler and the morphometric analysis conducted in Chapter 2.

3) To undertake a phylogeographic study of the genetic entities within Gazania.

Chapter 2.

Morphometric species delimitations

"The abundance of forms regarding systematically rather unimportant (but obvious) characters ... with simultaneous uniformity of the habit and the poverty of useful characteristics for type distinction make the development and delimitation of the types extraordinarily difficult." (Roessler, 1959, pp 100, translated from the original German).

<u>Aim</u>: To use a morphometric data set of *Gazania* samples to test the validity of Roessler's species delimitations.

Introduction

Morphological data is the major basis of most systematic descriptions and delimitations, and morphological variation in size and shape has physiological, ecological and taxonomic significance (Somers, 1989). Jensen (2003) observes that the majority of systematic studies begin by grouping organisms on the basis of morphological similarity and, once they are so grouped, then the study of relationships among the groups can begin, often by careful examination of variation in morphological features, but increasingly more often by using these morphologically defined groups as the basis for conducting studies of molecular variation.

The advent of modern computing (and the associated increase in the volume of data that can be analyzed) has afforded systematists the chance to statistically test the observed trends in plant morphological variability. Additionally, the availability of high speed electronic computers permits calculations (and statistical methodologies) that previously would have been far too time-consuming to be practical (Mayr, 1965).

Gazania has a two-fold problem, in that the genus possesses a low number of taxonomically informative characters (Roessler, 1959), and that those characters that are potentially useful display a high level of variability within, but not necessarily between, taxonomic entities. A further complication is the observed presence of some phenotypic plasticity in certain characteristics in response to changes in environmental conditions (discussed individually in more detail in the justification for choice of characters in the Methods section). Abdel Khalik *et al.* (2002) note that problems in classification can arise when taxa display a large amount of variability, due to

phenotypic plasticity, or when they demonstrate very little variability at all. Further problems occur if the variability that is present lacks any correlation with taxonomic designation.

Morphometrics

There are alternative approaches to the morphometric (phenetic) approach employed here. One such alternative is cladistics, which relies on synapomorphies to define clades. Morphometric data that is continuous in nature creates difficulties in defining binary "present/absent" data necessary to define synapomorphies. There are very few binary characters that could be used to investigate *Gazania*, as most defining characteristics for taxa rely on quantitative measurements of size, rather than presence/absence data. While some may also argue that morphometrics does not allow for the translation of results into meaningful phylogenetic hypotheses (Crowe, 1994), that is not required for this particular investigation. This morphometric study is aimed only at searching for morphological clusters that may or may not correlate with recognized species delimitations.

Even a brief survey of the morphometric literature reveals a large amount of, often heated, debate (see Atchley & Anderson, 1978, for a particularly strident rebuttal to criticism). The debate in the literature covers subjects ranging from the very initial stages of character selection and the measurement of those characters, to the final stages of data analysis (the discussions of the finer details of the methods of morphometric analysis could be most charitably described as contentious).

Morphometrics is defined by Rohlf (1990) as the quantitative description, analyses, and interpretation of shape and shape variation in biology. Bookstein (1982) provides a narrower definition of morphometrics as the assignment of quantities to biological shapes.

The approach now referred to as traditional morphometrics (or multivariate morphometrics) is characterized by the application of multivariate statistical methods to sets of variables (Rohlf & Marcus, 1993). The selected variables usually correspond to various measured distances on an organism; commonly lengths and widths of structures and distances between certain landmarks, as well as angles and ratios (Rohlf & Marcus, 1993). One can then apply cluster-finding procedures to the statistics resulting from the multivariate statistical analysis of data (Oxnard, 1978).

The combined application of various multivariate statistical and clustering methods to morphometric data has been used extensively to tackle both new and old biological problems (Oxnard, 1978). The use of multivariate statistical methods stem from the fact that two (or more) variables taken singly

may not separate two groups, but when taken together they may indeed separate the groups (Oxnard, 1978). Multivariate techniques summarize these patterns of morphometric covariation (Somers, 1986) and this provides statistical methods for study of the joint relationships of variables in data that contain intercorrelations (James & McCulloch, 1990). Because several variables can be considered simultaneously, interpretations can be made that are not possible with univariate statistics (James & McCulloch, 1990).

Sources and types of character data

Various measurements can be taken in the pursuit of morphometric data sets. There are two main types of data: quantitative and qualitative. A qualitative character consists of either binary presence or absence of a particular morphological structure/trait (e.g. leaf setae: present or absent), or discrete forms of a character (e.g. leaf shape could be whole, pinnate or lobed). There are two types of quantitative characters: continuous (e.g. leaf length; in which individual measurements are not necessarily integers and potentially form a continuum) or discrete (e.g. ray number, in which any individual measurement is an integer) (Stevens, 1991). Some authors, however, consider the two main types of data to be interchangeable, noting that continuous quantitative characters can be coded and treated as discrete qualitative characters by the delimitation of intervals (e.g. 0 = <5mm, 1 = >5mm), and that most qualitative variation, when examined carefully, will be found to describe an underlying continuum that has been transformed into discrete classes (Stevens, 1991).

Biological shapes have been characterized most often by means of a single measure or other descriptor, or by a very small number of measurements (Oxnard, 1978). A scheme of measured distances is inadequate if it does not permit the reconstruction of the polygon it purports to measure, since information is thereby lost (Bookstein, 1982). The more complicated the shape, the greater the number of measurements necessary to encapsulate the information contained in that shape (Oxnard, 1978).

One can measure the more basic shapes by means of ratios. Figure 2.1.1 illustrates this process with a simple length/width ratio of triangular involucral scales. Both involucral scales are 1 unit of length wide, but A is 6 units long, while B is 1 unit long. The longer scale (A) will have a ratio of "6 units / 1 unit" (i.e. 6), whilst the shorter scale (B) will have a ratio of "1 unit / 1 unit" (1). The lower the ratio, the more obtuse the scale.

Figure 2.1.1: Comparison of differently shaped involucral scales, overlaid with length units in black and white. All black and white bars are equal in length.

The age of a physical characteristic (e.g. the age of a leaf) can have an effect on the size of the leaf (the older a leaf, the bigger it may be), but not necessarily the shape. Ratios can be useful for comparing shape across size gradients, without letting raw size skew the analysis. Figure 2.1.2 illustrates an example: If length were used as a grouping character, the leaves would group by age rather than species. The use of ratios to encapsulate basic shape (length/width) allows for differentiation based on shape rather than simply length.

Figure 2.1.2: Use of ratios eliminates size but retains shape. Comparison of four leaves from two species (Species 1 = A,C; Species 2 = B,D). Two leaves are young (A,B) and two old (C,D). The lengths of the younger leaves are the same (L=3), as are the lengths of the older leaves (L=6), but the ratios are different (Species 1: A = 3/0.5 = 6, C = 6/1 = 6; Species 2: B = 3/2 = 1.5, D = 6/4 = 1.5)

Phillips (1983) notes that measurements taken with the use of ratios may be affected by allometric growth. But he notes that this usually only applies in the earliest stages of growth, and by the time the organ is large enough to be measured, allometric growth has stabilized. Phillips (1983) holds that while ratios are inherently correlated with size, there is still a large amount of information about shape within that ratio. As an alternative to ratios, he posits the use of regression analysis. However, this method is computationally intensive. The other problem with regression analysis is the requirement of at least two samples per taxon, to allow for the regression line to be calculated. For some taxa in *Gazania*, this was not possible. Given that there is only an average of 10 samples per taxon, this may not be sufficient to utilize regression analysis properly.

The other alternative to ratios is the use of shape charts. These charts, however, are an attempt to put names to discrete intervals of shapes, whereas in *Gazania* there are no such clear intervals. The shapes of leaves fall along a continuum of variation; categorization of certain leaves into definite shape categories must become subjective when they straddle the uncomfortable interval between two shapes. Actual measurements of ratios allow for the quantification of this continuum of shape variation, rather than the pigeon-holing of samples into the nearest possible fit of shape.

Some analytical methods are sensitive to size effects, and some authors insist that ratios can be a good way to deal with size, and have been useful for some studies (Oxnard, 1978), whilst others indicate that the traditional use of ratios is often criticized (Rohlf, 1990) and that the use of ratios does not always eliminate size from the raw variables (Albrecht, 1978; Phillips, 1983). Hillis (1978) firmly states that "of the many myths about the use of the ratio of two linear measurements perhaps the most widespread is that such ratios are improper in some statistical sense". He continues by noting that ratios are widely used in taxonomy as measure of shape, and that the statistical difficulties associated with ratios arise because X/Y is not a linear function of X and Y; the difficulties disappear if one transforms ratios using logs (Hillis, 1978). James & McCulloch (1990) agree, stating that ratios must be log transformed.

The inclusion of both ratios and the original measurements that the ratios were calculated could be theorized to lead to double weighting for those characters. Castro *et al.* (2005) however included both size data as well as shape ratios in their data to no ill effect.

Character selection

The major task in selecting characters is to construct measures optimal for particular explanatory purposes (trends, contrasts, comparisons) (Bookstein, 1982). Some authors maintain that as many characters as possible should be used (Presch, 1979), while others insist that the goal in the selection of variable characters is to reduce the volume of data as much as possible, while still retaining the ability to adequately represent the variability (Rohlf, 1990). Scotland *et al.* (2003) support the latter reductionist view, indicating that rigorous and critical anatomical studies of fewer morphological characters is preferable to compiling larger data matrices of increasingly ambiguous and problematic morphological characters.

Combinations of genetic and environmental factors modify growth processes, inducing morphometric variation (Somers, 1986). Good characters are those that are not susceptible to environmental modification, as phenotypic plasticity diminishes a character's taxonomic utility because the environmental contribution to phenotypic variation can obscure genetically based relationships (Davis, 1983). An example of the effects of environment on plant morphology was detected in the analysis of repeat sampling of the same populations of *Lupinus nanus* over several years, which revealed variation due to annual water availability, such that the primary clustering of samples was an annual pattern of variation, rather than taxonomic grouping (Riggins *et al.*, 1977). Davis (1983) does, however, indicate that plastic characters (traditionally considered problematic and useless) are not completely useless as, in some cases, some states are limited to fewer than all genotypes, and the characters therefore exhibit some discriminatory information.

Analyses methods

James & McCulloch (1990) rather understate the case when they observe that researchers do not always agree on the best methods of analysis. There are a multitude of methods available for the multivariate analysis of morphometric data and James & McCulloch (1990) provide an overview of some of the various methods, survey their uses in cases in the literature, and list each method's objectives and limitations. Two of the most widely utilized of those techniques were Principal Component Analysis (PCA) and Cluster Analysis (CA). Each of these methods has certain practical applications and objectives for which they are ideal, but each method has its limitations. Both methods can be utilized for descriptive purposes, i.e. they can suggest causes for patterns, but derived factors and clusters do not necessarily reflect biological factors or clusters in nature (James & McCulloch, 1990). James & McCulloch (1990) limit CA to classification purposes only and PCA to ordination purposes only.

Cluster Analysis

This method places objects in groups according to a similarity measure and then a grouping algorithm (James & McCulloch, 1990). A pairwise similarity matrix is created and used to join the two most similar objects together, then the similarity of this group to all others is calculated, and the closest two groups are again combined until only a single group remains (James & McCulloch, 1990). Although Crompton *et al.* (1990) regard CA as the numerical taxonomic technique most widely used for obtaining groupings, James & McCulloch (1990) caution that CA is most appropriate for categorical rather than continuous data, and may be less efficient that PCA.

Principal Component Analysis

The main purpose of PCA is to describe the total variation in a sample in a few dimensions (Borazan & Babac, 2003). PCA reduces the number of dimensions of a single group of data by producing a smaller number of abstract variables (linear combinations of the original variables, called principal components), such that most of the variation can be summarized by only a few components, so data with many variables can be displayed effectively on a two- or three dimensional graph that uses the components as axes (James & McCulloch, 1990). Not all principal components are needed to summarize the data adequately and, in practice, only the first few components that account for the major patterns of variation need be retained (Borazan & Babac, 2003).

Somers (1986) cautions that PCA is not infallible, since it assumes linearity and multivariate normality of all the variables, and may inefficiently summarize nonlinear patterns. If the distribution of ratios or proportions is reasonably near to normal the analysis can be useful, but without transformations principal components analysis cannot capture nonlinear relationships (James & McCulloch, 1990). PCA is also sensitive to outliers (James & McCulloch, 1990).

Methods

Morphological character selection and data collection

The descriptions of species from Roessler's (1959) review provide a good basis for character selection, as these were the characters that he used to delimit his morphospecies. As such, many of these have been chosen for this morphometric analysis. Appendix 1 contains the character descriptions for each character for each species delimited by Roessler. Data is missing from the table where Roessler gives no details.

Morphometric data was collected for 21 characters from 170 herbarium specimens (both those collected and pressed for this project as well as preexisting herbarium specimens). Although an average number of ten samples per taxa is rather low, the selection of samples was such that a comparison between morphometric and DNA data was made possible. All sample details (including collection localities and herbarium details where appropriate) are listed in Table 2.1.1. Two samples from a putative new species were included as well. Details of characters are given below. Also see Appendix 2 for complete table of morphometric data.

Some characters are inherently difficult to classify quantitatively (e.g. shades of colour). An attempt was made to reduce other characters (e.g. involucral scale shape, leaf shape) that are described by subjective shape descriptive terms (e.g. acuminate, obtuse) to quantitative data values (by means of a ratio). Due to the paucity of measurements that could be taken, the simpler measures were investigated; the simplest way to describe shape quantitatively is to measure length and width and then compare those two measurements as a ratio.

In the case of the involucral scales, the measurement of the length from point of attachment to tip, divided by the width at the point of attachment, provides a numerical estimate of shape. The difference between an acuminate scale (with a ratio of 6:1) and an obtuse scale (with a ratio of 1:1) is clearly illustrated in Figure 2.1.1.

Leaf shape is more difficult to quantify, especially when it comes to including data on pinnate leaves. The basic leaf shape was encapsulated in a length:width ratio. However, as mentioned in the introduction to this chapter, ratios are considered problematic. Shape alone may not be sufficient to discriminate taxa; therefore the actual size of the leaves is included in some data sets to investigate the different effects of actual size versus relative shape ratio on multivariate methods.

Sample Name	Species Name	Collection number	Collection site	South	East
Cil1	ciliaris	M270805_12	South Africa. Worcester: Tulbagh, below Waterfall near CapeNature office.	33° 20' 31"	19° 06' 53"
Cil2	ciliaris	RM1230	South Africa. Cape Town: Paarlberg.	33° 45' 8.3"	18° 57' 5.2"
Cil3	ciliaris	RM1382	South Africa. Clan William: Piketberg plateau	32° 48' 41"	18° 42' 40"
Cil4	ciliaris	Galpin 4263	Herbarium (GRA)		
Cil5	ciliaris	Schlechter 5286	Herbarium (GRA)		
Cil6	ciliaris	Schlechter 5286	Herbarium (GRA)		
Cil7	ciliaris	SR705	South Africa. Peddie: Fish River, near Port Alfred. Seven seas.	33° 28' 58"	27° 04' 48"
Het1	heterochaeta	Schlechter 11318	Herbarium (GRA)		
Het2	heterochaeta	Schlechter 11318	Herbarium (GRA)		
Het3	heterochaeta	Archibald 2714	Herbarium (GRA)		
Het4	heterochaeta	Archibald 2715	Herbarium (GRA)		
Het5	heterochaeta	M160901/5G	South Africa. Gamoep: Goegap Nat Res, 4x4 tracks N of Res. Headquarters.	29° 39' 33"	18° 00' 29"
Het6	heterochaeta	RM1451	South Africa. Springbok: 5km N Steinkopf, beside N7 highway	29° 14' 04"	17° 45' 20"
Het7	heterochaeta	RM1255	South Africa. Worcester: beside R355, North of Karooport.	33° 9' 40.8"	19° 45' 2.8"
Het8	heterochaeta	RM1429_1	South Africa. Steytlerville: T2 road Steytlerville - Grootrivierpoort; 5km N Rietfontein turnoff.	33° 22' 30"	24° 22' 30"
Het9	heterochaeta	RM1348	South Africa. Springbok: Roadside, 80km east of Port Nolloth	29° 14' 58"	17° 40' 33"
Jur1	jurineifolia	CAM1604	Namibia. Witputz: Karas	27° 22' 30"	16° 07' 30"
Jur2	jurineifolia	CAM1953	Namibia. Aus: Klein Aus Vista.	26° 37'	16° 22'
Jur3	jurineifolia	Gess 01/02/141	Herbarium (GRA)		
Jur4	jurineifolia	Barber 638	Herbarium (GRA)		
Jur5	jurineifolia	Daly 90	Herbarium (GRA)		
Jur6	jurineifolia	Dyer 1014	Herbarium (GRA)		
Jur7	jurineifolia	Barber 474	Herbarium (GRA)		
Jur8	jurineifolia	Galpin 5564	Herbarium (GRA)		
Jur9	jurineifolia	SR682	South Africa. Gamoep: 18km W of Aggeneys (between Springbok & Pofadder)	29° 22' 46"	18° 38' 53"
KrbA1	krebsiana subsp arctotoides	RM868/1	South Africa. Kenhardt: Rooipan, southeast of Lime Acres.	29° 47'	21° 56'
KrbA10	krebsiana subsp arctotoides	RM831_2	South Africa. Oudtshoorn: south of Oudtshoorn on N12 highway.	33° 35'	22° 11'
KrbA12	krebsiana subsp arctotoides	RM860_1	South Africa. Steynburg: south of Joubertsberge	31° 45' 19"	25° 04' 53"
KrbA2	krebsiana subsp arctotoides	RM770_2	South Africa. Willowmore: Prince Alfred's Pass.	33° 45'	23° 08'
KrbA4	krebsiana subsp arctotoides	M071001/3GP	South Africa. Queenstown: Stormberg Plateau, Penhoek Pass, rest place 3km North of pass.	31° 25' 33"	26° 41' 29"
KrbA5	krebsiana subsp arctotoides	RM903	South Africa. Graaff-Rienet: southwest of Aberdeen on N9 highway.	32° 31'	24° 00'

Table 2.1.1: List of all samples used in morphometric analyses, including collection locality data.

KrbA6	krebsiana subsp arctotoides	RM904	South Africa. Graaff-Rienet: between Graaff-Reinet and Adendorp on R75 road.	32° 15'	24° 33'
KrbA8	krebsiana subsp arctotoides	RM862_1	South Africa. Worcester: east of Potmasburg, West Cape, Dassiehoek	33° 50'	19° 30'
KrbA9	krebsiana subsp arctotoides	RM876_1	South Africa. Aliwal North: Bloemfontein	30° 19'	26° 48'
KrbK10	krebsiana subsp krebsiana	NB1465	South Africa. Steytlerville: Graaff-Rienet. Farm Welgmoed. Track to Nardousberg plateaux.	32° 47'	24° 32'
KrbK11	krebsiana subsp krebsiana	M261001/2	South Africa. Queenstown: Stormberg, Penhoek Pass.	31° 15' 34"	26° 44' 51"
KrbK12	krebsiana subsp krebsiana	M071001/1G	South Africa. Port Elizabeth: Coega salt works.	33° 46' 35"	25° 40' 05"
KrbK13	krebsiana subsp krebsiana	M071001/3GL	South Africa. Queenstown: Stormberg Plateau, Penhoek Pass, rest place 3km North of the pass.	31° 25' 33"	26° 41' 29"
KrbK14	krebsiana subsp krebsiana	M230803/8	South Africa. Port Shepstone: Umtamvuna Nature Reserve, Beacon hill.	30° 48'	30* 11'
KrbK16	krebsiana subsp krebsiana	RM874	South Africa. Kimberley: SE of Kimberley on N8 highway.	28° 47'	24° 47'
KrbK17	krebsiana subsp krebsiana	RM929	South Africa. Witbank: Middelburg, Agter-Renosterberg, near Uitsig hut, Transkaroo hiking trail.	25° 43'	29° 25'
KrbK18	krebsiana subsp krebsiana	RM968	South Africa. Matatiele: Carlisle's Hoek, beside road to Tiffindell Ski resort.	30° 40'	28° 03'
KrbK19	krebsiana subsp krebsiana	RM962	South Africa. Queenstown: NE of Queenstown on R359 road.	31° 49'	26° 55'
KrbK2	krebsiana subsp krebsiana	RM949	South Africa. Humansdorp: Eskom substation 500m north of N2 on R330 to Hankey.	34° 08' 38*	24° 10' 41"
KrbK20	krebsiana subsp krebsiana	RM960	South Africa. Fort Beaufort: SW of Seymour, junction R67 & road to Katberg Pass.	32° 35'	26° 44'
KrbK22	krebsiana subsp krebsiana	RM856	South Africa. Willowmore: Bloukrans River.	33° 58'	23° 39'
KrbK23	krebsiana subsp krebsiana	RM906	South Africa. Fort Beaufort: south of Bedford.	32° 41'	26° 05'
KrbK24	krebsiana subsp krebsiana	RM852_1	South Africa. Grahamstown: south of Bathurst	33° 30' 43"	26° 49' 44"
KrbK25	krebsiana subsp krebsiana	RM713_3	South Africa. Port Elizabeth: Coega.	33° 46'	25° 40'
KrbK26	krebsiana subsp krebsiana	SR564	South Africa. Port Edward: Umtamvuna Nature Rserve.	31° 04'	30° 11'
KrbK27	krebsiana subsp krebsiana	SR520	South Africa. Underberg: Estcourt.	29° 02' 35"	29° 52' 19"
KrbK28	krebsiana subsp krebsiana	SR480	South Africa. Grahamstown: Fort Brown, resolution hatchery.	33° 09' 53"	26° 37' 18"
KrbK3	krebsiana subsp krebsiana	SH110	South Africa. Grahamstown: 100m from Great Fish River Bridge.	33° 29'	26° 55'
KrbK4	krebsiana subsp krebsiana	SH112	South Africa. Stutterheim: Road out of Kaiskammahoek.	32° 49'	27° 11'
KrbK5	krebsiana subsp krebsiana	SH111	South Africa. Peddie: 10km East Peddie.	33° 12'	27° 07'
KrbK7	krebsiana subsp krebsiana	RM992_2	South Africa. Lady Frere: Baster Voetpad. Near Elliot. Roadside bank.	31° 19'	27° 57'
KrbK8	krebsiana subsp krebsiana	M210902_1	South Africa. Fort Beaufort: N of Fort Brown, road to Fort Beaufort.	32° 55' 43"	26° 37' 28"
KrbK9	krebsiana subsp krebsiana	RM804_2	South Africa. Grahamstown: Riebeek East, 'Willowfontein' farm.	33° 12'	26° 09'
KrbS1	krebsiana subsp serrulata	RM1150	South Africa. Colesberg: Free State, Gariep Dam, day visitor area.	30° 36' 14"	25° 29' 24"
KrbS2	krebsiana subsp serrulata	RM1137	South Africa. Bloemfontein: Bayswater area, junction of N1 + R400 roads.	29° 10'	26° 13'
KrbS3	krebsiana subsp serrulata	RM866	South Africa. Griekwastad: north of Danielskuil	28° 10' 50"	23° 32' 11"
KrbS4	krebsiana subsp serrulata	RM863_1	South Africa. Olifantshoek: southeast of Beeshoek	27° 45'	22° 37'
KrbS5	krebsiana subsp serrulata	RM877_1	South Africa. Aliwal North: north of Rouxville.	30° 25'	26° 49'
KrbS6	krebsiana subsp serrulata	RM965	South Africa. Lady Frere: 13km SW Elliot on R56 road.	31° 19'	27° 57'

Leio1	leiopoda	RM1320	South Africa. Hondeklipbaai: Kamiesberg.	30° 11' 16"	17° 59' 21"
Leio10	leiopoda	RM1309	South Africa. Kamiesberg: Roadside.	30° 24' 38"	18° 3' 9"
Leio11	leiopoda	RM1466	South Africa. Hondeklipbaai: Namakarroo National Park, W of Kamieskroon.	30° 05' 47"	17° 35' 03"
Leio2	leiopoda	M200901/22G	South Africa. Hondeklipbaai: Kamieskroon, Arakop Farm.	30° 05' 31"	17° 54' 33"
Leio3	leiopoda	M230901/7G	South Africa. Vanrhynsdorp: Knersvlakte, Vanrhynsdorp, Quaggaskop Farm.	31° 24' 46"	18° 38' 33"
Leio4	leiopoda	M240901/19	South Africa. Calvinia: Nieuwoudtville, near turnoff to Rondekop.	31° 23' 23"	19° 11' 00"
Leio5	leiopoda	M210901/22	South Africa. Hondelipbaai: Kamieskroon, Arakop Farm, edge of dirt road.	30° 05' 31"	17° 54' 33"
Leio6	leiopoda	M160704/5	South Africa. Hondeklipbaai: Namaqualand, Kamieskroon, on N7.	30° 14' 15"	17° 53' 43"
Leio7	leiopoda	RM1291	South Africa. Hondeklipbaai: roadside.	30° 18' 37"	17° 53' 37"
Leio8	leiopoda	M250901/34	South Africa. Vanrhynsdorp: road from Vredendal to Strandfontein, Papendorp turnoff.	31° 42' 06"	18° 13' 32"
Leio9	leiopoda	RM1063	South Africa. Vanrynsdorp: SW of Lutzville, R362 between Papendorp & Lutzville.	31° 33'	18° 21'
Lict1	lichtensteinii	M7249/15	South Africa. Springbok: Kamieskroon, at bridge of N7 over Haasrivier	29° 59' 312"	17° 52' 31"
Lict10	lichtensteinii	RM1323	South Africa. Kamiesberg: Road north east of Kamieskroon.	30° 7' 44"	18° 13' 40"
Lict11	lichtensteinii	Schlechter 4501	Herbarium (GRA)		
Lict3	lichtensteinii	M150704/10	South Africa. Vioolsdrif: N7, between Steinkopf and Vioolsdrif.	28° 57' 24"	17° 46' 17
Lict4	lichtensteinii	M020803/8	South Africa.Merweville: Leeuw-Gamka, Shell petrol station	32° 47' 13"	21° 59'00"
Lict5	lichtensteinii	M060605_22	South Africa. Gamoep: Namaqualand, Aggeneys, Kangas farm, gate on N14	29° 30' 10"	18° 18' 48"
Lict6	lichtensteinii	RM1249	South Africa. Wuppertal: beside R355 road near Tankwa Karoo National Park.	32° 10' 30"	19° 42' 47"
Lict8	lichtensteinii	RM1265	South Africa. Calvinia: flats South of Botterkloof Pass.	31° 56' 59"	19° 14' 34"
Linlin1	linearis subsp linearis	RM1013	South Africa. Port St Johns: North of Mbotyi river mouth.	31° 26'	29° 43'
Linlin10	linearis subsp linearis	RM794_2	South Africa. Stutterheim: south of King William's Town on N2 highway.	32° 52'	27° 23'
Linlin13	linearis subsp linearis	RM787_1	South Africa. Umtata: between Umtata and Umlambo Mputi on N2 highway.	31° 59'	28° 40'
Linlin15	linearis subsp linearis	RM916_1	South Africa. Fort Beaufort: Katberg Pass	32° 26' 46"	26° 38' 26"
Linlin2	linearis subsp linearis	RM1061	South Africa. Capetown: Clanwilliam. Possible garden escape growing wild and profusely.	32° 11' 45"	18° 54' 32"
Linlin21	linearis subsp linearis	RM885_1	South Africa. Fort Beaufort: Tor Doone, Hogsback.	32° 34'	26° 56'
Linlin23	linearis subsp linearis	RM789	South Africa. Umtata: between Umtata and Umlambo Mputi on N2 highway.	31° 35'	28° 47'
Linlin24	linearis subsp linearis	RM951_1	South Africa. Humansdorp: St Francis bay, R330 road, St Francis Bay village turnoff.	34° 11'	24° 50'
Linlin25	linearis subsp linearis	RM1182	South Africa. Humansdorp: on N2, Seekooi river.	34° 02'	24* 46'
Linlin26	linearis subsp linearis	SR571	South Africa. Port Shepstone: Port Shepstone. Roadside.	30° 44'	30° 27'
Linlin27	linearis subsp linearis	SR523	South Africa. Humansdorp: Maitlands, road between Seaview and Maitlands River.	34° 00'	25° 41'
Linlin28	linearis subsp linearis	SH131	South Africa. Stutterheim: Road between Hogsback and Cathcart, 7km out.	32° 33'	27° 04'
Linlin29	linearis subsp linearis	SH132	South Africa. Stutterheim: Road between Hogsback and Cathcart, 14km out.	32° 22'	27° 07'
Linlin3	linearis subsp linearis	RM1010	South Africa. Calvinia: Mzimpunzi river mouth, Pondoland.	31° 19'	29° 56'

Linlin4	linearis subsp linearis	SH113	South Africa. Stutterheim: 10km out of Stutterheim.	32° 34'	27° 25'
Linlin5	linearis subsp linearis	RM1092	South Africa. Port St Johns: Coffee Bay, Bumvu river mouth.	31° 58'	29° 09'
Linlin6	linearis subsp linearis	RM1103	South Africa. Port Edward: Mkambati Nature Reserve, N of the Msikaba River Mouth.	31° 01' 24"	30° 13' 48"
Linlin9	linearis subsp linearis	RM780	South Africa. Fort Beaufort: between East London and Cintsa turnoff on N2 highway.	32° 53'	28° 04'
LinO1	linearis subsp ovalis	RM854	South Africa. Grahamstown: north of Bathurst.	33° 29'	26° 49'
LinO10	linearis subsp ovalis	Britten 2691	Herbarium (GRA)		
LinO2	linearis subsp ovalis	M041001_2G	South Africa. Grahamstown: Thornycroft, road between Alexandria and Port Elizabeth.	33° 36' 42"	26° 01' 43"
LinO3	linearis subsp ovalis	ND_haven	South Africa. Butterworth: The Haven, Transkei.	32° 14'	28° 54'
LinO4	linearis subsp ovalis	Potts 220	Herbarium (GRA)		
LinO5	linearis subsp ovalis	Galpin 2953	Herbarium (GRA)		
LinO6	linearis subsp ovalis	Daly 717	Herbarium (GRA)		
LinO7	linearis subsp ovalis	White 70	Herbarium (GRA)		
LinO8	linearis subsp ovalis	Britten 5239	Herbarium (GRA)		
LinO9	linearis subsp ovalis	Britten 2691	Herbarium (GRA)		
Marit	maritima	RM1038	South Africa. Bredasdorp: Cape Agulhas, about 2km E of actual cape, on shoreline.	34° 48' 48"	20° 02' 48"
Oth	othonnites	RM1306	South Africa. Springbok: Kleinzee, Molyneux trail	29° 41' 27"	17° 05' 40"
Pct1	pectinata	M120903/5	South Africa. Clan William: Western Cape Province, Piketberg, Sauer, Uitvlug turnoff.	32° 50' 17"	18° 33' 14"
Pct2	pectinata	M260901/2G	South Africa. Clanwilliam: Cederberg, Pakhuis pass.	32° 08' 11"	18° 58' 15"
Pct3	pectinata	M180904/5	South Africa. Bredasdorp: De Hoop Nature Reserve., Koppie Alleen.	34° 28 ' 41"	20° 30' 39"
Pct4	pectinata	RM1044_3	South Africa. Caledon: Agulhas peninsula, Bredasdorpberge.	34° 29' 47'	19° 53' 39"
Pct5	pectinata	RM1044_1	South Africa. Caledon: Agulhas peninsula, Bredasdorpberge.	34° 29' 47"	19° 53' 39"
Pct6	pectinata	M250901_37	South Africa. Vanrhynsdorp: Strandfontein, on road to Doringbaai.	31° 45' 18"	18° 14' 02"
Pct7	pectinata	Rogers 11067a	Herbarium (GRA)		
Pct8	pectinata	RM1390	South Africa. Caledon: Franschoek Pass, summit of pass.	33° 54' 27"	19° 09' 19"
Rigid1	rigida	RM1210	South Africa. Bredasdorp: 14.5km North of Bredasdorp on R319 road.	34° 25' 50"	20° 7' 22"
Rigid12	rigida	M110805_10	South Africa. Bredasdorp: De Hoop Nature Reserve, Potberg, Melkosheuwel.	34° 22' 50"	20° 29' 16"
Rigid13	rigida	RM1270	South Africa. Wuppertal: North of base of Pakhuis Pass.	32° 03' 37"	19° 10' 10"
Rigid14	rigida	RM1254	South Africa. Wuppertal: base of Katbakkies Pass, Swartruggens.	32° 52' 58"	19° 44' 27"
Rigid3	rigida	M280902/9	South Africa. Oudtshoorn: Oudtshoorn, turn off to Zebra	33° 45' 45"	22° 20' 07"
Rigid4	rigida	M100903/4	South Africa. Cape Town: Darling, Tienie Versveld Flower Reserve.	33° 20' 07"	18° 16' 16"
Rigid5	rigida	M100904/4	South Africa. Beaufort West: Uniondale, bridge over Keurboomsrivier.	33° 45' 39"	22° 57' 44"
Rigid6	rigida	RM1044_2	South Africa. Caledon: Agulhas peninsula, Bredasdorpberge. Ex-pine plantation.	34° 29' 47"	19° 53' 39"
Rigid7	rigida	M120805_80	South Africa. Sutherland: De Hoop Nature Reserve, Potberg, NE of the Potberg gate.	34° 22' 10"	20° 31' 32"

Rigid8	rigida	Rogers 2889	Herbarium (GRA)		
Rigid9	rigida	JacotGuillarmard 7662	Herbarium (GRA)		
Rigs10	rigens	RM782_2	South Africa. Port St Johns: Second Beach.	31° 37'	29° 32'
Rigs11	rigens	RM772_2	South Africa. Knysna: Plettenberg Bay.	34° 02'	23° 22'
Rigs16	rigens	RM919	South Africa. Grahamstown: SE of Cannon Rocks.	33° 44'	26° 33'
Rigs17	rigens	RM920	South Africa. Grahamstown: SE of Cannon Rocks.	33° 44'	26° 33'
Rigs19	rigens	SR625	South Africa. Skoenmakerskop: Cape Riecefe (Between PE and seaview).	34° 00'	25° 39'
Rigs2	rigens	M7298/2	South Africa. Humansdorp: St Francis Bay, bridge over Kromme river, tidal salt marsh.	34° 08' 15"	24° 48' 28"
Rigs20	rigens	SR581	South Africa. Grahamstown: Kowie river.	33° 36'	26° 53'
Rigs21	rigens	SR 575	South Africa. Stanger: Durban, Blue Lagoon.	29° 48'	31° 02'
Rigs22	rigens	SR 574	South Africa. Port Shepstone: Umkomaas, Warner Beach, Baggies Beach, 10km N Durban.	30° 04'	30° 52'
Rigs23	rigens	SR463	South Africa. Stanger: Tugela River mouth	29° 13'	31° 30'
Rigs3	rigens	M7293/1	South Africa. Humansdorp: Jeffereys Bay, beach south of Kabeljouws River mouth.	34° 00' 53"	24° 55' 42"
Rigs4	rigens	M070704/1	South Africa. Simonstown: Miller's Point.	34° 13' 57.8"	18° 28' 32"
Rigs5	rigens	M7257/2	South Africa. Riversdale: Gouritzmond, coast, parking lot, leeward slope dune.	34° 21' 01"	21° 53' 00"
Rigs6	rigens	RM952_1	South Africa. Humansdorp: Cape St Francis, in sand rocky shoreline	34° 12'	24° 50'
Rigs7	rigens	RM952_3	South Africa. Humansdorp: Cape St Francis, in sandon rocky shoreline	34° 12'	24° 50'
Rigs9	rigens	RM783	South Africa. Port St Johns: Third Beach.	31° 37'	29° 32'
Serr1	serrata	RM1216	South Africa. Caledon: 1km SW of Caledon on R320 road.	34° 16' 24"	19° 26' 09"
Serr2	serrata	RM1260	South Africa. Worcester: Calvinia.	33° 30' 21"	19° 44' 23"
Serr3	serrata	M250904/15	South Africa. Simonstown: Helderberg strand, R44 between Nautilus and Octopus streets	34° 08' 31"	18° 51' 06"
Serr4	serrata	RM821_1	South Africa. Worcester: Robertson aerodrome.	33° 48'	19° 53'
Serr6	serrata	RM812	South Africa. Worcester: Dassiehoek Nature Reserve.	33° 50'	19° 30'
Serr7	serrata	RM1245	South Africa. Worcester: Skurweberg.	33° 14' 11"	19° 17' 42"
Serr8	serrata	RM1280	South Africa. Calvinia: 5km East of Nieuwoudtville.	31° 23'	19° 06'
Serr9	serrata	RM1374	South Africa. Clanwilliam: Piketberg, near top of Versveld Pass.	32° 50' 59"	18° 44' 02"
sp. nov1	species nova	M040906_33	South Africa. Hondeklipbaai: Hondeklipbaai, coast at police station	30° 19' 22"	17° 16' 21"
sp. nov2	species nova	MSG7237/4	South Africa. Port Nolloth: South of McDougalls Bay. Strandveld.	29° 17' 39"	16° 52' 45"
sp. nov3	species nova	M050905_02	South Africa, Springbok: Kleinzee, Rooikoppies	29° 43' 52"	17° 03' 40"
Ten1	tenuifolia	M7230/2	South Africa, Springbok: Goegap Nature Reserve, Bleshoek	29° 41' 31"	17° 58' 46"
Ten2	tenuifolia	M7219_10	South Africa. Gamoep: Goegap Nature Reserve, SE of Carolusberg.	29° 39' 23"	18° 00' 32"
Ten3	tenuifolia	RM1352	South Africa. Springbok: 40km east of Port Nolloth	29° 17' 56"	17° 12' 21"
Ten4	tenuifolia	CAM1601	Namibia. Witputz: Arras	27° 22' 30"	16° 7' 30"

	tenuife	
	tenuife	
	tenuif	
 os.	<i>tenuife</i>	

A list of characters, an explanation of each character, a description of how each character was quantified/qualified and the possible characters states follows:

Qualitative characters:

Binary characters:

1) Habit:

0 = Leaves alternate, capitula scapose.

1 = Leaves rosulate, capitula pedunculate.

2) Involucre furry/setose:

0 – no 1 – yes

Multistate characters:

3) Presence of parietal scales on involucre:

Not all the tips of the fused involucral scales are inserted at the terminal edge of the involucre, some are parietal.

- $0 = No \ scales$
- 1 = Some few single scales
- 2 = Multiple rows of scales

4) Base of involucre truncated/annulated:

See Figure 2.2.1 for illustration of each state.

- 0 No
- 1-annulated
- 2-subinserted
- 3 truncate

Figure 2.2.1: Involucral base states in *Gazania*: 0 = no modification, 1 = annulated, 2 = subinserted, 3 = truncate.

5) Adaxial leaf indumentum:

Some leaves are very scabrid to touch and others have only a light coat of hairs.

- 0-smooth
- 1 lightly setose/ciliate
- 2 densely roughly setose/ciliate

6) Leaf margin ciliate/smooth:

- 0 = smooth
- 1 = ciliate at terminal upper half
- 2 = ciliate at basal lower half
- 3 = ciliate along entire edge.
- 7) Leaf dissectedness:
 - 1 all leaves on plant entire, no division
 - 2-all leaves on plant lobed
 - 3 all leaves on plant pinnatisect (deeply incised)
 - 4 some leaves on plant whole, some leaves on plant lobed
 - 5 some leaves on plant whole, some leaves on plant pinnatisect
 - 6 lobed, pinnatisect and whole all present on plant
 - 7 minute lobes present all along edges of leaves

Quantitative characters:

8) Outer involucral scale length (mm):

Length from point of attachment to tip.

9) Outer involucral scale width (mm):Width of scale at point of attachment.

10) Inner involucral scale length (mm):Length from point of attachment to tip.

11) Inner involucral scale width (mm):Width of scale at point of attachment.

Chapter 2: Methods

12) Involucre length (mm):

Length from point of stem attachment to start of terminal scales.

13) Width of involucre at terminal edge (mm):Width of the involucre at terminal edge where terminal scales are inserted.

14) Leaf length (mm):Average length of three longest adult leaves on plant.

15) Leaf width (mm):Average width at widest part of three longest adult leaves on plant.

16) Involucre scape/peduncle length (mm):

Measured from last major leaf, to point of attachment to involucre (solitary linear bracts were ignored as a starting point for the measurement).

Ratio characters: 17) Outer involucral scale: Length / Width.

18) Inner involucral scale:Length / Width.

19) Outer involucral scale length/Inner involucral scale length:Some species are noted for having inner scales longer than the other scales.

20) Involucre length/width

21) Leaf length/width

Discarded characters

Roessler (1959) included "the width of the capitula with the ligules expanded" as a character in his species delimitations. The length of ray floret ligules were investigated for potential data signal during the data collection process. However, the length of ray floret ligules is subject to water

availability (water stress results in smaller inflorescences; pers. obs. on greenhouse plants) and also shows little useful signal.

Roessler (1959) noted that certain species have only divided leaves or only whole leaves, thus leaf dissectedness was investigated. However, the inclusion of leaf dissectedness (whole, lobed or pinnate) as an informative character is debatable. The difference between leaves that are whole, pinnate or lobed can either be species specific (certain species are always pinnate; others are commonly, but not always, whole) or environmentally responsive (excess water can either result in more pinnate leaves in rigens, or more whole leaves in some commonly pinnate western cape species, pers. obs.).

Roessler (1959) listed ray spot patterns in his species descriptions, but the extraordinary variability of ray spot patterns precluded any easy delimitation of character states. Likewise, the large variety of spot patterns, colours and colour combinations that occur within species likewise advised against using this character. Samples of the same subspecies co-occurring within centimeters of each other have been observed to have different spot patterns (pers. obs. & R. McKenzie, pers. comm.).

Roessler (1959) included comments on comparative length of terminal pinnules relative to side pinnules. However, the length of the pinnules (or only the terminal pinnule) was found to be highly variable, not only within species, but also on individual plants, making it very difficult to determine with any accuracy. The lack of pinnules in some samples also made this a dubious character.

Many taxonomists consider colour characters dubious, since colour characters are considered unstable, the measurement is dependent on the colour vision of the observer, and is very hard to quantify (Chandler & Crisp, 1998). In addition, the change in colour that herbarium specimens may undergo over time makes ray colour a very difficult character to judge for *Gazania* specimens.

Analysis of herbarium versus live specimens

The pressing of herbarium samples does not affect the leaves in terms of length and width, nor does it appear to affect involucral scale characters. However, the pressing of herbarium specimens can change the width of the involucre slightly (as the cylindrical involucre becomes rather more two-dimensional). Since all the herbarium specimens are pressed, the measurements are directly comparable with each other, but probably not directly with living material.

Data sets

To compare the effects of ratio data versus raw size data on various analytical methods three data sets were constructed. All three data sets contained the binary and qualitative characters 1-7.

- 1) "RAW", which contains characters 8-16, i.e. all the raw size data of the qualitative characters but no ratio characters.
- 2) "RAT", which contains character 17-21, i.e. all the ratio characters but none of the raw size data characters.
- 3) "TOTAL", which contains both raw size and ratio characters, i.e. characters 8-21.

Data analysis

All data analyses were conducted in NTSYS-pc version 2.02k (Applied Biostatistics, Inc.).

Normalization of data

Certain analyses require that continuous variables be normally distributed. When a variable is not normally distributed a transformation, such as taking the log of the variable, eliminates the undesirable characteristic and improves the symmetry about the mean and the approximation to a normal distribution to provide more natural expressions of the characteristics being studied (Borazan & Babac, 2003). Test of normality were conducted in STATISTICA 6.1 (StatSoft, Inc), using the Lilliefors test (Lilliefors, 1967) of normality, where a significant result (p<0.05) indicates that data is not normally distributed. All quantitative data were converted to their log values prior to PCA analysis.

Albrecht (1978) noted that analysis (specifically PCA) of raw data which contains both size and shape components of variation should yield different results than an analysis of this same data after elimination of the size variation by some appropriate scaling procedure. The data sets were standardized to eliminate the distorting effects of different scales of measurement on the output results (Cupido, 2003; Borazan & Babac, 2003), using the STAND function. As the data was mixed (binary, qualitative, and quantitative/ratio, depending on the data set) the SIMINT function (with the Manhattan distance option) was used to compute a variety of similarity and dissimilarity coefficients for interval measure (quantitative) data, generating a correlation matrix. The most commonly used distance function is the Euclidean distance, but this is also the simplest and may be dependent on scales (Atchley *et al.*, 1982). The Manhattan distance is rather used when the data set contained mixed (metric and binary) data (Cupido, 2003). The Manhattan distance method is the most effective

measure for continuous variables (Pimentel, 1981; Crisp & Weston, 1993), and its stepwise form of measurement suits the assumed hierarchical nature of taxonomic data (Chandler & Crisp, 1998).

Cluster Analysis

The Clustering analysis utilized the SAHN (Sequential Agglomerative Hierarchical Nested Cluster Analysis) function. James & McCulloch (1990) note that it has become conventional in systematics to use the UPGMA (unweighted pair-group method using averages), which distributes the objects into a reasonable number of groups by calculating differences between clusters as the average of all the point-to-point distances between a point in one cluster and a point in the other. The resulting phenogram was plotted using the TREEPLOT function in NTSYS.

The COPH function takes a hierarchical system of clusters and produces a symmetrical matrix of "cophenetic" (ultrametric) similarity or dissimilarity values, which can be used to test for the goodness of fit of a clustering to a set of data. The MXCOMP function takes two symmetric similarity or dissimilarity matrices and plots one matrix against the other element by element, and also computes the product-moment correlation, r, and the Mantel test statistic, Z, (Mantel, 1967) to measure the degree of relationship between the two matrices. The correlation can be used as a measure of goodness of fit for a cluster analysis (the subjective interpretation is roughly r > 0.9 indicates a very good fit, r < 0.7 indicates a very poor fit).

Principle Component Analysis

The principal components of a matrix are computed by its eigenvalues and eigenvectors, which describe the relationship between operational taxonomic units (Borazan & Babac, 2003). The EIGEN function was used to extract the first three PCA axes from the correlation matrix, along with the eigen vectors and values. The PROJ function was used to project objects onto PCA axes and the 2D PLOT option was used to produce scatterplots of the first three PCA axes. Colours were inserted into the plot circles using PaintShopPro version 4.12 (JASC, Inc).

Results

Tests of normality

The results of the Lilliefors test of normality on all continuous variables are presented in Table 2.3.1 below. The significant p-values for several variables indicate that those variables are not normally distributed, and that logging the data was therefore necessary. Non-normal data does not affect CA, but the logging of data was necessary for PCA.

Table 2.3.1: Table of Lilliefors test of normality p-values for all continuous size variables. Asterisks indicate significant values.

Variable	P-value
Outer Involucral scale length	p<0.01*
Outer Involucral scale width	p<0.15
Inner Involucral scale length	p<0.01*
Inner Involucral scale width	p<0.15
Involucre length	p>0.2
Involucre width	p>0.2
Leaf Length	p<0.01*
Leaf Width	p<0.01*
Stem Length	p<0.01*

Cluster Analysis

The dendrograms from Cluster Analysis of the RAW, RAT and TOTAL data sets are presented in Figures 2.3.1 to 2.3.12. Two species (*G. tenuifolia* and *G. lichtensteinii*) are clearly clustered together in all three analyses regardless as to whether size data or ratio data are used (Figures 2.3.2, 2.3.6 and 2.3.10). Two taxa (*G. rigens* and *G. linearis* subsp *ovalis*) always cluster together in their own branches, but are also always interspersed with one or two additional samples from other species (Figures 2.3.2, 2.3.3, 2.3.6, 2.3.8, 2.3.10 and 2.3.11). Most *G. heterochaeta* samples cluster clearly together, while one or two samples were scattered through the phenogram (Figures 2.3.3, 2.3.8, and 2.3.11). The same holds for most *G. jurineifolia* samples, which cluster together in the same branch, but are sometimes interspersed with some few samples from other taxa (Figures 2.3.3, 2.3.8, and 2.3.11). The remaining taxa samples do not show any clear groupings and are interspersed with each other. Although there are a few small *G. krebsiana* and *G. linearis* clusters (Figures 2.3.8, 2.3.10 and 2.3.11), these clusters do not include all examples of the species and are not retrieved in all three data set analyses.

Figure 2.3.2 contains a cluster (named "A" on the dendrogram) that is composed of a mix of samples from several taxa: *G. linearis* subsp *ovalis*, *G. linearis* subsp *linearis*, *G. pectinata* and *G. ciliaris*.

Chapter 2: Results

All of these species are characterised by extremely long and thin acuminate involucral scales. The use of raw size data, rather than shape data from ratios, is the most likely reason that these samples are clustering together.

Figure 2.3.1: Cluster Analysis phenogram of RAW data (standardized, Manhattan distance, UPGMA, r=0.67). Detailed expansion of branches is provided in next three figures.

Figure 2.3.2: Lowest third of Cluster Analysis phenogram of RAW size data (full phenogram in Figure 2.3.1). Triangles indicate monospecific branches. "A" marks cluster discussed in detail in text.

Figure 2.3.3: Middle third of Cluster Analysis phenogram of RAW size data (full phenogram in Figure 2.3.1). Triangles indicate monospecific branches.

Figure 2.3.1).

Figure 2.3.5: Cluster Analysis phenogram of RAT data (standardized, Manhattan distance, UPGMA, r=0.72). Detailed expansion of branches is provided in following three figures.

Figure 2.3.6: Lowest third of Cluster Analysis phenogram of RAT size data (full phenogram in Figure 2.3.5). Triangles indicate monospecific branches.

Figure 2.3.7: Middle third of Cluster Analysis phenogram of RAT size data (full phenogram in Figure 2.3.5).

Figure 2.3.8: Top third of Cluster Analysis phenogram of RAT size data (full phenogram in Figure 2.3.5). Triangles indicate monospecific branches.

Figure 2.3.9: Cluster Analysis phenogram of TOTAL data (standardized, Manhattan distance, UPGMA, r=0.68). Detailed expansion of branches is provided in next three figures.

Figure 2.3.10: Lowest third of Cluster Analysis phenogram of TOTAL data (full phenogram in Figure 2.3.9). Triangles indicate monospecific branches.

Figure 2.3.11: Middle third of Cluster Analysis phenogram of TOTAL data (full phenogram in Figure 2.3.9). Triangles indicate monospecific branches.

The matrix goodness of fit test produced an r = 0.67 for the RAW data, 0.72 for the RAT data and 0.68 for the TOTAL data, all of which could be regarded as a "very poor" fit. The Mantel test resulted in p = 1 for all three data sets, likewise indicating a poor fit.

Despite the poor fit to the data, samples of six taxa are consistently clustered together. These six are:

- 1) G. jurineifolia,
- 2) G. lichtensteinii,
- 3) G. linearis subsp ovalis,
- 4) G. rigens,
- 5) G. heterochaeta, and
- 6) G. tenuifolia.

The samples of the remaining 10 species do not show any grouping.

Principle Component Analysis

Figures 2.3.13 to 2.3.15 are the scatter plots of the first three PCA axes of the RAW data set. The relative impact of each variable on each axis is presented in Tables 2.3.2 to 2.3.7, along with the percentage variability each axis accounts for. For the RAW data set, the first axis accounts for only 26% of the variability observed (and the next two axes both for significantly less than that).

The first and second axes (Figure 2.3.13) show one clearly discrete plot of *G. tenuifolia* samples (labeled "1"), along with two less clearly separate clusters ("2" and "3"). Cluster 2 consists of all the samples of *G. rigens, G. lichtensteinii*, as well as one sample each of *G. maritima, G. sp. nov.* and *G. krebsiana*. Cluster 3 consists of the remainder of all other samples.

The first and third axes (Figure 2.3.14) show no clearly discrete clusters. The second and third axes (Figure 2.3.15) show three small clusters that are separate from the rest of the samples. However, these are not single-species specific clusters. Cluster 1 consists of some samples of *G. lichtensteinii*, *G. rigens*, *G. sp. nov.*, and *G. krebsiana*, while Cluster 2 consists of samples of *G. rigens*, *G. maritima* and *G. krebsiana*. Cluster 3 consists of samples of *G. linearis* subsp *linearis*, *G. ciliaris* and *G. krebsiana*.

Figure 2.3.13: Scatterplot of first and second PCA axes of RAW data set. Dashed lines separate numbered clusters (details of cluster composition discussed in text).

Figure 2.3.14: Scatterplot of first and third PCA axes of RAW data set. No clearly separate clusters are visible.

Figure 2.3.15: Scatterplot of second and third PCA axes of RAW data set. Circled and numbered clusters are discussed in detail in text.

Character	Axis1	Axis2	Axis3
Habit	0.0484	0.7862	0.1503
InvSet	0.0559	-0.1737	0.3564
ParScl	-0.0776	0.3901	-0.4069
InvBase	-0.3034	0.3611	-0.3851
LfIndu	0.0894	0.2801	0.7703
LfMarg	-0.0021	0.5406	0.5412
LfDiss	-0.0826	0.4662	0.4411
OIL	0.723	0.3033	-0.3302
OIW	0.624	-0.4496	0.1656
IIL	0.6337	0.2582	-0.4154
IIW	0.5377	-0.1221	0.2743
InvL	0.7602	-0.163	0.2537
InvW	0.7935	0.0077	0.1636
LfLgth	0.6817	0.278	-0.1579
LfWdth	0.5469	-0.4753	-0.0412
StmLgth	0.6661	0.4168	-0.2225
% Variab.	25.8	15	13

Table 2.3.2: RAW data: Impact of each character on each PCA axis (most significant contributors highlighted in bold red) and total % variability accounted for by each PCA axis.

Figures 2.3.16 to 2.3.18 are the scatter plots of the first three PCA axes of the RAT data set. As for the RAW data set, there are no discrete separate clusters apparent in the scatterplots. The first two axes accounts for only 21% and 18% of the observed variability.

Figures 2.3.19 to 2.3.21 are the scatter plots of the first three PCA axes of the TOTAL data set. Figure 2.3.19 shows some separation of the *G. tenuifolia* samples (above the dashed line), but little other cluster separation is visible. Figure 2.3.20 shows no clear cluster separation. Figure 2.3.21 shows three clusters. Cluster 1 consists of all the samples of *G. lichtensteinii*, *G. linearis* subsp *ovalis* and *G. rigens*, as well as some samples of *G. heterochaeta* and *G. sp. nov*.. Cluster 3 consists of *G. tenuifolia* samples, and Cluster 2 consists of the remaining samples. The first axis only accounts for just 22% of the variability observed in the data.

All three data sets achieve much the same level of results, indicating that, in *Gazania* at least, neither shape ratios nor actual size data can provide a better method for the separation of morphologically overlapping species.

Figure 2.3.16: Scatterplot of first and second PCA axes of RAT data set. No clearly separate clusters are visible.

Figure 2.3.17: Scatterplot of first and third PCA axes of RAT data set. No clearly separate clusters are visible.

Figure 2.3.18: Scatterplot of second and third PCA axes of RAT data set. No clearly separate clusters are visible.

Character	Axis1	Axis2	Axis3
Habit	0.7708	0.2323	0.1274
InvSet	-0.1604	0.2931	-0.3743
ParScl	0.3935	-0.4465	-0.5607
InvBase	0.341	-0.3343	-0.1013
LfIndu	0.2314	0.761	-0.0978
LfMarg	0.4706	0.5571	0.0362
LfDiss	0.394	0.4224	-0.5357
LogOIRAT	0.7135	-0.374	0.2858
LogIIRAT	0.3954	-0.653	-0.0433
LogOI/II	0.2692	0.1959	0.5228
LogInvRAT	-0.2254	0.0632	0.6252
LogLFRAT	0.6175	0.0639	0.2055
% Variab.	20.8	17.8	13

Table 2.3.3: RAT data: Impact of each character on each PCA axis (most significant contributors highlighted in bold red) and total % variability accounted for by each PCA axis.

Figure 2.3.19: Scatterplot of first and second PCA axes of TOTAL data set. Dashed line separates *G. tenuifolia* samples (above line) from remaining samples.

Figure 2.3.20: Scatterplot of first and third PCA axes of TOTAL data set. No clearly separate clusters are visible.

Figure 2.3.21: Scatterplot of second and third PCA axes of TOTAL data set. Dashed line separate three numbered clusters (details of cluster composition discussed in text).

Character	Axis1	Axis2	Axis3
Habit	0.2476	0.5537	0.4819
InvSet	-0.0336	-0.2496	0.2514
ParScl	0.1323	0.4197	-0.264
InvBase	-0.123	0.4623	-0.1491
LfIndu	0.025	-0.1005	0.6925
LfMarg	0.0498	0.1964	0.5316
LfDiss	-0.02	0.1608	0.488
OIL	0.8761	0.1627	-0.1119
OIW	0.3808	-0.7232	0.0329
IIL	0.7527	0.1267	-0.419
IIW	0.3539	-0.492	0.2553
InvL	0.5816	-0.4781	0.1743
InvW	0.7254	-0.4114	0.158
LfLgth	0.7376	0.0877	0.2005
LfWdth	0.3503	-0.6457	-0.3568
StmLgth	0.7564	0.1791	0.0879
LogOIRAT	0.5318	0.6648	-0.1261
LogIIRAT	0.4781	0.45	-0.5691
LogOI/II	0.2955	0.0713	0.3688
LogInvRAT	-0.4184	0.1064	-0.0492
LogLFRAT	0.191	0.6326	0.453
% Variab.	22	17	12

Table 2.3.4: TOTAL data: Impact of each character on each PCA axis (most significant contributors highlighted in bold red) and total % variability accounted for by each PCA axis.

Six species data set

In an effort to investigate the six most commonly clustered species retrieved in the CA dendrograms, the TOTAL data set was subdivided, and a smaller data set was constructed, consisting of only the six most commonly retrieved species clusters from the CA. A PCA was conducted on this smaller data set to see if the six CA species clusters could be distinguished by PCA.

Figures 2.3.22 to 2.3.24 are the scatterplots for the first three PCA axes for the TOTAL data set, containing only the six most commonly retrieved CA species. With the first two axes (Figure 2.3.22) the only species that shows true separation from all the others is *G. tenuifolia*. With the first and third axes (Figure 2.3.23), three separate clusters can be seen, one composed of *G. tenuifolia* samples, one composed of a mix of *G. lichtensteinii*, *G. jurineifolia* and *G. heterochaeta* samples and a third cluster composed of *G. linearis* subsp *ovalis* and *G. rigens* samples.

With the second and third axes (Figure 2.3.24), G. *lichtensteinii* becomes a distinct cluster. The cluster to the bottom right of the plot contains all the *G. tenuifolia*, *G. rigens* and G. *linearis* subsp

ovalis samples, and the cluster at the top again shows no separation between *G. heterochaeta* and *G. jurineifolia* is seen.

Ray colour was added as a 22^{nd} character (in binary format: 1 = white, 0 = not white) to investigate if this could separate *G. jurineifolia* from *G. heterochaeta* (*G. jurineifolia* has white rays, while all the other species of *Gazania* have yellow, orange or red rays). Figures 2.3.25 to 2.3.27 are the scatterplots of the TOTAL data set, now including the additional ray colour character. Figure 2.3.25 now shows species clustering of *G. tenuifolia*, *G. linearis* subsp *ovalis* and *G. jurineifolia*. Figure 2.3.26 of the first and third axes shows an almost clear separation of all six species, although there is some slight overlap between some of the clusters it is only a narrow margin, rather than a more pronounced intermingling of samples.

Overall, while not all of the species produce clearly separate clusters on the scatterplots, there are definite trends visible. Certain species tend towards a certain region of the scatterplots, but there is too much overlap in morphological character variation to permit full separation of these species clusters from other similar species clusters. In the remaining species (those that showed no clear clustering on the CA dendrograms) the situation is even worse.

PCA of remaining species

Figures 3.2.28 to 3.2.30 illustrate the PCA analyses of the TOTAL data set containing those samples that showed no clustering in the CA dendrograms. No distinct clusters are visible.

Eigen values

None of the axes from any of the analyses containing all species was found to quantify more than 25% of the variability between the groups. The highest eigen values were found in the PCA of the six species data set, where the first axis quantified 31% of the variability (still a very low percentage).

Uninformative characters

The only characters that were never significant contributors to eigenvectors were "inner involucre scale width" and "outer involucral scale length/inner involucral scale length". All other characters were significant contributors to at least one analysis' first three axes.

Figure 2.3.22: Scatterplot of first and second PCA axes of TOTAL data set, only containing six species that showed best clustering in CA analysis. Dashed line indicates clearly distinct cluster separation.

Figure 2.3.23: Scatterplot of first and third PCA axes of TOTAL data set, only containing six species that showed best clustering in CA analysis. Dashed lines indicate clearly distinct cluster separation.

showed best clustering in CA analysis. Dashed line separates species clusters.

Figure 2.3.25: Scatterplot of first and second PCA axes of TOTAL data set (now including Ray Colour as an additional binary character), only containing six species that showed best clustering in CA analysis. Dashed lines and ovals indicates species clusters.

Figure 2.3.26: Scatterplot of first and third PCA axes of TOTAL data set (now including Ray Colour as an additional binary character), only containing six species that showed best clustering in CA analysis. Dashed ovals indicate species clusters.

Figure 2.3.27: Scatterplot of second and third PCA axes of TOTAL data set (now including Ray Colour as an additional binary character), only containing six species that showed best clustering in CA analysis.

Figure 2.3.28: Scatterplot of first and second PCA axes of TOTAL data set, excluding six species that showed best clustering in CA analysis. No clearly separate clusters are visible.

Figure 2.3.29: Scatterplot of first and third PCA axes of TOTAL data set, excluding six species that showed best clustering in CA analysis. No clearly separate clusters are visible.

Figure 2.3.30: Scatterplot of second and third PCA axes of TOTAL data set, excluding six species that showed best clustering in CA analysis. No clearly separate clusters are visible.

Table 2.3.5: TOTAL data (selected six species from CA): Impact of each character on each PCA axis (mo	ost
significant contributors highlighted in bold red) and total % variability accounted for by each PCA axis.	

Character	Axis1	Axis2	Axis3
Habit	0.3334	0.5869	0.614
Invset	-0.1266	-0.133	-0.5247
ParScl	0.3662	0.6692	-0.4762
InvBase	0.527	0.4949	-0.1024
LfSet	0.243	-0.3389	0.6742
LfMarg	0.4323	0.0052	0.7941
LfDiss	0.6025	0.2017	0.359
OIL	-0.6994	0.5643	-0.0062
OIW	-0.8031	-0.3647	0.0701
IIL	-0.5762	0.6702	0.2941
IIW	-0.5107	-0.466	0.2862
InvL	-0.88	-0.1179	0.1877
InvW	-0.794	0.1763	0.1712
LfLgth	-0.6439	0.5276	-0.028
LfWdth	-0.9511	-0.0536	0.073
StmLgth	-0.4876	0.6566	0.0815
LogOIRAT	0.0366	0.8585	-0.0674
LogIIRAT	-0.2205	0.8753	0.0977
LogOI/II	-0.2506	-0.0712	-0.4007
LogInvRAT	0.1411	-0.3688	-0.0326
LogLFRAT	0.6871	0.4818	-0.1136
% Variab.	31	24	12

Chapter 2: Results

Character	Axis1	Axis2	Axis3
PetCol	0.3274	0.2603	0.6581
Habit	0.3354	-0.5648	0.6444
InvSet	-0.1351	0.1201	-0.4194
ParScl	0.3221	-0.7024	-0.3835
InvBase	0.4875	-0.5372	-0.1692
LfIndu	0.2892	0.3667	0.6696
LfMarg	0.4532	0.0039	0.6675
LfDiss	0.6154	-0.2006	0.4232
OIL	-0.7199	-0.5262	0.0865
OIW	-0.7719	0.417	0.162
IIL	-0.5938	-0.6275	0.3268
IIW	-0.474	0.5074	0.2964
InvL	-0.8751	0.1576	0.1354
InvW	-0.7782	-0.1119	0.3417
LfLgth	-0.6629	-0.4926	0.0573
LfWdth	-0.9512	0.0939	0.0553
StmLgth	-0.5232	-0.6394	0.0652
LogOIRAT	-0.0103	-0.868	-0.0595
LogIIRAT	-0.2579	-0.861	0.1212
LogOI/II	-0.2569	0.0698	-0.3094
LogInvRAT	0.1247	0.3233	-0.3229
LogLFRAT	0.6722	-0.5047	-0.0244
% Variab.	30	23	13

Table 2.3.6: TOTAL data (selected six species from CA, now including Ray Colour as additional binary character): Impact of each character on each PCA axis (most significant contributors highlighted in bold red) and total % variability accounted for by each PCA axis.

Character	Axis1	Axis2	Axis3
Habit	0.2353	0.1312	0.0664
InvSet	-0.0225	0.5224	-0.0839
ParScl	0.4246	-0.0542	0.1035
InvBase	-0.0846	-0.2	-0.2284
LfIndu	0.2435	0.4599	0.2993
LfMarg	0.2599	0.2847	0.5984
LfDiss	0.277	0.4832	0.0672
OIL	0.7844	-0.4406	0.2032
OIW	0.3686	0.4299	-0.4296
IIL	0.7192	-0.4549	-0.052
IIW	0.5071	0.4017	-0.1126
InvL	0.5153	0.3959	0.1335
InvW	0.7668	0.4458	-0.1389
LfLgth	0.6419	-0.0417	-0.1609
LfWdth	0.1705	0.3105	0.5687
StmLgth	0.7249	-0.1059	-0.1879
LogOIRAT	0.4672	-0.6756	0.4617
LogIIRAT	0.338	-0.7479	0.0318
LogOI/II	0.2355	-0.0548	0.4237
LogInvRAT	-0.603	-0.2825	0.2696
LogLFRAT	0.3481	-0.3058	-0.6256
% Variab.	22	16	8

Table 2.3.7: TOTAL data (excluding six species from CA): Impact of each character on each PCA axis (most significant contributors highlighted in bold red) and total % variability accounted for by each PCA axis.

Discussion

Rieseberg *et al.* (1991) note that the number of morphological characters suitable for phylogenetic and systematic analyses is often very low, that morphological characters are often functionally or developmentally correlated, that much morphological variation is nonheritable (environmental), and that morphological characters often converge when exposed to similar selective pressures. Schilling & Panero (1996) also note that the potential for homoplasy in such analyses is enhanced by the fact that groups close enough genetically to produce hybrids when crossed will necessarily tend to have similar morphological potentials. Roessler (1959) considered hybridization to be one of the problems that confused the taxonomy of the genus *Gazania*. The presence of hybrid herbaria collections that display novel combinations of characters that point to obvious incidences of hybridization also add weight to this possibility (Roessler, 1959; pers. obsv.). The actual extent of hybrization that occurs naturally within *Gazania* has, however, not been investigated here, and this must render all discussion of such processes as speculative.

The Morphological Species Concept relies on species being recognizable by discontinuities in morphological characters. The results of these analyses bear out Roessler's comment that there are a few well-delimited, easily recognisable species. His list included *G. rigens*, *G. othonnites*, *G. lichtensteinii* and *G. tenuifolia*. The CA highlighted *G. rigens*, *G. lichtensteinii*, *G. tenuifolia*, *G. jurineifolia*, *G. heterochaeta*, and *G. linearis* subsp *ovalis* as distinct species. However, it should be noted that not all the *G. heterochaeta* samples grouped together in the CA results.

PCA analysis of all the samples in each data set resulted in no clear clusters being visible on scatterplots of the first three axes of each analysis. Some researchers indicate that PCA should not be used for "multiple sample" situations where there are several groups, due to a tendency to confound within- and between-group sources of variation (James & McCulloch, 1990).

The PCA of a smaller subset of six taxa, as highlighted by CA, revealed that *G. tenuifolia* is a morphometrically distinct species, clustering tightly and separately from other samples. For the other five taxa, there were rarely entirely discrete clusters, but rather general trends of certain species occurring in certain areas of the scatterplots, but with insufficient morphological discontinuity to make clusters properly distinct from each other. It is only with the addition of flower colour as an extra character to aid in the separation of *G. heterochaeta* and *G. jurineifolia* that species clusters become more distinct. Figure 2.3.26 is the only PCA figure to illustrate six separate species clusters, although there is still some marginal overlap between *G. rigens* and *G. linearis* subsp *ovalis*.

Non-distinct taxa

The remaining species, when subjected to PCA, show no pattern of separation or clustering at all. Roessler (1959) stated that amongst the remaining taxa that are not distinctly different, relationships are so close and characteristics overlap to such a degree that a clear separation becomes impossible. The lack of clear signal in the morphometric analyses bears out his observation. Although the extremes of two or more taxa may be distinct when they are compared with each other, there may be so many intermediates that obvious lines of demarcation between states are unclear (Stevens, 1991).

This is a typical problem faced by systematists: the need to determine where, if at all, groups occur within a more or less continuous range of variation (Kores *et al.*, 1993). The problems seen in *Gazania* are quite common in plant systematics. A similar example exists in the *Viola alba* complex (Violaceae), where the taxa express high variability on the regional, local, and the individual scale (Marcussen, 2003). As with *Gazania*, this variation has brought about the description of large numbers of taxa of various taxonomic rank and distribution (Marcussen, 2003).

Another example exists in the *Euphorbia esula* group (Crompton *et al.*, 1990) where, again, several taxa were so similar that no clear separation into species groups could be accomplished. *Quercus* is notorious for interspecific hybridization, such that species tend to form a morphological continuum instead of separate or clear clustering (Borazan & Babac, 2003). In Borazan & Babac's (2003) study, PCA analyses could not clearly separate the four taxa belonging to the subgenus under scrutiny. *Lupinus nanus* (Leguminosae) offers another similar result, where no groups corresponding to infraspecific taxa could be distinguished by any single character or by a combination of characters (Riggins *et al.*, 1977). Specimens of any sample could not be identified with certainty and the range of variation in each sample is so extreme that consistent assignment is virtually impossible (Riggins *et al.*, 1977).

Apart from natural variation in *Gazania*, the possibility of contamination from "naturalized" garden escapes cannot be discounted. The presence of large (apparently naturally occurring) populations of anomalous large pink-flowered *Gazania* (possessing character combinations that do not naturally appear in any wild type species) on the south western coast (R. McKenzie, pers. comm.) highlights this issue.

Comparative data signal between ratios and size data

The raw size data and the ratio shape data both generated similar results, and inclusion of both ratio and size data in the same data set did produce better groupings. Ratio data appears to cause more scattering of samples and less separation between some groupings than raw size data. The tightest species clusters in CA were produced by the TOTAL data set.

Comparative analysis methods for morphometric analysis

Henderson (2006) notes that some authors (such as James & McCulloch, 1990) consider that PCA should not be used for multiple samples (a restriction which would entirely eliminate its usefulness in systematics); but he also notes that this opinion is not shared by others (e.g. Humphries *et al.*, 1981; Boyd, 2002; Chandler & Crisp, 1998). Chandler & Crisp (1998) successfully used PCA on a large data set of 150 samples which contained both quantitative and qualitative characters.

CA and PCA are exploratory methods, in that they require no *a priori* knowledge of species groupings, but rather search for groupings within a collection of samples (Henderson, 2006). These most commonly utilized morphometric data analysis methods have produced the same result: some few species (and one subspecies) are distinct, the remaining species overlap in morphological traits to such an extent that no clear disjunction exists. Although some authors indicate that PCA's method of reexpressing a large number of original variables into two or three new uncorrelated variables (such that they retain most of the original variation) can be used to uncover unexpected relationships (Ackerfield & Wen, 2002), there is little difference from the species cohesion achieved with CA.

Conclusion

Under the MSC, there are six distinct taxa within *Gazania* that correlate with Roessler's (1959) taxa. These are:

- 1) G. jurineifolia,
- 2) G. lichtensteinii,
- 3) G. linearis subsp ovalis,
- 4) *G. rigens*,
- 5) G. heterochaeta, and
- 6) G. tenuifolia.

The remaining species show no clear morphological separation. While morphometrics is recognized as a valuable component of what systematists do (Jensen, 2003), there are other sources of data to investigate phylogeny. To this end, a DNA phylogeny is necessary to investigate the status of Roessler's species.

Chapter 3.

Molecular systematics of Gazania at the species level

"The genus ... comprises a number of well-delimited and recognisable species. Between the remaining taxa, such close relationships and overlaps of characteristics exist that a clear separation becomes impossible." (Roessler, 1959, pp 100, translated from the original German).

<u>Aim:</u> To use DNA sequence data to determine the status and relationships of the taxonomic entities ("species") as delimited by Roessler and the morphometric analysis conducted in Chapter 2.

Introduction

There are a number of different species concepts in used in biology today (22 at last count by Mayden, 1997). The different ways species arise and are described is crucially linked to the comprehension of biodiversity and evolution (de Meeus, 2003). For systematists, the question of "by what criteria shall species taxa be identified" lies at the heart of the species concept debate (Hey *et al.*, 2003). Historically, and until the recent development of molecular tools, taxonomic groups (species) have been identified using morphological criteria alone ("morphospecies"). This has left uncertainty in some cases as to the validity, and support, of groups delineated using these criteria (Hendry *et al.*, 2000).

While morphological data has traditionally been used to delimit species and continues to be widely used today, recent studies have used DNA sequence data to test these morphology-based taxonomies (Wiens *et al.*, 2002). One of the species concepts that has come into use with DNA sequence data is that of the Phylogenetic Species concept (PSC). While various formulations of the PSC have been advanced (e.g. Wheeler & Platnick, 2000; Mishler & Theriot, 2000), all agree that species recognition should emphasize criteria of phylogenetic relationship (descent) and not reproductive relationships (as endorsed by the Biological Species Concept; Avise, 2000).

The PSC defines a species as "... the smallest aggregation of populations (sexual) or lineages (asexual) diagnosable by a unique combination of character states in comparable individuals" (Nixon & Wheeler, 1990). The question of the demarcation used to define an entity as a species or a subspecies (i.e. how much genetic divergence defines a species) based on the PSC is difficult to answer (Wheeler & Platnick, 2000). Hey *et al.* (2003) note that whatever the decision taken regarding

demarcations, one must also recognize that the decision may be an oversimplification demanded by the practical concerns of the research.

DNA sequence data as a tool for reviewing existing taxonomy

With the advent of DNA sequencing technology came access to additional sources of data for testing and revising the taxonomy of existing systematic and species delimitations. For plants, these sources are the three genomes present in the plant cell: nuclear, chloroplast and mitochondrial. Traditional morphometric analysis can only generate and use a relatively small set of characters, whilst DNA sequence data can generate thousands of potentially informative characters. When hundreds (or even thousands) of molecular characteristics are assayed among various organisms, any widespread and intricate similarities present in these macromolecules are highly unlikely to have arisen by convergent evolution and thus must reflect true phylogenetic descent (Avise, 2004).

The proven track record of DNA sequence data as a valuable tool for phylogeny reconstruction and species delimitation (e.g. studies by Bayer *et al.*, 1996; Jeandroz *et al.*, 1997; Manos *et al.*, 1999; Peterson *et al.*, 2004) makes it an ideal alternative means to explore the validity of the six discrete morphological entities uncovered using "traditional" morphological methods in Chapter 2, as well as Roessler's (1959) 16 species. It is, likewise, a means to investigate further the other less discrete, overlapping taxa that were unable to be satisfactorily separated by means of morphometric analysis.

When choosing loci for phylogenetic inference, the first step is to determine sequence variability over a small sample of taxa; as a matter of practicality, regions that present difficulty in either amplification or sequencing are often eliminated in this preliminary step (Mort *et al.*, 2007). There are many genes in several different regions of the plant genome that can be used, but for the purposes of this project, the nuclear ITS and ETS regions, and several chloroplast regions were selected following preliminary screening trials of multiple noncoding regions. Because ITS and ETS mutates faster than chloroplast DNA (Albach & Chase, 2004), at low level taxonomic studies, where the level of divergence between target taxa may be very low, a fast-changing set of characters would provide more information than a slower or invariant character set. The ITS and ETS have proven useful at low taxonomic levels, as their rapid evolution makes them useful in phylogenetic studies where little or no variation in chloroplast genes is found (Jeandroz *et al.*, 1997).

The choice of chloroplast regions may be made either on length or number of parsimony informative characters. Mort *et al.* (2007) note, however, that the absolute number of parsimony informative

characters is not entirely predictive of ability to resolve nodes with support, and that there may be no significant correlation between the number of aligned characters and the number of parsimony informative characters. Phylogenetic utility of any particular region may vary significantly among lineages, and two important measures of utility are resolution (loci that resolve many relationships but exhibit homoplasy are more useful than those that provide neither resolution nor conflict) and the degree to which data provide support for resolved clades (Mort *et al.*, 2007). It should also be noted that a region that provides the most characters (and the most parsimony informative characters in some groups) may not be especially useful in supporting nodes in general (Mort *et al.*, 2007).

The nuclear genome: Multicopy nuclear markers (ITS and ETS)

Eukaryote nuclear ribosomal DNA (nrDNA) is commonly utilized and consists of tandem repeat units, with each unit containing 18S, 5.8S and 26S nrDNA (Hung *et al.*, 2004). The 18S and 26S nrDNA code for the small and large ribosomal subunits respectively (Soltis & Soltis, 1998). These repeat units are organized into arrays, with each array containing hundreds to thousands of identical to near-identical repeats (Wendel *et al.*, 1995). These nrDNA arrays are typically located in the nucleolar organizing region (NOR), of which there may be several present on several different chromosomes (Soltis & Soltis, 1998; Muir *et al.*, 2001). Intragenomic nrDNA diversity is generally low (Buckler *et al.*, 1997), these repeats having become homogenised by evolutionary forces (e.g. unequal crossing-over, gene conversion) that are collectively referred to as concerted evolution (Wendel *et al.*, 1995). Regardless of small differences being reported between nrDNA families located in different chromosomal positions, in a phylogenetic context the nrDNA has been treated as a single-copy gene (Muir *et al.*, 2001).

The Internal Transcribed Spacers (ITS) and the External Transcribed Spacers (ETS) are part of this nrDNA. Figure 3.1.1 illustrates their proximity to each other and the other portions of the nrDNA tandem repeats. The ITS1 region lies between the 18S and 5.8S genes while the ITS2 region lies between the 5.8S and 26S genes. The ETS and the Nontranscribed Spacer (NTS) make up the Intergenic Spacer (IGS) that joins the repeats of 26S and 18S.

Figure 3.1.1: Diagrammatic representation of the nrDNA regions. ITS = Internal Transcribed Spacer, ETS = External Transcribed Spacer, NTS = Nontranscribed Spacer, IGS = Intergenic Spacer. Boxes indicate functional rDNA genes.

It should be noted that because the ETS is part of the same transcription unit as the ITS region, it cannot be regarded as an independent line of phylogenetic evidence for comparison with ITS results (e.g. for identifying factors such as lineage sorting or hybridization that may have lead to deviation between rDNA tree and species tree; Baldwin & Markos, 1998). There are some instances where ITS alone has been used for phylogenetic reconstruction, or biogeographic studies (e.g. the Bellarosa *et al.* (2005) study on *Quercus* spp. did not use any other gene region than ITS), and although mention is made of ETS, this is not generally considered a separate gene system for these purposes.

The effectiveness of concerted evolution on the ITS region in most plants makes it the primary choice for phylogenetic reconstruction at lower taxonomic levels (Campbell *et al.*, 2005). However, this process of homogenization proceeds faster within chromosomes than it does among chromosomes, leading to the possibility of differing copies being located on different chromosomes (O'Kane *et al.*, 1996). If concerted evolution is slower than speciation, then a single individual will contain divergent paralogues (Buckler *et al.*, 1997). Intra- and inter-individual variation for nrDNA types has been found in several plant species, with up to five copies found among and within individuals of two species of *Picea* (O'Kane *et al.*, 1996). Unidentified paralogous relationships and infrequent recombination between paralogues can result in erroneous species phylogenies (Buckler *et al.*, 1997).

There is also some ambiguity as to how concerted evolution generally operates in the ETS (Linder *et al.*, 2000). Because the ETS is part of the 18S-26S nrDNA repeat, it is often assumed that concerted evolution will homogenize it in the same way that it does the ITS, but the presence of a small number of large (130 bp) tandem repeats at the 5' end of the ETS may hinder or alter the rate of concerted evolution as the repeats in the NTS appear to do (Linder *et al.*, 2000).

The ITS region in angiosperms can range in size from 565 to 700 bp (Liston *et al.*, 1996). The IGS varies considerably in length, from 1 to 8 kb (Soltis & Soltis, 1998), but the entire IGS in *Gazania* is recorded as having a length of 1.3 kb (Linder *et al.*, 2000). Usually, rather than amplifying the entire IGS or ETS, a highly variable region of around 600-700 bp near the 18S end is utilized (e.g. Bena *et al.*, 1998; Clevinger & Panero, 2000; Linder *et al.*, 2000).

The use of the ITS region is not without its critics. Alvarez & Wendel (2003) firmly recommend that ITS should not be routinely used phylogenetic analyses, and recommend using single-copy nuclear loci instead. They cite several genetic processes that can confound accurate phylogenetic reconstruction, including: array duplication events, pseudogenes, and incomplete homogenization of sequences in different arrays (Alvarez & Wendel, 2003). The ITS region is also accused of being prone to high levels of homoplasy (possibly due to fast evolution of the ITS region), and this can mask the phylogenetic signal (Alvarez & Wendel, 2003). Additionally the presence of reticulation may obscure the phylogenetic signal (Alvarez & Wendel, 2003).

The chloroplast genome

Organelle genomes provide ideal markers for phylogeny reconstruction because their sequences record the history of a lineage uncomplicated by recombination (Harrison, 1991). The chloroplast (cp) genome offers many advantages for phylogenetic reconstruction, including the fact that the genome is small (Soltis & Soltis, 1998). Further advantages include the fact that the cpDNA genes are all linked with each other, and thus the plastid genome behaves as a single recombination unit; all the parts of the genome should have the same pedigree within species (and the same phylogenetic history among species) and should therefore contain the same phylogenetic signal in all DNA regions (Graham *et al.*, 1998; Albach & Chase, 2004).

There are three functional categories of DNA in the cp genome: (i) non-coding regions that do not code for transfer RNA, ribosomal RNA or proteins; (ii) coding genes (rRNA and proteins); and (iii) chloroplast introns (Clegg *et al.*, 1995). The cpDNA genome is extremely condensed compared to nrDNA and most of the noncoding DNA in the chloroplast genome is found in very short segments separating functional genes (Clegg *et al.*, 1995). It also accumulates nucleotide substitutions relatively slowly (Palmer, 1987) and has a lower rate of intraspecific mutation than nuclear DNA (Palmer & Zamir, 1982; Clegg *et al.*, 1984a; Clegg *et al.*, 1984b; Perl-Treves & Galun, 1985) which has made the chloroplast genome an ideal focus for studies of plant evolutionary history (Clegg *et al.*, 1995).

Because the cp genome is free from recombination, and inherited as a single unit, cpDNA sequences from different regions can readily be combined (Soltis & Soltis, 1998). The presence of different genealogical histories can be ruled out if there is any incongruence between cpDNA data sets, so any incongruence can be ascribed to differing functional constraints, as rates and modes of evolution are known to differ substantially in different parts of the cp genome (Graham *et al.*, 1998; Albach & Chase, 2004). If these processes are sufficiently strong, they may be a source of any tangible differences in trees that are inferred from separate parts of the cp genome (Graham *et al.*, 1998). Sequencing a second plastid marker is thus necessary to support the hypothesis that the results from the first plastid marker represent the phylogenetic signal of the plastic genome, despite relatively few potentially informative characters (Albach & Chase, 2004).

Different portions of the cp genome evolve at different rates, and at different rates across different lineages (Small *et al.*, 2005). A direct consequence of this is that the phylogenetic utility of different noncoding cpDNA regions within a given taxonomic group can vary tremendously (Shaw *et al.*, 2005). In principle, cpDNA sequencing should involve the selection of a sequence whose substitution rate is appropriate to the phylogenetic problem at hand (Olmstead & Palmer, 1994). To this end, a number of regions were screened to determine if they could provide the necessary intrageneric, specific and intraspecific variability among the species of *Gazania*.

Shaw *et al.* (2005) compiled a list of 21 variable and informative noncoding cpDNA regions sampled across all of the major lineages of flowering plants. From this, a selection of primers could be chosen for trial. Of all the lineages amplified, the clade that *Gazania* falls into had a very low level of cpDNA variability across all the regions tested. The region with the highest percentage variability for the Eupatorium clade (which *Gazania* falls into) was the *psbA-trn*H region (also referred to by some authors as the *trn*H-*psb*A region, and titled in full *trn*H^{GUG}-*psb*A by Shaw *et al.*, 2005). The next highest variable regions for the Eupatorium clade was the *trn*C^{GCA}-*ycf*6-*psb*M region, and the other most variable regions across all angiosperms were *trn*S-*trnf*M, *trn*T-*trnL*, *rp*S16 and *trn*L-*trn*L-*trn*F. These six regions were therefore investigated for potential utility in a subset of *Gazania* samples, and a subset of three of these regions was selected (Appendix 3 for details of screening procedure). The final choice of cpDNA data sets was composed of sequences from the *psbA-trn*H, *rp*S16 and *trn*LF regions.
The *psbA-trn*H region has been used in phylogenetic studies at the intrageneric level (Olmstead & Palmer, 1994; Gielly *et al.*, 1996; Sang *et al.*, 1997; Kim *et al*, 1999; Chandler *et al.*, 2001) as well as at the intraspecific level (Hamilton, 1999; Holdregger and Abbott, 2003).

The *rp*S16 is not as widely used as other cpDNA regions, but is typically more informative than the *trn*LF region (Shaw *et al.*, 2005). It has proven useful at the genus level, in *Gunnera* (Wanntorp *et al.*, 2001; Wanntorp & Wanntorp, 2003), *Cymopterus* (Downie *et al.*, 2002) and *Alectryon* (Edwards & Gadek, 2001) and has also been used successfully at species level in *Silene aegaea* (Popp & Oxelman, 2001).

The *trn*LF region is comprised of the Group I intron that interrupts the *trnL* gene, and the intergenic spacer between the *trnL* and *trn*F genes (Shaw *et al*, 2005). This region one of the most commonly used non-coding regions of cpDNA in phylogenetic studies (Sang *et al.*, 1997; and papers listed therein). The *trnL* intron and *trnL-trn*F spacer regions are easily co-amplified together using the "c" and "f" primers of Taberlet *et al.* (1991) and are often used as a single region (Shaw *et al.*, 2005). Due to the near-universal nature of the primers and their early publication, these regions have become the most widely used noncoding cpDNA sequences in plant systematics (Shaw *et al.*, 2005). The *trn*LF region has been used at many levels of phylogenetic study, including the intrageneric and species level (Olmstead & Palmer, 1994; Mes and t'Hart, 1994; Gielly *et al.*, 1996; Sang *et al.*, 1997; Chandler *et al.*, 2001).

Methods

Study samples

43 samples were collected from all 16 species and ten subspecies of *Gazania*, details of which are presented in Table 3.2.1. Two samples per taxa were used to investigate the monophyly of each taxon. All specimens were identified by using Roessler's key to *Gazania* (Roessler, 1959), to enable the testing of the validity of the current species recognized by Roessler. Three outgroup samples, one each from close sister genera *Berkheya*, *Hirpicium* and *Gorteria*, were also included. One sample of a putative new species (*G. sp. nov.*) is also included. This specimen was collected by L. Mucina (Univ. Stellenbosch) and is considered by him to be a new species (this is not a final designation, pending the collection of further samples and further investigation). Both the *G. othonnites* and the *G. sp. nov*. samples have grey (glaucous) leaves with a certain amount of fleshy succulence, although they show very different leaf morphology in other aspects (the *G. othonnites* sample has equal numbers of entire and pinnate leaves that are glaborous, while the *G. sp. nov*. sample has entire, roughly hispid leaves). Both samples come from the same geographical area (around Springbok in the Northern Cape).

DNA was extracted from all samples using a CTAB DNA extraction protocol (Doyle & Doyle, 1987). Multiple samples of each species and subspecies were used where possible to test for species monophyly. Although cloning of nrDNA samples would counteract the possible effects of multiple ITS/ETS paralogues, the budget required for cloning of all sequences is beyond the reach of this research project.

PCR amplification and sequencing

The PCR reagents and their volumes are presented in Table 3.2.2. Primers, annealing temperatures and number of cycles necessary to ensure clean product for each region are presented in Table 3.2.3.

	10x buffer	dNTPs	Primer1	Primer2	DNA	MgCl ₂	BioTaq	H ₂ O
nrDNA	5	2	2	2	2	1	0.25	34
cpDNA	"	"	"	"	"	4	"	31

Table 3.2.2: Table of PCR reagents, all units in microlitres.

 $MgCl_2 = 50$ mM solution of $MgCl_2$ provided with enzyme and 10x buffer.

For some samples a DNA dilution of 1:20 or 1:100 in dH_2O was necessary to counteract the effects of putative contaminants that prevented successful PCR amplification at full DNA concentration. PCR

amplifications were conducted either on a ThermoHybaid PCRSprint Temperature Cycling System or a Corbett Research PC-960G Microplate Gradient Thermal Cycler. The following standard conditions were used (although annealing temperature varied as per Table 3.2.3): 95°C for 1 min, 52°C for 1 min and 72°C for 3 minutes, repeated between 30 and 40 cycles, with a 10 minute 72°C extension period at the end of the PCR program.

PCR product was run on 1% agarose gels, which consisted of 0.5g agarose in 50ml TBE buffer (10.8g Tris(hydroxymethyl)aminomethane, 5.5g Boric acid and 0.93g EDTA made up to 1L with distilled water). Each gel contained 20 μ l ethidium bromide (0.5 μ g/ml) and the PCR products bands were visualised using a UV transilluminator. A clean clear bright band was taken as a positive result. Any smearing indicated an unsatisfactory PCR result, and PCR conditions were altered as necessary to reduce smearing (e.g. a reduction in number of cycles; a reduction in quantity of primers used in the PCR reaction).

The PCR product was cleaned using the PROMEGA Wizard SV Gel and PCR purification kit and resuspended in 30µl of dH₂O. The final product was checked for purity and concentration by running 1µl of the product, with 5µl water and 5µl of a loading buffer (Bromophenol blue and xylene cyanol in glycerol) on a 1% Agarose gel that contained 15µl of ethidium bromide (0.5µg/ml) and visualised by means of a UV transilluminator. Cleaned PCR product was sequenced using ABI prism BigDye Terminator v3.1 Ready Reaction Cycle sequencing kit (Applied Biosystematics) according to manufacturer's instructions with the primers listed as sequencing primers in Table 3.2.3.

Primer development for ITS and ETS amplification and sequencing

Figure 3.2.1 illustrates the starting positions and directionality of primers used to amplify and sequence in the ITS region. Boundaries of ITS1, ITS2 and the 5.8S regions were determined by comparison with published sequences of Asteraceae ITS (Goertzen *et al.*, 2003).

Figure 3.2.1: Diagrammatic representation of the ITS regions with primer start points and directionality. Boxes indicate functional rDNA genes.

Species	subspp	Sample(s)	Locality	South	East
caespitosa		RVC307	South Africa. Graaff-Reinet: Koudeveldberge, summit	32° 7' 30"	24° 7' 30"
caesphosa		RVC_SR448	South Africa. Somerset East: Koudeberg, summit, Groot Vallei Farm.	32° 19' 50"	25° 00' 23"
ailiaria		RM1230	South Africa. Cape Town: Paarlberg.	33° 45' 8"	18° 57' 5"
cillaris		RM1382	South Africa. Clan William: Piketberg plateau	32° 48' 41"	18° 42' 40"
heterochaeta	ı	RM1429_1	South Africa. Steytlerville: T2 road Steytlerville - Grootrivierpoort; 5km N Rietfontein turn	33° 22' 30"	24° 22' 30"
		RM1451	South Africa. Springbok: 5km N Steinkopf, beside N7 highway	39° 14' 4"	17° 45' 20"
	iurinaifolia	RM1518	South Africa. Steynsburg: Eastern Cape: Conway, Alberta Farm.	31° 40'	25° 15'
in min aifalia	Juimenona	SR682	South Africa. Gamoep: 18km W of Aggeneys (between Springbok & Pofadder)	29° 22' 46"	18° 38' 53"
Jurmenona	s aa b ra	CAM1604	Namibia. Witputz: Karas	27° 22' 30"	16° 07' 30"
	scabla	CAM2652	Namibia. Aus: In road verge on road between Aus and Rosh Pinah, in red sand	26° 45' 41"	16° 17' 21"
	1	RM1114	South Africa. Fort Beaufort: Road to Bedford, R350.	32° 41'	26° 05'
	Krebstatia	RM1136	South Africa. Colesberg: W of Venterstad, R58, 2km E of Gelykfontein farmstand.	30° 47'	25° 47'
krobsiono		RM868	South Africa. Kenhardt: Rooipan, southeast of Lime Acres.	29° 47'	21° 56'
Kiebsialia	arctototdes	RM876	South Africa. Aliwal North: Bloemfontein	30° 19'	26° 48'
	aamulata	RM965	South Africa. Lady Frere: 13km SW Elliot on R56 road.	31° 19'	27° 57'
	serrurata	RM863	South Africa. Olifantshoek: southeast of Beeshoek	27° 45'	22° 37'
leiopoda		RM1309	South Africa. Kamiesberg: Roadside.	30° 24' 38"	18° 03' 09"
lelopoda		M240901	South Africa. Calvinia: Nieuwoudtville, near turnoff to Rondekop.	31° 23' 23"	19° 11' 00"
lichtensteini	i	CAM1916	Namibia. Luderitz: Gleckonberg West.	26° 22' 30"	15° 52' 30"
nemensterin	1	RM1249	South Africa. Wuppertal: beside R355 road near Tankwa Karoo National Park.	32° 10' 30"	19° 42' 47"
	linearis	RM1010	South Africa. Stanger: Mzimpunzi river mouth, Pondoland.	29° 13' 28"	31° 29' 51"
linearis	linearis	SH113	South Africa. Stutterheim: 10km out of Stutterheim	32° 34'	27° 25'
means	ovalis	RM854	South Africa. Grahamstown: north of Bathurst	33° 30' 18"	26° 49' 53"
	ovuns	ND_Havens	South Africa. Butterworth: The haven, Transkei	32° 14' 50"	28° 54' 17"
maritima		M290606_6	South Africa. Simonstown: Table Mountain National Park, Diaz beach	34° 21' 12"	18° 25' 54"
martina		RM1038	South Africa. Bredasdorp: Cape Agulhas, about 2km E of actual cape, on shoreline.	34° 48' 48'	20° 02' 48"
othonnites		RM1306	South Africa. Springbok: Kleinzee, Molyneuz trail	29° 41' 27"	17° 05' 40"
nectinata		M120903_5	South Africa. Clanwilliam: Western Cape Province, Piketberg, Sauer, Uitvlug turnoff.	32° 50' 17"	18° 33' 14"
Peetinaid		RM1044_3	South Africa. Caledon: Agulhas peninsula, Bredasdorpberge.	34° 29' 47"	19° 53' 39"
rigens	rigens	RM763	South Africa. Grahamstown: Kasouga Beach.	33° 39'	26° 22'

Table 3.2.1: List of all samples used in DNA species-level phylogeny, including collection locality data.

-					
		SR463	South Africa. Stanger: Tugela River mouth	29° 13'	31° 30'
laugalaana		RM773	South Africa. Knysna: Plettenberg Bay	34° 02'	23° 22'
	leucolaella	RM952_1	South Africa. Humansdorp: Cape St Francis, in sand on rocky shoreline	34° 12'	24° 50'
	uniflora	RM920	South Africa. Grahamstown: SE of Cannon Rocks.	33° 44'	26° 33'
	unnora	JC201205	South Africa. Port St Johns: Lupatana, Pondoland, dunes between rocks and bush.	31° 25' 20"	29° 51' 15"
rigida		RM840	South Africa. Caledon: 3		19° 26'
Tigiua		M280902	South Africa. Oudtshoorn: Oudtshoorn, turn off to Zebra 3		22° 20' 07"
schenckii		CAM2727	Namibia. Luderitz: Griffith bay area, in kloofs between rocky gneiss ridges	26° 40' 12"	15° 08' 00"
aamata		RM898	South Africa. Worcester: Robertson on R60 road.	33° 48'	19° 53'
serrata		M250904_15	South Africa. Simonstown: Helderberg strand, R44 between Nautilus & Octopus streets	34° 08' 31"	18° 51' 06"
topuifolio		CAM1601	Namibia. Witputz: Arras	27° 22' 30"	16° 07' 30"
tenunona		M7230	South Africa, Springbok: Goegap Nat Res, Bleshoek	29° 41' 31"	17° 58' 46"
sp. nov. M0		M040906_33	South Africa. Hondeklipbaai: Hondeklipbaai, coast at police station	30° 19' 22"	17° 16' 21"
Collector ab	breviations: R	M = Robert McI	Kenzie, M = Laco Mucina, CAM = Colleen Mannheimer, SR = Syd Ramdhani, JC = Jessica	a Cockburn, RV	C = Ralph
Clark, ND =	Nico Devos.				

Chapter 3: Methods

Name	Use	Reference	Sequence	Anneal Temp	No. Cycles
ITS					
Leg18SF	Amplification		GTC CAC TGA ACC TTA TCA TTT AGA GG	52°C	30-40
Leg26SR	Amplification		GCC GTT ACT AAG GGA ATC CTT GTT AG		
ITS1	Sequencing	White et al. 1990	TCC GTA GGT GAA CCT GCG G		
ChrysITS4	Sequencing		TCC TCC GCT TAT GGA TAT GC		
Chrys5.8F	Sequencing		GAC TCT CGG CAA CGG ATA TC		
Chromo5.8R	Sequencing	Barker et al., 2003	GAT TCT GCA ATT CAC ACC		

Table 3.2.3: Primer names, uses, authors, sequences, PCR annealing temperature and number of cycles.

ETS					
ETS 18S	Amplif/Seq	Linder et al., 2000	ACT TAC ACA TGC ATG GCT TAA TCT	51°C	35
ETS 1F	Amplification	Linder et al., 2000	CTT TTT GTG CAT AAT TGA TAT ATA GGG G		
ETS IntF	Sequencing		ACC AGC TGA TGG ACA AG		
ETS IntR	Amplif/Seq		ACC ACC CGA CTA GTA GCC		

psbA-trnH					
psbA	Amplif/Seq	Sang et al., 1997	GTT ATG CAT GAA CGT AAT GCT C	53°C	30
trnH	Amplif/Seq	Sang et al., 1997	CGC GCA TGG TGG ATT CAC AAA TC		

rpS16					
Rps16F	Amplif/Seq	Oxelman et al.,1997	GTG GTA GAA AGC AAC GTG CGA CTT	52°C	30
Rps16R2	Amplif/Seq	Oxelman et al.,1997	TCG GGA TCG AAC ATC AAT TGC AAC		

trnLF					
tab c	Amplif/Seq	Taberlet et al., 1991	CGA AAT CGG TAG ACG CTA CG	53-55°C	30-35
tab d	Amplif/Seq	Taberlet et al., 1991	GGG GAT AGA GGG ACT TGA AC		
tab e	Amplif/Seq	Taberlet et al., 1991	GGT TCA AGT CCC TCT ATC CC		
tab f	Amplif/Seq	Taberlet et al., 1991	ATT TGA ACT GGT GAC ACG AG		

Initial ETS amplification of ± 10 samples using the "ETS18S" and "ETS1F" primers of Linder *et al.* (2000) (Table 3.2.3) showed intermittent success. Addition of Bovine Serum Albumen (BSA, 10μ g/ml) and dilution of DNA template (1:100 dH₂O) was sometimes necessary to amplify the entire 1.3 kbp of the ETS region. Even so, amplification success was limited and sequencing using the "ETS1F" primer was never successful. Additionally, there were multiple amplification products in several samples (as seen by the presence of up to three clear different sized bands on agarose gels).

Using sequences obtained with the "ETS18S" primer, two stable invariable regions were found (located approximately 460 bp and 760 bp from the 18S end of ETS) and used for the design of internal primers (see Table 3.2.3 for details, Figure 3.2.2). The use of the "ETS IntF" primer in conjunction with the "ETS18S" for PCR amplification significantly increased the success rate. 763 bp of the 18S end of the ETS region were amplified for the remaining samples. A second internal primer

"ETS IntR", located approx 460 bp from the 18S end, was utilized as an internal reverse sequencing primer. Extremely troublesome samples could be amplified successfully with the addition of a 1:1000 dilution of the "ETS IntR" primer to stimulate elongation of the ETS region.

Figure 3.2.2: Diagrammatic representation of the IGS regions with primer start points and directionality. Boxes indicate functional rDNA genes.

The *trn*L intron and *trn*L-*trn*F spacer were co-amplified in most cases, with the primer pair of "tab c" and "tab f". If amplification of this region in one segment was not successful, "tab c" and "tab d" were used to amplify the *trn*L intron and "tab e" and "tab f" were used to amplify the *trn*L-*trn*F spacer separately.

Sequence checking and alignment

Sequence data was checked and edited using SEQUENCHER (Version 3.1.1; Gene Code Corporation). Assembled sequences were exported from Sequencher, and imported into MACLADE (Version 4.06; Sinauer Associates, Inc.) and aligned manually by eye.

As the nuclear genome is biparentally inherited, two or more divergent copies of the ITS and ETS regions may be present in one organism. When the pool of divergent paralogous copies is sequenced, ambiguous bases (where two peaks of equal height occur at the same point in the electropherograms) are found. The presence of these ambiguous base calls (nucleotide additivity) has been considered evidence of the presence of multiple copies (Noyes, 2006; Dobeš *et al.*, 2004). For this reason, the IUPAC (international) ambiguity coding was utilized for the nuclear data where clear multiple paralogous copies were sequenced. The ILD test as implemented in PAUP* (as the Partition Homogeneity Test) was used to investigate possible incongruence between the various data sets, using simple addition and TBR branch swapping, for 100 replicates, saving the 500 most parsimonious trees per replicate.

Treatment of gaps

Different methods of treating gaps in analyses can influence the resulting phylogenetic hypothesis (Simmons & Ochoterena, 2000, and papers listed therein). Treatment of gaps can vary widely, from secondarily mapping gaps onto the tree inferred from base characters alone, to treating all gaps as separate characters or character states (Simmons & Ochoterena, 2000). Gaps are often not included in phylogenetic analyses, because presumed identical gaps may in fact have multiple origins in unrelated taxa (Johnson & Soltis, 1995; Simmons & Ochoterena, 2000). For *Gazania*, gaps are omitted from the analyses, but mapped onto the branches of the final phylogenetic tree. Exclusion of gaps allowed for a conservative approach to analysis of the data, and inclusion of the gaps did not influence the final phylogenies or significantly alter the support for clades and thus were not given additional consideration.

Testing for incongruence

Advocates of conditional combination have argued that testing for incongruence between data partitions is an important step in data exploration (Cunningham, 1997). If two data sets are congruent (i.e. they track the same underlying history) then it should not matter which characters are assigned to which data set, the resulting trees should remain the same (Kellogg *et al.*, 1994). The higher the incongruence between data partitions, the larger the homoplasy that arises when the partitions are combined (Ramirez, 2006). Some authors note that data partitions should be considered to be combinable if and only if they are not strongly incongruent with one another (Hipp *et al*, 2004). Siddall (1997) cautions, however, that incongruence and combinability are different things.

Dowton & Austin (2002) comment that the most generally used assessment of congruence is the Incongruence Length Difference (ILD; Mickevich & Farris, 1981; Farris *et al.*, 1994), also known as the partition homogeneity test (Swofford, 2001). Although the ILD test was intended to detect the presence of strongly supported character conflict ("hard" incongruence) among individual data sets within a combined analysis, the test has gained wide usage in parsimony analyses as a general test of combinability (Barker & Lutzoni, 2002). The reason for this is that evidence for phylogenetic incongruence can be interpreted as being indicative that data partitions have different evolutionary histories (Ramirez, 2006).

There are several versions of the ILD (summarised in detail by Dowton & Austin, 2002). The ILD test with multiple randomizations as described by Farris *et al.* (1994) is the most commonly used, and is the one implemented in the PAUP* software package used for phylogenetic analysis of the *Gazania*

data sets. Barker & Lutzoni (2002) describe the ILD (as based on the ILD index of Mickevich & Johnson, 1976), which measures the proportion of inferred homoplasy attributable to the combination of individual data sets or partitions, which may each require conflicting minimal-length topologies. The ILD test first calculates the sum of the lengths of the two original trees, then all the characters are randomly partitioned into two new data sets (of the same size at the original two), and the two most parsimonious trees are computed and their lengths summed (Kellogg *et al.*, 1994). This is repeated to generate a distribution of the sums of tree lengths, and if the total length of the observed data falls within the distribution of the random data sets, then the division of the two data sets is inferred to be arbitrary, and there is no significant difference (incongruence) between them (Kellogg *et al.*, 1994). Otherwise, if the total length of the observed data sets falls outside of 95% of the randomly partitioned data, the data sets are considered to be significantly incongruent.

Despite some criticism (Albach & Chase, 2004; Barker & Lutzoni, 2002; Ramirez, 2006), the ILD has become a standard procedure in phylogenetic analyses involving more than one data set (Ramirez, 2006). Simulation studies have demonstrated that significant ILD test P values (i.e. p < 0.05, which is the original cut-off point suggested by Farris) even down to as low as p < 0.001 should not preclude data set combination (Yoder *et al*, 2001), and should not be taken as a conclusive demonstration that analyzing independent data partitions in combination will produce misleading phylogenies (Hipp *et al* 2004).

The interpretation of the significance of the p value from the ILD test as an indicator of combinability is subject to some debate (i.e. what value of p should be a cut-off mark). Clevinger & Panero (2000) considered a value of p = 0.09 as being positive support for combining their ITS and ETS data sets, but their cpDNA and nrDNA data sets were not considered combinable with p = 0.026. Chan *et al.* (2001) considered a value of p = 0.07 as being low enough to call into question whether data sets should be combined. Lee *et al.* (2002), however, considered a value of p = 0.07 to show that data sets were not significantly heterogeneous, and thus combined them with no further comments.

Ramirez (2006) notes that the results of the ILD test should be interpreted with caution, as common evolutionary conditions like heterogeneous rates of change between partitions may cause the test to report higher significance of incongruence than expected. Despite ITS and ETS being part of the same repeat array, the two data sets are not always congruent, and this apparent incongruence may be due to the faster rate of evolution in the ETS region. Okuyama *et al.* (2005) attribute significant incongruence between ITS and ETS to frequent hybridization, rather than rate heterogeneity.

In light of the controversy surrounding the ILD, while it is utilized for testing for the presence of incongruence between the various *Gazania* data sets, some advisable caution will be applied to the interpretation of the results.

Phylogenetic analyses

Several approaches can be used an aid to phylogeny reconstruction and these generally fall into three classes: parsimony, distance methods and maximum likelihood methods (Olmstead & Palmer 1994). A fourth method, Bayesian analysis has become very popular in recent years. The methods used in this chapter are Parsimony and Bayesian analysis. *Berkheya, Hirpicium* and *Gorteria* samples were used as the outgroup rooting point for phylograms. Maximum likelihood was not chosen for use as it is computationally demanding, and would require a long time to run the analyses (especially on data sets of this size).

Parsimony analysis

As noted by Maddison (1991), in a set of most-parsimonious trees for a data matrix, there may be several distinct classes (islands) of trees. An island consists of interconnected parsimonious trees (all less than a certain length), with each tree within an island differing from each other by only a single rearrangement of branches (Maddison, 1991). Trees in different islands may have different implications for character evolution and each run of a random input heuristic search will typically find only one island (Maddison, 1991).

PAUP* (Swofford, 2001) was used for all parsimony analyses. A random input analysis was performed, to ensure all islands of equally most parsimonious trees were found. A brief HEURISTIC search was conducted to find the length of the shortest tree (MAXTREES was set to 100000). A second HEURISTIC search was conducted, of 1000 replicates, at each replicate saving 1 tree (TSAVE=1) no longer than the shortest tree length, with start trees RANDOM, and the MULTREES and STEEPEST ASCENT options in effect, and TBR branch-swapping in effect. Once these trees had been generated, a final HEURISTIC search was conducted on the trees found by this method, using all trees in memory. All trees were allowed to swap to completion. A strict consensus tree was produced from the set of equally most parsimonious trees obtained. Bootstrap support values were calculated for 1000 replicates with (MAXTREES = 1000). PAUP* allows for the use of ambiguous base-calls in sequence analysis and this facility was used for nrDNA data sets. Gaps were coded as missing data.

Bayesian analysis

As Bayesian analysis is based on explicit models of DNA evolution, the MrModelTest (Nylander, 2004) software package was used to identify the model of DNA substitution that best fit the data. The Bayesian analysis was run using MrBayes v3.1.2 (Huelsenbeck & Ronquist, 2001) as follows: four Markov chains, three heated and one cold, were run simultaneously for 5,000,000 generations and trees were saved every 100 generations. The starting tree was random, the branch lengths were saved and the first 4000 trees were discarded as burnin. The sumt function was used to generate a consensus tree. A majority-rule consensus calculated in PAUP* was then used to determine the posterior probabilities.

Results and Discussion

Choice of data sets

The suitability of a region for use in a phylogenetic study is dependant on two factors: the rate of change, which determines the taxonomic level at which a particular genome (or partial DNA sequence thereof) is most informative (Palmer, 1987); and sufficient length of sequence to provide enough phylogenetically informative nucleotide positions (Olmstead & Palmer, 1994). Both the ITS and ETS regions proved to be sufficiently variable and informative in the initial screening to advocate further use of both regions for a more detailed study.

Combining data sets

Character sampling for phylogenetic analysis involves two important elements: whether characters are independent, and whether there are enough of them (Olmstead & Palmer, 1994). Sufficient character sampling is necessary not only to achieve resolution, but also to have enough characters for synapomorphies to outweigh the inevitable randomly occurring homoplasies (Olmstead & Palmer, 1994). Increasing the number of characters can reveal a consistent phylogenetic signal that maybe hidden by the noise in each individual data set (Santiago-Valentin & Olmstead, 2003).

Researchers note that many recent studies have indicated that combined molecular data sets using regions with different levels of variation has provided resolution at different areas of cladograms, and phylogenetic resolution and levels of support are improved by directly combining independent molecular data sets (Chase & Cox, 1998; Soltis *et al.*, 1998; Whitten *et al.*, 2000). As noted previously, the combination of nuclear and cpDNA sequences also increases the likelihood of inferring a species tree instead of just a gene tree, which would allow any possible assessment of the role of hybridization in the evolution of a species or genus (Soliva *et al.*, 2001). Genealogy, it is thought, will most accurately be recovered if data are collected from character sets that have been under different selective pressures (Dowton & Austin, 2002). However, the analysis of large, heterogeneous data sets is not straightforward.

Although the acquisition of large and diverse molecular data sets is undoubtedly beneficial to phylogenetic reconstruction, exactly how to analyze the data remains an ongoing debate (Creer *et al.*, 2003). A number of methods have been proposed for addressing how to optimize the analysis of multiple data sets from diverse gene partitions in the pursuit of robust organismal phylogenies (Creer *et al.*, 2003). There are two major opposing approaches to the utilization of multiple data sets in

phylogenetic analysis: (i) Total evidence; and (ii) Congruence. 'Total evidence' requires that all the data be pooled into one large data set and analysed as one; and has been defined as the analysis of an unpartitioned body of evidence, ideally all the data available for a group of terminal taxa, that is characterised as seeking a single, best-fitting hypothesis, which in cladistics involves maximizing character congruence (Williams, 1994). The competing approach is 'taxonomic congruence' (also referred to as 'consensus'), which holds that trees derived from each separate data set should be compared to determine congruence, and seeks a consensus of hypotheses obtained from different data sets (Williams, 1994).

The advantages and disadvantages of each approach can depend on the heterogeneity of the data across multiple data sets. If data heterogeneity is rare, then the total evidence approach can lead to the best results, and if data heterogeneity is common, then combining all the data sets can lead to an erroneous answer that can obscure phylogenetic signal (Huelsenbeck, *et al.*, 1996). Proponents of total evidence hold that all of the independent characters available to the systematists should be combined and then analysed using parsimony. An extension of that argument says that all of the available taxa should be combined (both living and fossil) in a phylogenetic analysis (Huelsenbeck, *et al.*, 1996). Siddall (1997) opines that keeping data sets separate is anathema to explaining all of the data.

Instead of choosing between the two approaches, Huelsenbeck *et al.* (1996) advocate the idea of conditional combination. This is seen as sitting midway between the two extremes, as it prevents combination of heterogeneous data sets when partitions are clear, as well as allowing for interpretation of evolutionary processes when data sets are determined to be inappropriate for combination (Huelsenbeck *et al.*, 1996). Levasseur & Lapointe (2001) advocate another approach: using both combined and separate analyses jointly.

Testing for incongruence

The ILD test indicated that the ITS and ETS data sets were not significantly incongruent (p=0.19), and that all three cpDNA regions were highly congruent with each other (p=0.79). Based on these results, the ITS and ETS data sets were combined into the "nrDNA" data set, and the *psbA-trnH*, *rpS16* and *trnL-L-F* regions were combined into a "cpDNA" data set. The composite nrDNA and cpDNA data sets were, however, highly incongruent with each other (p=0.01) indicating that they should not be combined.

Final data set composition, variability and informativeness

Appendix 3 and 4 contain all sequence data for the nrDNA and cpDNA data sets. Table 3.3.1 lists the number of taxa, number of characters, variability, and informativeness of each nrDNA and cpDNA region, as well as the information for each compilation data set.

The presence of ambiguous base calls (indicated by two or more equally high signal peaks in otherwise clear electropherograms) is a sign that more than one paralogue of nrDNA is present in the plant genome of that particular sample. Out of 46 samples, 32 samples had at least one ambiguous base.

Table 3.3.1: Characteristics of each data set and DNA region, including number of samples, total number of characters, number and percentage of variable and parsimony informative characters, as well as data signal statistic.

			Variable Cl	naracters	Parsimony Inform. Ch.	
	No. samp.	Tot. chars	Number	%	Number	%
cpDNA	46	2367	204	8.6	84	3.5
trnL-L-trnF	46	901	60	6.7	16	1.8
psbA-trnH	46	600	73	12.2	46	7.7
rpS16	46	866	71	8.2	22	2.5
nrDNA	46	1441	439	30.5	232	16.1
ITS	46	678	176	26.0	92	13.6
ETS	46	763	263	34.5	140	18.3

Analyses results: nrDNA data set

Parsimony analysis

Parsimony analysis found 100000+ trees (CI =0.709, RI =0.889) for the nrDNA data set. The strict consensus of these trees (Figure 3.3.1) shows several strongly supported clades. These include:

1) *G. jurineifolia* (although there is no clear separation of the two subspecies), with 100% Bootstrap support (BS);

- 2) G. tenuifolia, with 100% BS;
- 3) G. heterochaeta, with 100% BS;
- 4) G. lichtensteinii, with 100% BS;
- 5) G. ciliaris, with 100% BS; and

6) *G. caespitosa*, rendered paraphyletic by the *G. ciliaris* samples (with 100 % BS for the branch as a whole).

The remaining samples group together in a large well supported (100% BS) clade, named the "K-R clade" (due to the preponderance of *G. rigens* and *G. krebsiana* samples in the clade). There are two clades with significant support within this K-R clade:

7) a clade of all except two G. rigens specimens (with 94% BS); and

8) the grouping together of the *G. othonnites* sample and the sample of a putative new species (with 94% BS).

There is little other clear taxonomic pattern within this large group and no significant support exists for any other internal branches which includes a number of Roessler's "species".

Figure 3.3.1: nrDNA strict consensus tree of 100000+ trees, L=508, CI=0.711, RI=0.896. Bootstrap support indicated above branches. Brackets highlight species clades discussed in the text. Black circles indicate the developed stem habit.

Bayesian analysis

For the nrDNA data set, MrModelTest identified the General Time Reversible model (GTR+G) (Tavaré, 1986) as the best fit (specific settings: Prset statefreqpr=dirichlet(1,1,1,1); Lset nst=6 rates=gamma). The Bayesian tree (Figure 3.3.2) shows exactly the same groupings as seen in the Parsimony results.

Correspondence between molecular phylogeny and taxonomy

Habits (rosette or developed stem) were mapped onto the phylogeny, with the presence of black circles indicating those samples with the developed habit. No particular pattern of growth habit in relation to phylogeny is apparent. This does not rule out the possibility that state reversals may have occurred (leafy stems may define Clade 6, with a subsequent reversal of state for Clade 5).

The nrDNA data set resolves seven taxa with high support (*G. lichtensteinii*, *G. heterochaeta*, *G. schenckii*, *G. tenuifolia*, *G. jurineifolia*, *G. ciliaris* and *G. caespitosa*). Four of these taxa (*G. jurineifolia*, *G. heterochaeta*, *G. tenuifolia* and *G. lichtensteinii*) also showed strong morphological distinction in the morphometric analyses (Chapter 2). This provides clear evidence (from the nuclear genome) of good species delimitations for at least some of the species of Gazania.

The remaining species samples form a large, poorly resolved clade composed of nine "species" that show little genetic grouping (the K-R clade). One nominal exception exists: an internal clade that groups most (but not all) of the *G. rigens* samples with strong support (94-100% BS). *G. rigens* was one of the other two morphologically defined clades from Chapter 2 (*G. rigens* and *G. linearis* subsp *ovalis*), but neither clade shows much genetic cohesion in the nrDNA analyses.

Figure 3.3.2: nrDNA Bayesian consensus tree. Posterior probabilities indicated on branches. Brackets highlight species clades discussed in the text. Black circles indicate the developed stem habit.

Analyses results: cpDNA data set

Parsimony analysis

Parsimony analysis found 100000+ trees (CI =0.785, RI =0.894) for the cpDNA data set. The Strict consensus of these trees (Figure 3.3.3) resolves only some of the same species groupings seen in the nrDNA trees. These include:

1) G. jurineifolia, with 100% BS;

- 2) G. tenuifolia, with 96% BS;
- 3) G. ciliaris, with 100% BS; and
- 4) G. caespitosa, with 77% BS.

The remaining samples show no clear species structure but are relatively strongly supported (80% BS) as a clade. The *G. rigens* clade seen in the nrDNA data is not retrieved in the cpDNA data.

Bayesian analysis

For the cpDNA data set, MrModelTest identified the General Time Reversible model (GTR+I+G) (Tavaré, 1986) as the best fit (specific settings: Prset statefreqpr=dirichlet(1,1,1,1); Lset nst=6 rates=invgamma). The Bayesian consensus tree (Figure 3.3.4) shows exactly the same groupings as the parsimony analysis. Some resolution is obtained inside the largest unresolved branch, although this shows little species coherency.

Correspondence between molecular phylogeny and taxonomy

Habits (rosette or developed stem) were mapped onto the phylogeny, with the presence of black circles indicating those samples with the developed habit. No particular pattern of growth habit in relation to phylogeny is apparent.

The cpDNA data set resolves only four taxa with high support (*G. jurineifolia*, *G. tenuifolia*, *G. ciliaris*, and *G. caespitosa*). These taxa were also well resolved in the nrDNA data set and two (*G. jurineifolia* and *G. tenuifolia*) were well resolved in the morphometric analysis in Chapter 2. This lends additional support to their status as distinct species.

As with the nrDNA data set, beyond the resolved clades, there remains a large unresolved clade consisting of multiple species samples.

Figure 3.3.3: cpDNA strict consensus tree of 100000+ trees, L=112, CI =0.795, RI =0.894. Bootstrap support indicated above branches. Brackets highlight species clades discussed in the text. Black circles indicate the developed stem habit.

0.1

Figure 3.3.4: cpDNA Bayesian consensus tree. Posterior probabilities indicated above branches. Brackets highlight species clades discussed in the text. Black circles indicate the developed stem habit.

Composite combined evidence phylogeny

Despite the ILD test results, which indicate that the cpDNA and nrDNA data sets should not be combined, the two data sets repeatedly resolve the same genetically discrete basal species clades, suggesting that any incongruence present is more than likely due to the unresolved K-R clade, although it may also be due to rate heterogeneity. Sequential removal of taxa from the K-R clade resulted in improvements in the ILD test statistics. The initial test result was p=0.01 when all K-R clade taxa were present. Removal of all duplicate taxa in the K-R clade (i.e. so that there were only a single representative of each taxa present) resulted in p=0.01 again. Removing half of the species in the K-R clade (such that there were only eight taxa left) resulted in p=0.1. Halving this number again (such that there were only four taxa left) resulted in p=0.27. Total removal of the K-R clade taxa resulted in p=0.36. This indicates that the incongruence between the two data sets was due to the confounding effects of the K-R clade polytomy.

Disregarding the ILD test results, a composite data set ("combined") was compiled from the cpDNA and nrDNA data, and subjected to parsimony analysis and Bayesian analysis (using the GTR+I+G model, with all other settings as for the cpDNA analysis).

The parsimony consensus tree (Figure 3.3.5) and the Bayesian consensus tree (Figure 3.3.6) once again retrieve the same basal well-resolved species clades. The Bayesian tree shows very strong support for all the basal clades (all with pp=1.0), while the support in the parsimony analysis remains much the same as the nrDNA analysis. *G. caespitosa* is no longer paraphyletic with respect to *G. ciliaris*, and there is still little species resolution in the well-supported K-R clade. The congruence between the combined DNA phylogeny and the nrDNA phylogeny supports the idea that the incongruence between the cpDNA and nrDNA data sets as indicated by the ILD test could be due to the confounding effects of the polytomy of the K-R clade.

Gaps in relation to species phylogeny

Gaps were mapped onto replicates of the combined DNA phylogeny. Gaps in both cpDNA (Figure 3.3.7) and nrDNA (Figure 3.3.8) were phylogenetically informative, although cpDNA showed some state reversals for these gaps. These apparent state reversals may be evidence of either hybridization events (with the dissimilar samples retaining cpDNA from maternal parents which lack the indels present in the majority of samples) or lineage sorting (with some few dissimilar samples retaining a less common ancestral cpDNA haplotype that lack the indels present in the majority of other samples).

Polytomies

There are polytomies present in results from both the nrDNA and cpDNA data sets. These may be a consequence of consensus methods (where conflicting relationships in different phylogenetic trees are summarised as a polytomy), or as the short branch lengths seen in the K-R clade in the Bayesian tree also indicate, a very low level of difference between the samples (i.e. lack of data). Although phylogenetic hypotheses can provide insights into mechanisms of evolution, their utility is limited by an inability to differentiate simultaneous speciation events (hard polytomies) from rapid cladogenesis (soft polytomies) (Walsh *et al.*, 1999). Phylogenetic analyses of molecular data often recover polytomies (multifurcating rather than bifurcating relationships) and most of these polytomies are assumed to be "soft" (i.e. they can be resolved by the addition of more data from more sources) (Walsh *et al.*, 1999). If, however, an ancestral lineage does generate three or more lineages at one time, the resulting multiple simultaneous speciation events are represented by a "hard" polytomy (i.e. no matter how many datasets are added, polytomies and uncertainties will remain) (Walsh *et al.*, 1999). These hard polytomies will remain even after analyses of very large data sets as they are genuine representations of multiple simultaneous branching events (Walsh *et al.*, 1999).

In the case of polytomies within *Gazania*, the low number of phylogenetically informative characters in the cpDNA data set does not resolve a soft polytomy that might be resolved with more informative data sources. However, the lack of resolution in the faster evolving nrDNA data set (with proportionally five times as many characters, 15% informative for nrDNA vs 3% informative for cpDNA) suggests a hard polytomy within the large, unresolved, nine-"species" K-R clade, due to a recent and rapid radiation event. Whether this was in fact a "speciation" event is open to interpretation, as this relies on the assumption that the morphologically based "species" that Roessler delimited are actually species in their own right.

Rapid cladogenesis and other such speciation events present serious difficulties for phylogeny reconstruction from molecular sequences as reconstruction of such recent radiations is hampered by insufficiently rapid sequence evolution and problems with incomplete lineage sorting and reticulate evolution (Fishbein & Soltis, 2004). Lee *et al.* (2005) noted that a lack of accumulated molecular sequence variation and the convergence of morphological traits limits one's ability to make sense of evolutionary past of many plants, especially those suspected to be the products of radiations. This inadequacy is further confounded by the possibly misleading inferences that have been based on single-marker phylogenies (i.e. "gene trees" vs. "species tree" differences), as well as the poorly documented role of hybridization and introgression in radiations (Lee *et al.*, 2005).

Figure 3.3.5: Combined DNA strict consensus tree of 100000+ trees, L=596, CI =0.678, RI =0.883. Bootstrap support indicated above branches.

Figure 3.3.6: CombinedDNA Bayesian consensus tree. Posterior probabilities indicated on branches.

Figure 3.3.7: Combined DNA strict consensus tree. Black bars indicate synapomorphic gaps in cpDNA data, white bars indicate state reversals.

Figure 3.3.8: Combined DNA strict consensus tree. Black bars indicate synapomorphic gaps in nrDNA data.

Gene trees vs species trees

Doyle (1992) notes that while molecular phylogenies are now an accepted part of systematics, it often seems forgotten that the terminal taxa of a DNA phylogenetic reconstruction are genes, not necessarily species. No matter how well resolved and strongly supported a DNA phylogeny is, it can only be a hypothesis of relationships among the plants bearing these genes (Doyle, 1992). Wendel & Doyle

(1998) likewise note that with the proliferation of molecular tools has come a growing awareness that reliance on a single data set may often result in insufficient phylogenetic resolution, or misleading inferences. In accordance with this, they note, it has become increasingly widespread practice to apply multiple data sets to a common group of taxa.

One should exercise caution in estimation of species trees from gene trees, as while species trees may be "estimated" from gene trees, but the two are not synonymous (Doyle, 1992). Reliance on a single gene can result in a lack of resolution, misleading conclusions or both (Reeves *et al.*, 2001). Ideally, multiple regions from multiple genomes should be utilised. The three different genomes present in plants have different inheritance patterns. In angiosperms organellar markers are inherited maternally (usually) and transmitted by seed, while nuclear markers are inherited biparentally, through both pollen and seed (Albach & Chase, 2004). This differing pattern of inheritance allows for different aspects of the phylogenetic history of an organism to be investigated: the chloroplast genome tracks maternal inheritance patterns while the nuclear genome tracks population level processes of gene flow and hybridization.

The use of two different sources of sequence data lends stronger support to the species that are resolved. Likewise the presence of the same unresolved species in both phylogenies reaffirms the taxonomic uncertainty that surrounds these "species".

Polyploidy

The possibility that polyploidy could have a confounding effect on phylogeny reconstruction (especially that of multicopy nrDNA) must also be considered. There is relatively little published information available on the chromosome numbers in *Gazania*. Mehra & Remananandan (1969) provide a count of x=8 for *Gazania krebsiana*, while Nordenstam (1967) provides x=10 for the same species. An initial attempt by the author to obtain a chromosome count for *Gazania rigens* resulted in a count of x=9. The Arctoteae are usually x=9 (Carr *et al.*, 1999), so this seems the most likely count for *Gazania* as well. While at least two species in the K-R complex do not show polyploidy, but this does not rule out polyploidy in other species of *Gazania*. Further research needs to be conducted in this regard.

Caveats

Given the possibility that ITS and ETS may suffer from reticulation (being a non-hierarchically inherited gene system, as opposed to maternally inherited cpDNA), the phylogeny presented here may

perhaps be interpreted with some caution. The presence of several instances of ambiguous base calls likewise suggests that reticulation and paralogy should be considered as having some effect on the phylogeny.

Conclusions

The nrDNA sequence data examined here reveals that there are seven clearly genetically distinct phylogenetic species in *Gazania*, some of which also show correlation with morphologically distinct species clades from Chapter 2. These are: *G. lichtensteinii*, *G. heterochaeta*, *G. schenckii*, *G. tenuifolia*, *G. jurineifolia*, *G. ciliaris* and *G. caespitosa*. There is some partial genetic cohesion for some *G. rigens* samples and none at all for *G. linearis* subsp *ovalis* (both of these showed strong morphometric distinction in Chapter 2). However, the cpDNA sequence data examined here only supports four of these distinct taxa (*G. jurineifolia*, *G. tenuifolia*, *G. ciliaris*, and *G. caespitosa*). This lack of support in the cpDNA does not, however, contradict the distinction of taxa in the nrDNA data set.

Despite the use of a substantial combined nuclear and chloroplast DNA data set, further resolution of species taxa could not be achieved. For the remaining nine unresolved "species" in the K-R clade, there is no clear correlation between morpho-species designation and phylogeny (or partial correlation as seen in *G. rigens*). The lack of genetic resolution for eight of the nine species (seven of which also showed an absence of morphometric separation in Chapter 2) casts further doubt on the validity of Roessler's species delimitations for these taxonomic entities.

It should be noted that there are occasions where genetic data may not reflect clear morphological separations. In such cases, other methods (e.g. RFLP, microsatellites) can prove more informative (e.g. *Scalesia affinis*; Nielsen, 2004). This may certainly prove useful in *Gazania*, and is recommended as a future project.

As Roessler noted, for some species the geographical origin is important in species determination. The possibility that the groupings in the K-R clade may be dictated by geographical origin, rather than species designation, should be investigated. The use of phylogeographical methods is an appropriate tool for this, and may also elucidate the evolutionary history and origin and (potentially rapid and recent) diversification of the species within the genus *Gazania*.

<u>Chapter 4.</u> <u>Phylogeography of *Gazania*</u>

"Between the remaining taxa, such close relationships and overlaps of characteristics exist that a clear separation becomes impossible. So only the observation that certain feature combinations arise especially frequently and are concentrated geographically in certain regions provides clues for a classification." (Roessler, 1959, pp 100, translated from the original German).

Aim: To undertake a phylogeographic study of the genetic entities within Gazania.

Introduction

Apart from organisms with very short generation times, there is rarely an opportunity to observe the process of evolution directly, to track changes in diverging lineages as they become distinct (Harrison, 2001). To gain insights into change over time, evolutionary biologists attempt to infer historical events and processes from current patterns of genetic variation (Harrison, 2001). Phylogenies provide an estimate of the sequence of events leading to present-day patterns of species-richness and so provide indispensable information towards understanding the processes operating towards the evolution of diversity (Barraclough *et al.*, 1998). Relatively new techniques (such as phylogeography) enable geography and biology to develop more synergistically, whereby patterns revealed by one discipline can be used as a hypothesis for testing by the other (Wallis & Trewick, 1998).

Phylogeography has a number of differently worded definitions, but all of them rely on two sources of data: a phylogeny and the geographical origins or distributions of the terminal taxa in that phylogeny. Phylogeography is defined by Bermingham & Moritz (1998) as an investigation of the fundamental links between population processes and regional patterns of diversity and biogeography. Avise (2000) defined phylogeography as being concerned with principles and processes governing the geographical distribution of genealogical lineages, but adds an additional note that this is especially true at the intraspecific level. This investigation into *Gazania* is not using phylogeography in the strictest sense of population level studies, but rather in the broader sense of correlation between phylogeny and geography.

Arbogast & Kenagy (2001) indicate that the goal of phylogeography renders it a subdiscipline of biogeography, in which the primary units of analysis are monophyletic groups that are inferred from phylogenetic analyses. Although this typically entails the use of one or more molecular markers when intraspecific population phylogeny is being examined, in principle, any set of phylogenetically informative characters could be used (Arbogast & Kenagy, 2001).

Chapter 4: Introduction

Phylogeography, as an analytical method, explicitly integrates micro-evolution and macro-evolution, relates ecology to evolution, current distributions to historical events, the physical environment to genetic structure, and patterns of variation within species to patterns of variation across species (Avise, 2000). This analysis relies on interpreting patterns of congruence (or lack of congruence) between the geographical distribution of haplotypes and their genealogical relationships (Schaal *et al.*, 1998).

Besides phylogeography's strength in testing for explicit evolutionary relationships between geographical areas occupied by phylogenetically related taxa, a phylogeographic approach traces the history of genealogic lineages (Dobeš *et al.*, 2004). Like Avise (2000), Dobeš *et al.* (2004) also emphasize a species level focus, noting that the advantage mentioned in the previous sentence may be of special importance at the junction of the intra- and interspecific level, where partially divergent lines may occur sympatrically. Phylogeography provides a framework to explain and integrate these patterns of biodiversity at infra- and supra-specific levels (Dawson, 2005), as well as investigating a wide range of other issues related to biogeography, including the relative roles of gene flow, bottlenecks, population expansion, and vicariant events in shaping geographical patterns of genetic variation (Arbogast & Kenagy, 2001).

In the last 20 years, phylogeographic research has added considerable insight into the effects of history on species distributions and diversification patterns (Ayoub & Riechert, 2004). Phylogeography has also been used to trace the origins and invasive histories of invasive species (Provan *et al.*, 2005; Shoemaker *et al.*, 2006). In many cases, phylogeographic analyses have revealed cryptic and deeply divergent evolutionary lineages that are not reflected in the current taxonomy, and nominal species have been found to be poly- or paraphyletic (see Arbogast & Kenagy, 2001, for list of examples).

Sources of genetic data

Geographical interpretation of current patterns of genetic variation can reveal the signature of historical events, but the ongoing influence of natural selection, gene flow, and genetic drift can erase those signatures, reflecting the current balance of evolutionary forces rather than the consequences of historical events (Harrison, 2001). While organellar DNA is theoretically ideal for studying phylogeographic patterns (Heuertz *et al.*, 2004), at very low levels of the taxonomic hierarchy, where insufficient time has elapsed for variation to accumulate in the slowly evolving chloroplast genome, a more rapidly evolving source of data must be utilized (with relevant caveats and cautions noted; Harrison, 2001).

Harrison (2001) notes some of the "biological hurdles" associated with using diploid nuclear markers, including the larger effective population size (four times that of organellar DNA). One can also expect random lineage extinction to be slower and ancestral polymorphisms to persist longer, meaning potentially less concordance among nuclear gene genealogies and less correspondence with the "real" population history (Harrison, 2001). Harrison (2001) also notes that nuclear gene genealogies will inevitably inform one's understanding of recent population history, as they trace independent pathways of descent for multiple gene regions (and any discordance between species or population history). Different regions of the genome will therefore provide different windows on recent evolutionary history (Harrison, 2001). Heuertz *et al.* (2004) claim that chloroplast DNA is a useful tool for the identification of recent post-glacial colonization routes, as colonization patterns which derive from seed dispersal are not blurred by pollen flow.

Application of phylogeographic methods to Gazania

The previous two chapters have shown that Roessler's species in *Gazania* can be divided into seven clades that show clear species groupings (some both morphologically and genetically) and nine that show little cohesion using either criterion. The phylogeography of both sets of species will be investigated, both as a means to investigate more recent and ongoing evolutionary, but also as a means to investigate the past evolutionary history of the group.

Phylogeographic analysis is an ideal tool to investigate the nine problematic *Gazania* species that fall into the K-R clade found in species-level analysis (Chapter 3). In *Gazania*, where little resolution exists in the slowly evolving cpDNA data, the faster evolving nrDNA data may provide clearer phylogenetic signal. A greater sampling of the nine species that fell into the large unresolved K-R clade collected from across South Africa is necessary to investigate any phylogeographical signal that may be present, and to infer possible evolutionary or ecological processes from the recent past. In addition, two samples from a potentially new species of *Gazania* (*G. sp. nov.*) are included in the analysis. The putative new species shares some characters (e.g. glaucous leaves, and a slight succulence to the leaves, stem and involucre) with a species recognised by Roessler: *G. othonnites*.

In Chapter 3 it became evident that cpDNA was not variable enough to provide much phylogenetic signal. For this reason, nrDNA sequence data (from both ITS and ETS) were utilized to assemble a much larger data set to better investigate the phylogeographic signal within the various taxonomic entities in *Gazania*.

Methods

Sampling

DNA was taken from 24 samples of the seven genetically discrete clades, and 145 samples of species that fall within the K-R clade, including those initially used for the species-level phylogeny (see Table 4.2.1 for details). These samples were selected not only to cover as wide a distribution range as possible, but also to investigate the validity of the morphologically delimited species of Roessler. Two datasets were defined: one of all the samples (using *Berkheya* and *Gorteria* samples as the rooting outgroup), and a second subset of the samples from the K-R clade (using *G. ciliaris* and *G. caespitosa* samples as the rooting outgroup). Additional sequences not already presented for the Chapter 3 phylogeny in Appendix 3 are presented in Appendix 6.

These samples were amplified and sequenced for both ITS and ETS, using the methods as outlined in Chapter 3. Due to the low resolution of the unresolved K-R clade taxa seen in the results obtained by Parsimony analysis, other methods have to be utilized. Therefore, Bayesian and Neighbor-Joining analysis are used, as well as additional Neighbor-Net analysis for the K-R clade. Neighbor-Joining was utilized in this study due to its sensitivity to low levels of nucleotide variation. The Neighbor-Net analysis produces a reticulating network, rather than a bifurcating tree. Unfortunately, many of the software packages developed for phylogeographic studies cannot handle data with ambiguity coding. Settings for Bayesian analysis are identical to those given in Chapter 3. Details of the Neighbor-Joining and Neighbor-Net methods are given below.

Neighbor-Joining

Neighbor-Joining (NJ) is a distance method, which converts the aligned sequences into a distance matrix of pairwise differences (distances) between the sequences. The Neighbor-Joining method is both fast and accurate (Bryant & Moulton, 2004). MrModelTest (Nylander, 2004) was used to identify the model of DNA substitution that best fit the data. PAUP* was used to conduct Neighbor-Joining analyses. Missing data was ignored for pairwise comparisons, and negative branch lengths were set to zero. Bootstrap support values were calculated from 1000 replicates, and shown on the NJ tree.

Neighbor-Net analysis

The ability to represent reticulating relationships (especially at the species-level) becomes a problem that requires methods other than bifurcating trees (Vriesendorp & Bakker, 2005). There are a range of methods and software for network estimation that can handle reticulations and multifurcations, but these methods have not been used frequently in published studies of angiosperm species phylogenies

(Vriesendorp & Bakker, 2005). These methods are often designed to be used with organellar data (e.g. the TCS software package), and thus cannot handle ambiguity coding (as utilised in the nrDNA data for this study). The use of networks, rather than simple branching trees, is necessary when the underlying evolutionary history is not treelike and confused by phenomena such as recombination, hybridization, gene conversion and gene transfer (Bryant & Moulton, 2004). Networks can uncover data ambiguity in a way that consensus trees cannot, providing new insights in the analysis of data structure (Vriesendorp & Bakker, 2005).

The Neighbor-Net algorithm is an extension of the Neighbor-Joining method, using similar selection and reduction formulae, but Neighbor-Net can additionally represent conflicting signals in the data, which NJ bifurcating trees cannot (Bryant & Moulton, 2004). These networks do not restrict the data to a rigid hierarchical single-line tree structure, but allow for the identification and visualisation of character conflicts within the data (Hollingsworth *et al.*, 1998), as contradictory signals are represented by box-like parts of the graph, whereas portions of the graph with little conflict appear more tree-like (Kennedy *et al.*, 2005). Neighbor-Nets are often more resolved than split-decomposition networks, especially when the number of taxa is large, as they do not show a tendency to become star-like as more taxa are added (Kennedy *et al.*, 2005). For this reason, a Neighbor-Net analysis was conducted on the unresolved K-R clade using the software SPLITSTREE v4 (Huson & Bryant, 2005), using the Neighbor-Net method (Bryant & Moulton, 2004). Outgroups were excluded from this analysis.

Distribution maps

The geographical origin of each clade (or subclade for the K-R clade) in the NJ and Bayesian trees were plotted onto maps of Southern Africa in an attempt to elucidate any phylogeographic patterns.

Morphometric comparison

A cluster analysis comprising samples of species occurring only in the K-R clade was undertaken. This was utilized to compare genetic clades with morphological clusters to determine if there is any correlation between morphometric characters and gene flow patterns. All CA settings are as per Chapter 2. The comparison between pairwise genetic distance and pairwise morphometric distance for all pairs of samples in each data set can illustrate the level of agreement between genetic signal and morphological signal. The genetic distances were taken from the uncorrected distances as output by PAUP*, the morphometric distances were taken from the distance matrix as output by the SIMINT function in NTSYS-pc. These were then plotted pair by pair on a scatterplot and the correlation between the two was analysed in STATISTICA 6.1 (StatSoft, Inc).

Sample no	Spp	Subspp	Locality		East
Genetically discret	e samples				
CAM1916	lichtensteinii		Namibia. Lüderitz: Glockenberg West.	26° 22' 30"	15° 52' 30"
RM1323	lichtensteinii		South Africa. Kamiesberg: roadside, 40km northeast of Kamieskroon	30° 07' 44"	18° 13' 40"
M050906_2	lichtensteinii		South Africa. Vanrhynsdorp: Knersvlakte, Bitterfontein, road to Kilrand.	31° 12' 55"	18° 32' 26"
RM1249	lichtensteinii		South Africa. Wuppertal: beside R355 road near Tankwa Karoo National Park,	32° 10' 30"	19° 42' 47"
CAM2727	schenckii		Namibia. Luderitz: Griffith bay area, in kloofs between rocky gneiss ridges	26° 40' 12"	15° 08' 00"
M160901_5g	heterochaeta		South Africa. Gamoep: Springbok, Goegap Nat Res, 4x4 tracks N of reserve headquarters.	29° 39' 33"	18° 00' 29"
RM1348	heterochaeta		South Africa. Springbok: Roadside, 80km east of Port Nolloth	29° 14' 57"	17° 40' 33"
RM1451	heterochaeta		South Africa. Springbok: 5km N Steinkopf, beside N7 highway	29° 14' 04"	17° 45' 20"
RM1429_1	heterochaeta		South Africa. Steytlerville: T2 road from Steytlerville to Grootrivierpoort; 5km N of turnoff to Rietfontein;	33° 22' 30"	24° 22' 30"
RM1255	heterochaeta		South Africa. Worcester: beside R355, North of Karoopoort.	33° 09' 41"	19° 45' 03"
CAM1601	tenuifolia		Namibia. Witputz: Arras	27° 22' 30"	16° 07' 30"
M7219_10	tenuifolia		South Africa. Gamoep: Springbok, Goegap Nat. Res., SE of Carolusberg, 4x4 route N of reserve headquarters	29° 39' 23"	18° 00' 32"
M7230_2	tenuifolia		South Africa, Springbok: Goegap Nature Reserve, Bleshoek	29° 41' 31"	17° 58' 46"
RM1352	tenuifolia		South Africa. Springbok: 40km east of Port Nolloth	29° 17' 56"	17° 12' 21"
RM1230	ciliaris		South Africa. Cape Town: Paarlberg.	33° 45' 08"	18° 57' 05"
RM1382	ciliaris		South Africa. Clan William: Piketberg plateau	32° 48' 41"	18° 42' 40"
SR705	ciliaris		South Africa. Peddie: Fish River, near Port Alfred. Seven seas.	33° 28' 58"	27° 04' 48"
RVC307	caespitosa		South Africa. Graaff-Reinet: Koudeveldberge, summit	32° 7' 30"	24° 07' 30"
RVC448	caespitosa		South Africa. Somerset East: Koudeberg, summit, Groot Vallei Farm.	32° 19' 50"	25° 00' 23"
SR682	jurineifolia	jurineifolia	South Africa. Gamoep: 18km W of Aggeneys (between Springbok & Pofadder)	29° 22' 46"	18° 38' 53"
RM1518	jurineifolia	jurineifolia	South Africa. Steynsburg: Eastern Cape: Conway, Alberta Farm.	31° 40'	25° 15'
CAM2652	jurineifolia	scabra	Namibia. Aus: In road verge on road between Aus and Rosh Pinah, in red sand	26° 45' 41"	16° 17' 21"
CAM1604	jurineifolia	scabra	Namibia. Witputz: Karas	27° 22' 30"	16° 7' 30"
CAM1953	jurineifolia	scabra	<u>Namibia. Aus:</u> Klein Aus Vista.	26° 37'	16° 22'
K-R clade samples					
Boknes1	rigens	uniflora	South Africa. Grahamstown: Boknes river mouth	33° 43'	26° 35'
Boknes2	linearis	linearis	South Africa.Grahamstown: Boknes river mouth	33° 43'	26° 35'

Table 4.2.1: List of all samples used in DNA species-level phylogeny, including collection locality data

-		1			
JC201205	rigens	uniflora	South Africa. Port St Johns: Lupatana, Pondoland, dunes between rocks and bush.	31° 30'	29° 30'
M040906_33	sp nov?		South Africa. Hondeklipbaai: Namaqualand, Hondeklipbaai, coast at the police station.	30° 19' 22"	17° 16' 21"
M041001_2G	linearis	ovalis	South Africa. Grahamstown: Thornycroft at road between Alexandria and Port Elizabeth	33° 36' 42"	26° 01' 43"
M070704_1	rigens	leucolaena	South Africa. Simonstown: Miller's Point. 3m. granite (Cape Suite) coastal rocks; influence of salt spray	34° 13' 58"	18° 28' 32"
M071001_1g	krebsiana	krebsiana	South Africa. Port Elizabeth: Coega salt works, edge of succulent thicket, salty loamy soil.	33° 46' 35"	25° 40' 05"
M071001_3GL	krebsiana	krebsiana	South Africa. Queenstown: Stormberg Plateau, Penhoek Pass, rest place at road 3km North of the pass.	31° 25' 33"	26° 41' 29"
M071001_3GP	krebsiana	arctotoides	South Africa. Queenstown: Stormberg Plateau, Penhoek Pass, rest place at road 3km North of the pass.	31° 25' 33"	26° 41' 29"
M100903_4	rigida		South Africa. Cape Town: Darling, Tienie Versveld Flower Reserve.	33° 20' 07"	18° 16' 16"
M100904_4	rigida		South Africa. Beaufort West: Uniondale, bridge over Keurboomsrivier, gravel road bank.	33° 45' 39"	22° 57' 44"
M110805_10	rigida		South Africa. Bredasdorp: De Hoop Nature Reserve, Potberg, Melkosheuwel in the Potteberg River Valley.	34° 22' 50"	20° 29' 16"
M120805_80	rigida		South Africa. Sutherland: De Hoop Nature Reserve, Potberg, NE of the Potberg entrance.	34° 22' 10"	20° 31' 32"
M120903_5	pectinata		South Africa. Clanwilliam: Piketberg, Sauer, near turnoff to Uitvlug. Edge of salt pan.	32° 50' 17"	18° 33' 14"
M160704_5	leiopoda		South Africa. Hondeklipbaai: Namaqualand, Kamieskroon, on N7 40.1 km (near turnoff to Soebatsfontein).	30° 14' 15"	17° 53' 43"
M180904_5	pectinata		South Africa. Bredasdorp: De Hoop Nat Res., Kopie Alleen, disturbed edge of coastal sandy fynbos.	34° 28 ' 41"	20° 30' 39"
M210902_1	krebsiana	krebsiana	South Africa. Fort Beaufort: N of Fort Brown, road to Fort Beaufort, road verge.	32° 55' 43"	26° 37' 28"
M230803_8	krebsiana	krebsiana	South Africa. Port Shepstone: Umtamvuna Nature Reserve, Beacon hill. Sourveld grassland.	30° 48'	30° 11'
M230901_7G	serrata		South Africa. Vanrhynsdorp: Knersvlakte, Vanrhynsdorp, Quaggaskop Farm. Quartzite patch.	31° 24' 46"	18° 38' 33"
M250901_34	leiopoda		South Africa. Vanrhynsdorp: road from Vredendal to Strandfontein, near turnoff to Papendorp.	31° 42' 06"	18° 13' 32"
M250901_37	pectinata		South Africa. Vanrhynsdorp: Strandfontein, on road to Dooringbaai, 60m, disturbed road verge.	31° 45' 18"	18° 14' 02"
M250904_15	serrata		South Africa. Simonstown: Helderberg, strand. R44 btwn Nautilus and Octopus streets,	34° 08' 31"	18° 51' 06"
M260901_2G	pectinata		South Africa. Clanwilliam: Cederberg, Pakhuis pass, 720m.	32° 08' 11"	18° 58' 15"
M260901_5G	maritima		South Africa. Simonstown: Cape Peninsula, Cape of Good Hope.	34° 20' 46"	18° 27' 47"
M261001_2	krebsiana	krebsiana	South Africa. Queenstown: Stormberg, Penhoek Pass, road rest site.	31° 15' 34"	26° 44' 51"
M270901_5G	maritima		South Africa. Simonstown: Cape of Good Hope Nat Res. Neptune's Diary. Sandy beach.	34° 20' 46"	18° 27' 47"
M280902_9	rigida		South Africa. Oudtshoorn: Oudtshoorn, turn off to Zebra, succulent karoo, edge of dirt road.	33° 45' 45"	22° 20' 07"
M290606_6	maritima		South Africa. Simonstown: Cape peninsula, Simonstown, Table mountain national park, Diaz Beach.	34° 21' 12"	18° 28' 54"
M7293_1	rigens	rigens	South Africa. Humansdorp: Jeffereys Bay, beach south of Kabejouws River mouth, coastal dune.	34° 00' 53"	24° 55' 42"
M7298_2	rigens	rigens	South Africa. Humansdorp: St Francis Bay, near bridge over Kromme river, middle tidal salt marsh.	34° 08' 15"	24° 48' 28"
M7527_2	rigens	rigens	South Africa. Riversdale: Gouritzmond, coast, near parking lot, leeward slope of coastal sandy dune.	34° 21' 01"	21° 53' 00"
MSG200901_22G	leiopoda		South Africa. Hondeklipbaai: Kamieskroon, Arakop Farm.	30° 05' 31"	17° 54' 33"
MSG240901_19	leiopoda		South Africa. Calvinia: Nieuwoudtville, near turnoff to Rondekop.	31° 23' 23"	19° 11' 00"
MSG7237_4	sp nov?		South Africa. Port Nolloth: South of McDougalls Bay.	29° 17' 39"	16° 52' 45"
-------------	-------------------	------------	--	-------------	-------------
NB_Hermanus	serrata		South Africa. Caledon: Hermanus, roadside grassland.		19° 08'
ND_Havens	linearis	ovalis	South Africa. Butterworth: The Haven, Transkei.		28° 54'
NPB 1465	krebsiana	krebsiana	South Africa. Steytlerville: Graaff Rienet. Farm Welgemoed. Lower slopes of track to Nardousberg plateaux.		24° 32'
RM 1010	linearis	linearis	South Africa. Calvinia: Mzimpunzi river mouth, Pondoland, grassland.		29° 56'
RM 1013	linearis	linearis	South Africa. Port St Johns: North of Mbotyi river mouth.		29° 43'
RM 1021	rigens	leucolaena	South Africa. Bredasdorp: Plettenberg Bay, Keurboomstrand. Seabeach rocks.		20° 27' 19"
RM 1038	maritima		South Africa. Bredasdorp: Cape Agulhas, about 2km E of actual cape, in sand on shoreline.		20° 02' 48"
RM 1044_1	pectinata		South Africa. Caledon: Agulhas peninsula, Bredasdorpberge. In young fynbos in ex pine plantation.	34° 29' 47"	19° 53' 39"
RM 1044_3	pectinata		South Africa. Caledon: Agulhas peninsula, Bredasdorpberge. In young fynbos in ex pine plantation.	34° 29' 47"	19° 53' 39"
RM 1061	garden hybrid?		South Africa. Capetown: Clanwilliam. Possible garden escape growing wild and profusely.	32° 11' 45"	18° 54' 32"
RM 1063	leiopoda		South Africa. Vanrynsdorp: SW of Lutzville on R362 road between Papendorp and Lutzville.	31° 33'	18° 21'
RM 1082	rigida		South Africa. Tshane: Karenterivierdam.	34° 00' 19"	21° 09' 30"
RM 1090	linearis	linearis	South Africa. Port St Johns: 25km W of Coffee Bay on road to village, roadside grassland.	31° 58'	29° 08'
RM 1092	linearis	linearis	South Africa. Port St Johns: Coffee Bay, Bumvu river mouth, grassland, E-facing slope.		29° 09'
RM 1094	linearis	linearis	South Africa. Port St Johns: W of Port St Johns, beside R61 road; at lookout point for Execution Rock.	31° 36'	29° 30'
RM 1103	linearis	linearis	South Africa. Port Edward: Mkambati Nature Reserve, N of the Msikaba River Mouth, grassland.	31° 01' 24"	30° 13' 48"
RM 1114	krebsiana	krebsiana	South Africa. Fort Beaufort: Road to Bedford, R350.	32° 41'	26° 05'
RM 1136	krebsiana	krebsiana	South Africa. Colesberg: W of Venterstad, 2km E of Gelykfontein stnd farm beside R58 road.	30° 47'	25° 47'
RM 1137	krebsiana	serrulata	South Africa. Bloemfontein: Bayswater area, junction of N1 + R400 roads.	29° 10'	26° 13'
RM 1182	linearis	linearis	South Africa. Humansdorp: on N2, Seekoei river.	34° 02'	24° 46'
RM 1210	rigida		South Africa. Bredasdorp: 14.5km North of Bredasdorp on R319 road.	34° 25' 50"	20° 07' 22"
RM 1216	serrata		South Africa. Caledon: 1km SW of Caledon on R320 road.	34° 16' 24"	19° 26' 09"
RM 1241	serrata		South Africa. Worcester: Du Toits Kloof Pass.	33° 41' 50"	19° 04' 06"
RM 1245	serrata		South Africa. Worcester: Skurweberg.	33° 14' 11"	19° 17' 42"
RM 1254	rigida		South Africa. Wuppertal: base of Katbakkies Pass, Swartruggens.	32° 52' 58"	19° 44' 27"
RM 1260	serrata		South Africa. Worcester: Calvinia.	33° 30' 21"	19° 44' 23"
RM 1270	rigida		South Africa. Wuppertal: North of base of Pakhuis Pass.	32° 3' 37"	19° 10' 10"
RM 1280	serrata		South Africa. Calvinia: 5km East of Nieuwoudtville.	31° 23'	19° 06'
RM 1291	leiopoda		South Africa. Hondeklipbaai: roadside.	30° 18' 37"	17° 53' 37"

1		1			11
RM 1306	othonnites		South Africa. Springbok: Kleinzee, Molyneux trail.	29° 42'	17° 04'
RM 1309	leiopoda		South Africa. Kamiesberg: roadside.		18° 03' 09"
RM 1320	leiopoda		South Africa. Hondeklipbaai: Kamiesberg, 1070m		17° 59' 21"
RM 1390	pectinata		South Africa. Caledon: Franschoek Pass, summit of pass. 33		19° 09' 19"
RM 713	krebsiana	krebsiana	South Africa. Port Elizabeth: Coega. 33°.		25° 40'
RM 763	rigens	rigens	South Africa. Grahamstown: Kasouga Beach.	33° 39'	26° 22'
RM 770	krebsiana	arctotoides	South Africa. Willowmore: Prince Alfred's Pass.	33° 45'	23° 08'
RM 772	rigens	rigens	South Africa. Knysna: Plettenberg Bay.	34° 02'	23° 22'
RM 773	rigens	leucolaena	South Africa. Knysna: Plettenberg Bay.	34° 02'	23° 22'
RM 780	linearis	linearis	South Africa. Fort Beaufort: between East London and Cintsa turnoff on N2 highway.	32° 53'	28° 04'
RM 782	rigens	uniflora	South Africa. Port St Johns: Second Beach.	31° 37'	29° 32'
RM 783	rigens	uniflora	South Africa. Port St Johns: Third Beach.	31° 37'	29° 32'
RM 785	rigens	uniflora	South Africa. Umtata: Transkei, Misty Mount.	31° 34'	28° 55'
RM 787	linearis	linearis	South Africa. Umtata: between Umtata and Umlambo Mputi on N2 highway.	31° 59'	28° 40'
RM 789	linearis	linearis	South Africa. Umtata: between Umtata and Umlambo Mputi on N2 highway.	31° 35'	28° 47'
RM 794	linearis	linearis	South Africa. Stutterheim: south of King William's Town on N2 highway.	32° 52'	27° 23'
RM 804	krebsiana	krebsiana	South Africa. Grahamstown: Riebeek East, 'Willowfontein' farm.		26° 09'
RM 812	serrata		South Africa. Worcester: Dassiehoek Nature Reserve.		19° 30'
RM 813	rigida		South Africa. Worcester: Dassiehoek Nature Reserve, track to Arangie's Kop.	33° 50'	19° 30'
RM 821	serrata		South Africa. Worcester: Robertson aerodrome.		19° 53'
RM 831	krebsiana	arctotoides	South Africa. Oudtshoorn: south of Oudtshoorn on N12 highway.	33° 35'	22° 11'
RM 840	rigida		South Africa. Caledon: south of Caledon.	34° 16'	19° 26'
RM 854	linearis	ovalis	South Africa. Grahamstown: north of Bathurst.	33° 29'	26° 49'
RM 856	krebsiana	krebsiana	South Africa. Willowmore: Bloukrans River.	33° 58'	23° 39'
RM 863	krebsiana	serrulata	South Africa. Olifantshoek: southeast of Beeshoek.	27° 45'	22° 37'
RM 868	krebsiana	arctotoides	South Africa. Kenhardt: Rooipan, southeast of Lime Acres.	29° 47'	21° 56'
RM 874	krebsiana	krebsiana	South Africa. Kimberley: SE of Kimberley on N8 highway.	28° 47'	24° 47'
RM 876	krebsiana	arctotoides	South Africa. Aliwal North: Bloemfontein.	30° 19'	26° 48'
RM 877	krebsiana	serrulata	South Africa. Aliwal North: north of Rouxville.	30° 25'	26° 49'
RM 884	linearis	linearis	South Africa. Fort Beaufort: Tor Doone, Hogsback.	32° 34'	26° 56'
RM 885	linearis	linearis	South Africa. Fort Beaufort: Tor Doone, Hogsback.	32° 34'	26° 56'
RM 888	krebsiana		South Africa. Peddie: north of Great Fish River, north of Kudu Lyndon Game Farm.	33° 29'	27° 07'

RM 898	serrata		South Africa. Worcester: Robertson on R60 road.		19° 53'
RM 900	rigida		South Africa. Grahamstown: between Uniondale and Willowmore		26° 37'
RM 903	krebsiana	arctotoides	South Africa. Graaff-Rienet: southwest of Aberdeen on N9 highway.		24° 00'
RM 904	krebsiana	arctotoides	South Africa. Graaff-Rienet: between Graaff-Reinet and Adendorp on R75 road.		24° 33'
RM 906	krebsiana	krebsiana	South Africa. Fort Beaufort: south of Bedford.	32° 41'	26° 05'
RM 919	rigens	leucolaena	South Africa. Grahamstown: SE of Cannon Rocks.	33° 44'	26° 33'
RM 920	rigens	uniflora	South Africa. Grahamstown: SE of Cannon Rocks.	33° 44'	26° 33'
RM 929	krebsiana	krebsiana	South Africa. Witbank: Middelburg, Agter-Renosterberg, between Uitsig hut and Welterede farmhouse in Transkaroo hiking trail.	25° 43'	29° 25'
RM 949	krebsiana	krebsiana	South Africa. Humansdorp: Eskom substation c. 500m north of N2 on R330 road to Hankey.	34° 08' 38"	24° 10' 41"
RM 950	krebsiana	krebsiana	South Africa. Humansdorp: NE of Humansdorp. 175m. on exposed ridge in Bobartia veld.	34° 01' 27"	24° 47' 24"
RM 951	linearis	linearis	South Africa. Humansdorp: St Francis bay beside R330 road, just before turnoff to St Francis Bay village.	34° 11'	24° 50'
RM 952	rigens	uniflora	South Africa. Humansdorp: Cape St Francis, in sandy and shelly substrate on rocky shoreline.	34° 11'	24° 50'
RM 960	krebsiana	krebsiana	South Africa. Fort Beaufort: SW of Seymour, junction of R67 and road to Katberg Pass.	32° 35'	26° 44'
RM 962	krebsiana	krebsiana	South Africa. Queenstown: NE of Queenstown on R359 road.		26° 55'
RM 965	krebsiana	serrulata	South Africa. Lady Frere: 13km SW Elliot on R56 road.		27° 57'
RM 966	krebsiana		South Africa. Lady Grey: Barkley Pass.	30° 57'	27° 36'
RM 968	krebsiana	krebsiana	South Africa. Matatiele: Carlisle's Hoek, beside road to Tiffindell Ski resort.	30° 40'	28° 03'
RM 992	krebsiana	krebsiana	South Africa. Lady Frere: Baster Voetpad. Near Elliot.		27° 57'
RM 996	krebsiana		South Africa. Lady Grey: W of Barkly East, top of road cutting on Wside of Kraairivier R58 road.	30° 57'	27° 35'
RM1403	krebsiana	krebsiana	South Africa. Hanover: Wapadsberg pass, at top of the bass beside R81 road.	31° 56'	24° 53'
RM1406_1	linearis	linearis	South Africa. Hanover: Compassberg, Compassberg farm, on flats at the base of the mountain.	31° 45'	24° 32'
RM1406_2	linearis	linearis	South Africa. Hanover: Compassberg, Compassberg farm, on flats at the base of the mountain.	31° 45'	24° 32'
RM1466	leiopoda		South Africa. Hondeklipbaai: Namakarroo National Park, W of Kamieskroon.	30° 05' 47"	17° 35' 03"
RMcolHerm	serrata		South Africa. Caledon: Hermanus.	34° 24'	19° 13'
RVC162	krebsiana		South Africa. Graaff-Rienet: Sneeuberg, 1800m+, mountain peak.	32° 09'	24° 32'
SH 110	krebsiana	krebsiana	South Africa. Grahamstown: 100m from Great Fish River Bridge.	33° 29'	26° 55'
SH 111/1	krebsiana	krebsiana	South Africa. Peddie: 10km East Peddie.	33° 12'	27° 07'
SH 111/2	krebsiana	krebsiana	South Africa. Peddie: 10km East Peddie.	33° 12'	27° 07'
SH 112	krebsiana	krebsiana	South Africa. Stutterheim: Road out of Kaiskammahoek.	32° 49'	27° 11'
SH 113	linearis	linearis	South Africa. Stutterheim: 10km out of Stutterheim.	32° 34'	27° 25'
SH 115	krebsiana		South Africa. Somerset East: S of Cradock beside N10.	32° 11'	25° 37'
SH 116	linearis	linearis	Somerset East: Daggaboersnek, 50 km SE from Cradock on N10 highway.	32° 11'	25° 37'

	-						
SH 117	linearis	linearis	South Africa. Grahamstown: W of Riebeck East, at N10/R400 road junction.	33° 12'	26° 09'		
SH 118	krebsiana	krebsiana	South Africa. Somerset East: Daggaboersnek, 50 km SE from Cradock on N10 highway.	32° 11'	25° 37'		
SH 131	linearis	linearis	South Africa. Stutterheim: Road between Hogsback and Cathcart, 7km out of Hogsback.	32° 33'	27° 04'		
SH 132	linearis	linearis	South Africa. Stutterheim: Road between Hogsback and Cathcart, 14km out of Hogsback.	32° 22'	27° 07'		
SH 133	krebsiana		South Africa. Fort Beaufort: Road from Hogsback to Committees, before Great Fish Nat. Res., after Alice.	32° 43'	26° 52'		
SH135	krebsiana		South Africa. Potchefstroom: Road from Johannesburg to Potchefstroom.	26° 11'	27° 54'		
SR 463	rigens	rigens	South Africa. Stanger: Tugela River mouth.	29° 13'	31° 30'		
SR 480	krebsiana		South Africa. Grahamstown: Fort Brown, resolution hatchery.	33° 09' 53"	26° 37' 18"		
SR 520	krebsiana		South Africa. Underberg: Estcourt.	29° 02' 35"	29° 52' 19"		
SR 523	linearis	linearis	South Africa. Humansdorp: Maitlands, on road between Seaview and Maitlands River.	34° 00'	25° 41'		
SR 564	krebsiana		South Africa. Port Edward: Umtamvuna nature reserve.	31° 04'	30° 11'		
SR 571	linearis	linearis	South Africa. Port Shepstone: Port Shepstone.	30° 44'	30° 27'		
SR 574	rigens	rigens	South Africa. Port Shepstone: Umkomaas, Warner Beach, Baggies Beach, 10km N Durban.	30° 04'	30° 52'		
SR 575	rigens	rigens	South Africa. Stanger: Durban, Blue Lagoon.	29° 48'	31° 02'		
SR 581	rigens		South Africa. Grahamstown: Kowie river.	33° 36'	26° 53'		
SR 625	rigens	uniflora	South Africa. Skoenmakerskop: Cape Reciefe (Between PE and seaview).	34° 00'	25° 39'		
SV GAZ HF1	krebsiana	krebsiana	South Africa. Grahamstown: Hownslow farm, edge of Grahamstown.	33° 17'	26° 31'		
SV GAZ HF2	krebsiana	arctotoides	South Africa. Grahamstown: Hownslow farm, edge of Grahamstown.	33° 17'	26° 31'		
Collector abbreviations: RM = Robert McKenzie, M = Laco Mucina, MSG= Mucina & Santos Guerra, CAM = Colleen Mannheimer, SR = Syd Ramdhani, JC = Jessica							
Cockburn, RVC = Ralph Clark, ND = Nico Devos, NPB = Nigel Barker, SV = Susi Vetter.							

Results and Discussion

MrModelTest identified the General Time Reversible (Tavaré, 1986) model of DNA sequence evolution as the best fit to the data set.

The length, variability and informativeness of the ITS and ETS regions are presented in Table 4.3.1 below. The ETS region is nearly twice as informative as the ITS region.

Table 4.3.1: Length, number of variable and parsimony informative characters, and g_1 statistics for ITS, ETS and combined nrDNA data set.

			Variable Cha	aracters	Parsimony I		
	No. samp.	Tot. chars	Number	%	Number	%	g ₁
nrDNA	171	1452	562	38.7	309	21.3	-0.93
ITS	171	696	212	30.5	108	15.5	-1.0
ETS	171	756	350	46.3	201	26.6	-0.9

Sample M7219_10 was found to have a deletion 244 bp in length.

Genetically discrete species

Neighbor-Joining analysis

The NJ tree of the seven genetically discrete (Figure 4.3.1) illustrates that increased sample number does not change the monophyly of the species clades, except for *G. caespitosa*, which is paraphyletic with respect to *G. ciliaris*, as it was in the original nrDNA phylogeny in Chapter 3 (only the addition of cpDNA data could render it monophyletic).

Figures 4.3.2 to 4.3.7 illustrate the distributions for samples of each of the genetically discrete species. *G. jurineifolia*, *G. tenuifolia* and *G. lichtensteinii* all have distributions that extend from south Namibia into western and central South Africa, while *G. schenckii* is limited to Namibia. *G. ciliaris* and *G. caespitosa* are found in the southern half of South Africa (Figure 4.3.7). The most basal of the G. ciliaris samples (SR705) is also the most easterly.

Bayesian analysis

Bayesian analysis (Figure 4.3.8) results in the same species clades as NJ, although the support for the internal nodes of the species clades is higher. There is also some difference in internal clade arrangement for *G. tenuifolia* and *G. jurineifolia*.

Figure 4.3.1: Neighbor-Joining tree of expanded nrDNA sample set of genetically discrete species. Bootstrap support above branches. Black bars indicate monophyletic species branches.

Figure 4.3.2: Distribution of samples for *G. jurineifolia*. Black squares indicate *G. jurineifolia* subsp *scabra* samples, hollow squares indicate *G. jurineifolia* subsp *jurineifolia* samples.

Figure 4.3.3: Distribution of samples for G. tenuifolia.

Figure 4.3.4: Distribution of samples for G. heterochaeta

Figure 4.3.5: Distribution of samples for G. schenckii

Figure 4.3.6: Distribution of samples for G. lichtensteinii

Figure 4.3.7: Distribution of samples for G. ciliaris (black squares) and G. caespitosa (hollow squares).

Figure 4.3.8: Bayesian consensus tree of expanded nrDNA sample set of genetically discrete species. Posterior probabilities indicated on branches. Black bars indicate monophyletic species branches.

K-R clade

Neighbor-Joining analysis

The Neighbor-Joining tree of the expanded K-R clade is presented in Figure 4.3.9, rooted using samples of *G. caespitosa* and *G. ciliaris*. 12 clades are obtained positioned along a poorly supported backbone, with a few samples placed between them. The localities of the samples of species are mapped, branch by branch, in Figures 4.3.10 to 4.3.21. No complete species cohesion is seen in this large clade as a whole, although two branches (Branch 1, which contains only *G. leiopoda* samples; and Branch 8, which contains only *G. rigens* samples) do show some species cohesion. However, these

branches do not contain all the samples of these species, as some samples are found in distant branches of the tree.

The K-R clade has some structure around the basal clades (Branches 1-4), but no bootstrap support for these branching patterns, and there is a large polychotomous backbone along which the majority of the terminal branches (5-12) are placed.

The first basal bifurcation results in Branch 1 (Figure 4.3.10), which contains only *G. leiopoda* samples (90% BS), and has some bootstrap support for its internal structure (a relative rarity in the rest of the K-R clade). The geographical origins of the samples in this clade fall into a small area around Hondeklipbaai (30° S 17° E) in the north Western Cape.

Branch 2 (Figure 4.3.11) shows little species cohesion and no bootstrap support, comprising a mix of *G. pectinata, G. serrata, G. rigida* and *G. maritima* samples. Despite the broad taxonomic mix, the geographical origins of these samples fall within a limited area of the Southern Cape, suggesting that geographical locality is superseding morphotaxonomic affinity (possibly due to recent hybridization or introgression, though neither of these can be conclusively proven by this dataset). Of course, the alternative explanation is that the species themselves may be badly delimited. If the localities of the samples are overlaid on the floristic regions (defined by Weimarck; Linder, 2003) the samples are not limited to only one region, but fall into the South Western centre, Peninsula, Agulhas and Langeberg regions.

Branches 3 (54% BS) and 4 (Figures 4.3.12 and 4.3.13) both show some internal bootstrap support. However, neither branch shows species coherency, both being composed of a mix of species. The geographical origins of the samples in each branch fall into two areas in the western and southern cape. Samples in Branch 3 occur in the South Western centre and Peninsula regions of the CFR, while samples in Branch 4 occur only in the North Western centre of the CFR.

0.001

Figure 4.3.9: Neighbor-Joining tree of expanded large unresolved clade nrDNA data set. Boxes indicate main branches expanded in detail in figures that follow. Bootstrap support on main branch, all other bootstrap support for finer branches presented in detailed figures that follow.

Figure 4.3.10: Branch 1 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade

Figure 4.3.11: Branch 2 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade. Red lines and letters on detailed map indicate Weimarck's floristic regions of CFR (Linder, 2003).

Figure 4.3.12: Branch 3 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade. Red lines and letters on detailed map indicate Weimarck's floristic regions of CFR (Linder, 2003).

Figure 4.3.13: Branch 4 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade. Red lines and letters on detailed map indicate Weimarck's floristic regions of CFR (Linder, 2003).

Branches 5 and 6 (Figures 4.3.14 and 4.3.15) show no bootstrap support, no species cohesion and no clear geographical signal, although samples in Branch 6 occur mostly in the Eastern Cape and Kwazulu-Natal.

Branch 7 (Figure 4.3.16) is a large branch composed of mostly (but not exclusively) *G. krebsiana* samples. It has no bootstrap support, but is composed of samples that fall only within the eastern half of South Africa.

Branch 8 (Figure 4.3.17) is composed of only *G. rigens* samples (with 66% BS). There are two samples (RM1021 and M070704_1) which occur in the Western Cape, and fall outside of Roessler's distribution limits for *G. rigens*. These may not be naturally occurring samples, and could have been transplanted for cultivation purposes, or may be hybrid garden escapes. Many cultivated *Gazania* specimens have a silvery-grey hirsute layer on the dorsal surface of their leaves and a decumbent habit, which is characteristic of *G. rigens* subsp *leucolaena*, which is what the two outlier samples in the Western Cape are. As such, these two outliers should probably be disregarded from further consideration, due to their high potential to be horticultural hybrids. The *G. rigens* samples in Branch 8 that do occur in the Eastern Cape only occur in the southern half of the eastern coast. In contrast, the other samples of *G. rigens* that do not fall into Branch 8, occur (with two exceptions in the southern coast) in the northern half of the eastern coast of South Africa. The disjunction between the southern samples and the north-eastern samples may be due to a lack of suitable dune habitats along the rocky areas of the Wild Coast coastline that bisects the two distributions. However, a lack of intensive collection in this area may also account for this pattern.

Branch 9 (Figure 4.3.18) shows no species cohesion, bootstrap support or clear geographical signal, but could represent the poorly sampled semi-arid interior.

Branch 10 (Figure 4.3.19) with some internal support, is composed of samples that only occur in the eastern half of South Africa.

Branch 11 (Figure 4.3.20) shows some internal bootstrap support, but little species cohesion or geographical signal, except for the *G. othonnites/sp. nov.* clade (65% BS), suggesting a common link. Both possess mild succulence, and glaucous leaves, but some of the *G. sp. nov.* samples may have hispid leaves, which does not fit Roessler's description of *G. othonnites.* The hispid *G. sp. nov.*

Figure 4.3.14: Branch 5 in detail, the geographical origins of each sample and its position in the large unresolved clade.

Figure 4.3.15: Branch 6 in detail, the geographical origins of each sample and its position in the large unresolved clade.

Figure 4.3.16: Branch 7 in detail, the geographical origins of each sample and its position in the large unresolved clade.

Figure 4.3.17: Branch 8 in detail with bootstrap support, and its position in the large unresolved clade, along with the geographical origins of each sample (black squares = samples that fall within Roessler's distributional range for *G. rigens*, hollow squares = samples that fall outside of that range, hollow circles = *G. rigens* samples that fall outside of branch 7 and occur on the northern part of the eastern coastline, hollow triangles = *G. rigens* samples that fall outside of branch 7 and occur on the southern coast).

Figure 4.3.18: Branch 9 in detail, the geographical origins of each sample and its position in the large unresolved clade.

Figure 4.3.19: Branch 10 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade.

Figure 4.3.20: Branch 11 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade.

samples may be examples of mixing between the glaucous *G. othonnites* morphotype and proximal hispid western cape *Gazanias*. This clade as a whole shows a strong geographical signal, and some moderate bootstrap support.

Branch 12 (Figure 4.3.21) shows no species cohesion, bootstrap support or clear geographical signal.

Although there are some trends of branches correlating to geographical areas, there is no overwhelming correlation between "species", the clades they occur in and their geographical origins. As an example of this lack of clarity, it should be noted that two members of the same subspecies taken from the same area do not necessarily end up in the same branch (e.g. RM1406_1 and RM1406_2, are both *G. linearis* subsp *linearis*, and both are collected from the same area, yet one occurs in Branch 5 and the other in Branch 6). This may be a result of hybridization or simply a function of extremely low data signal.

Bayesian analysis

The Bayesian consensus tree (Figure 4.3.22) shows less resolution than the NJ tree, but retains the same basic branch structure. The branches along the polytomy in the Bayesian analysis tend to agree with the branches found in the NJ analysis, although some branches found in the NJ analysis have collapsed in the Bayesian analysis. There is some swapping of single samples between branches when the two analysis results are compared. This is not unexpected due to the very low level of informativeness in the data and the general lack of structure and support. A large number of samples do not show any clade groupings, but instead occur along the backbone.

Those branches that co-occur in both trees are as follows:

- Branch 4 remains the same in both analysis trees, although the version in the Bayesian tree has much higher support for internal nodes.
- Likewise, the G. rigens branch (Branch 8) remains the same in both trees.
- The Bayesian version of Branch 5 is missing three samples found in the NJ version of the same branch (see Figure 4.3.23 for detailed comparison).

Figure 4.3.21: Branch 12 in detail with bootstrap support, the geographical origins of each sample and its position in the large unresolved clade.

Figure 4.3.22: Bayesian consensus tree of the expanded large unresolved clade nrDNA data set. Boxes indicate main branches that correspond with branches retrieved in the NJ tree in Figure 4.3.1. Branch names with * indicate the branch contains missing or additional samples that are not present in the NJ tree branch of the same number, and are detailed in following figures. Posterior probabilities are indicated on branches.

Figure 4.3.23: Partial Branch 5 from Bayesian tree in detail (on left), entire branch 6 from NJ tree on right. Dashed outlines indicate samples missing in the Bayesian branch. The map shows geographical origins of each sample in the Bayesian branch.

- The Bayesian version of Branch 6 is missing five samples found in the NJ version of the same branch (see Figure 4.3.24 for detailed comparison).
- The terminal section of the NJ Branch 7 retains it structure in the Bayesian analysis (with the addition of SH115, found in Branch 12 in the NJ analysis). The smaller partial Bayesian Branch 7 shows much tighter geographical grouping than the large NJ Branch 7 (Figure 4.3.25).
- The Bayesian version of Branch 10 has three samples found in the NJ version of the same branch, and has one additional sample included (see Figure 4.3.26 for detailed comparison).

Figure 4.3.24: Partial Branch 6 from Bayesian tree in detail (on left), entire branch 6 from NJ tree on right. Dashed outlines indicate samples missing in the Bayesian branch. The map shows geographical origins of each sample in the Bayesian branch.

Figure 4.3.25: Partial Branch 7 from Bayesian tree in detail (on left), entire branch 7 from NJ tree on right. The map shows geographical origins of each sample in the Bayesian branch.

Figure 4.3.26: Partial Branch 10 from Bayesian tree in detail (on left), entire branch 10 from NJ tree on right. Dashed outlines indicate samples missing in the other branch. The map shows geographical origins of each sample in the Bayesian branch.

• The Bayesian version of Branch 11 (Figure 4.3.27) retains the same samples found in the NJ branch, although the Bayesian version of the branch is missing RM874 and now contains RVC162 (present in Branch 12 in the NJ analysis).

The Bayesian consensus tree also contains some branches that have no equivalent in the NJ tree. "Partial Branch A" (Figure 4.3.28) is made up of samples that fall into Branch 12 on the NJ tree, as well as some samples that are connected directly to the basal polytomy in the NJ tree.

Figure 4.3.27: Branch 11 in detail with bootstrap support (Bayesian branch to left, NJ branch to right). Dashed outline indicates samples not found in the other analysis branch. The map shows the geographical origins of each sample, dotted line indicates locality for RVC162.

Figure 4.3.28: Partial Branch A from Bayesian tree in detail. The map shows geographical origins of each sample.

Neighbor-Net analysis

The Neighbor-Net analysis (Figure 4.3.29) shows a starlike topology. There is reticulation at the base of each branch (see the expanded centre in Figure 4.3.29.C), and a radiation of short branches from a central connection point. The branches (circled and numbered in Figure 4.3.29.B) correspond to the numbered branches in the NJ tree in Figure 4.3.9. There is no correlation between Neighbor-Net branch length and geographical origin of samples, other than that the two longest branches correspond to Western Cape samples. The Eastern Cape branches with clear geographical signal (7, 8 and 10) do not stand out among the other branches that show no geographic signal.

Figure 4.3.29: Neighbor-net network of KR clade, with labels (A) and without labels (B) Outlined areas with numbers indicate branches on NJ tree (B). C is an expansion of central core of network, showing reticulation.

Morphometric comparison

Figure 4.3.30 is a comparison between genetic distance and morphometric distance between each pair of samples. The correlation between the two is very poor ($r^2 = 0.0086$), indicating that there is little relationship between genetic distance and the morphological differences between pairs of samples.

Figure 4.3.30: Scatterplot of genetic distance against morphometric distance between pairs of samples in K-R clade. Correlation r^2 value in box.

Figures 4.3.31 - 4.3.36 illustrate the comparison between NJ clades and morphometric clusters. The only two branches that show any sort of correlation between phylogenetic clade and morphometric clustering are Branch 1 (where four of six samples cluster together) and Branch 8 (where all the *G*. *rigens* samples cluster together).

Figure 4.3.31: Comparisons between nrDNA phylogeny (left) and morphometric CA dendrogram (right). Arrows indicate positions of morphometric samples (in red) that correlate with genetic samples in Branch 1(A) and 2(B).

Figure 4.3.32: Comparisons between nrDNA phylogeny (left) and morphometric CA dendrogram (right). Arrows indicate positions of morphometric samples (in red) that correlate with genetic samples in Branch 3 (A) and 4 (B).

Figure 4.3.33: Comparisons between nrDNA phylogeny (left) and morphometric CA dendrogram (right). Arrows indicate positions of morphometric samples (in red) that correlate with genetic samples in Branch 5 (A) and 6 (B).

Figure 4.3.34: Comparisons between nrDNA phylogeny (left) and morphometric CA dendrogram (right). Arrows indicate positions of morphometric samples (in red) that correlate with genetic samples in Branch 7 (A) and 8 (B).

Figure 4.3.35: Comparisons between nrDNA phylogeny (left) and morphometric CA dendrogram (right). Arrows indicate positions of morphometric samples (in red) that correlate with genetic samples in Branch 9 (A) and 10 (B).

Figure 4.3.36: Comparisons between nrDNA phylogeny (left) and morphometric CA dendrogram (right). Arrows indicate positions of morphometric samples (in red) that correlate with genetic samples in Branch 11 (A) and 12 (B).

Caveats

The presence of reticulation in the Neighbor Net analysis, along with the presence of ambiguous base calls in the sequence data, suggest that some due caution must be applied to the assumption of accuracy of these nuclear phylogenies. Likewise, the lack of correlation between genetic and morphological data, and between genetic and geographical data, could also suggest that reticulation is affecting the retrieval of accurate phylogenies.

Conclusions

The presence in the K-R phylogeny of short terminal branches in a polytomy subtended by a much longer branch is a clear indication of a recent origin and a rapid radiation (Grant & Bowen, 1998). In combination with a star-shaped phylogeny and low levels of nucleotide diversity, this is evidence of recent expansion from a small number of ancestors (Grant & Bowen, 1998).

Within the K-R clade, there are three groups that show some species and phylogeographical cohesion:

- 1) G. leiopoda, (localised to the Namaqualand centre of endemism, around 30° S 18° E)
- 2) G. rigens, (localised to the south eastern cape coast), and
- 3) *G. othonnites/sp. nov.*, (localised to an area around Port Nolloth, this is a variable but distinctive group, showing mild succulence and pale grey leaves. The difference between *G. othonnites*, which is glaborous, and *G. sp. nov.*, which is occasionally hispid, may be a result of an initially poor description of morphological variation within *G. othonnites* by Roessler).

Two of these groups (*G. leiopoda* and *G. rigens*) also show some morphometric cohesion (*G. rigens* in particular). The rest of the samples in the K-R clade fall into a fourth paraphyletic group, with no species cohesion or clear phylogeographic signal.

In order for species to be useful units for evolutionary and ecological studies, they need to be recognizably identifiable as distinct entities (Riddle & Hafner, 1999). When biologists use species as a framework to study evolving entities in nature there may be uncertainty caused by the inherently ambiguous correspondence between a species and the entity or entities for which it is used as a hypothesis (Hey *et al.*, 2003).

Species taxa are devised by investigators and are partly a function of the investigator's tools, circumstances and inclinations, and for species that have distinguishing morphological characters, this subjective element will seem remote and biologists can agree on the organisms to be included in a

species (Hey *et al.*, 2003). For more problematic taxa, two investigators working with a common sample of organisms may disagree on the importance of a particular pattern of variation, and thus also on the designations and descriptions of these species, a type of uncertainty that can be difficult to mitigate (Hey *et al.*, 2003).

The three cohesive entities in the K-R clade may perhaps not be discrete enough to qualify as species. They are evolutionary lineages, and could perhaps be classified as Evolutionary Significant Units (ESU; Ryder, 1986), but their status as "species" is questionable, as is the status of all the K-R clade morphologically defined taxa. The cohesive lineages are perhaps best classified as distinct varieties. If the cohesive lineages were classified as species, they would render the remainder of the K-R clade paraphyletic. However, Goldstein & DeSalle (2000) note that the concepts of paraphyly and monophyly (which rests on the identification of common ancestry) can become meaningless when applied to nonhierarchical systems where common ancestry is confounded by reticulating networks of interconnected parentage. Ultimately, ranking in this context (i.e. whether the cohesive lineages are species or varieties) may perhaps be arbitrary.

The reasons for this lack of taxonomic clarity and the historical and evolutionary causes that lead to this situation are investigated in Chapter 5.

Chapter 5.

Recent evolutionary history of Gazania

"The probability of a large amount of hybridization between the species and a resultant mixture of characters is very high... perhaps right here lies the actual difficulty of the taxonomic treatment of this genus." (Roessler, 1959, pp 101, translated from the original German).

<u>Aim</u>: To explain the phylogenetic and phylogeographic distribution of the taxonomic entities within *Gazania*.

Geography and climate as driving factors in speciation

Ayoub & Riechert (2004) note that continental drift and mountain uplifting (and other such geological events) have predictable consequences for evolutionary lineages: they can create physical obstacles to gene flow. This leads to the formation of monophyletic groups on either side of the barrier (Ayoub & Riechert, 2004). A less understood but equally important type of historical event is climate change: generalization about the effects of climate change on evolutionary lineages is difficult as species may respond in different ways to changes in climate (Ayoub & Riechert, 2004). Ayoub & Riechert, (2004) cite examples where, since the last glacial maximum, range expansion or contraction of populations occurred at varying tempos and in different directions for individual species. Responses to climate change are species specific, which means that biogeographical studies searching for general patterns have focused on geological historical events, often ignoring the effects of climate change (Ayoub & Riechert, 2004).

Cheng *et al.* (2005) note that the present status of species distributions represents the effects of various geographical barriers, dispersal behaviours and abilities, and colonization competition with resultant nonsynchronous migration. Heuertz *et al.* (2004) likewise note that it is well established that species co-occurring today may have undergone very different responses to climate change and thus can show different evolutionary history patterns.

Population growth history

The analysis of variation in DNA sequences has the potential for providing insight into population genetic processes (Slatkin & Hudson, 1991). Episodes of population growth and decline leave characteristic signatures in the distribution of nucleotide site differences between pairs of individuals

(Rogers & Harpending, 1992), and the numbers of differences in sequences between all pairs of individuals can be used to summarise information in the data, while the shape of the graph can point to patterns of population growth and expansion (Slatkin & Hudson, 1991). A single (unimodal) distribution of pairwise distances (reflecting similarity in the amount of divergence among all pairs of haplotypes) can be indicative of populations which have gone through a period of rapid expansion or growth, while a multimodal distribution that has multiple peaks is indicative of populations which have been stable over time (Mahoney, 2004). In this type of distribution graph, an episode of growth generates a wave that travels from left to the right; the smaller the initial population, the steeper will be the leading face of the wave (Rogers & Harpending, 1992). If there have been any recent population expansions within *Gazania*, they should present as a star-like phylogeny associated with the unimodal mismatch distribution (Slatkin & Hudson, 1991; Mahoney, 2004).

In conjunction with information on the climatic history of Southern Africa, the data gathered in the previous chapters can now be utilised in unison to track the origin, and the evolutionary and biogeographical history of the various taxonomic entities within *Gazania*.

Methods

Geographical mapping

Each terminal node in the major branches of the genetically distinct clades in the phylogenetic trees generated in Chapter 3 was plotted onto maps of Southern Africa in an attempt to elucidate any biogeographical patterns that may exist. Likewise, the geographical origins of the terminal nodes in the expanded K-R clade from Chapter 4 are also mapped.

Maps of Roessler's original taxa collection sites and his species distributions, the collection locality data from the PRECIS database, and the locality data from the DNA samples collected for this project are also mapped out for comparative purposes. The possibility of erroneous species determinations or database entry errors with the PRECIS data suggests that reasonable caution should be exercised with any localities that appear to lie far outside the distributions for all other samples of each entity.

Divergence time estimation

A "molecular clock" model assumes that there is a global rate of mutation across all lineages in a phylogeny (Rutschmann, 2006). However, a clock is not always a good model for the process of molecular evolution, with variation in rates of nucleotide substitution pervasive, both along a lineage and between different lineages (Li, 1997).

To test if there is a constant mutational rate constant across all lineages, the Likelihood Ratio Test (Felsenstein, 1981) was conducted in PAUP*, comparing likelihoods obtained with and without an enforced molecular clock. The difference between the two likelihoods was doubled and then used in conjunction with Chi squared tables to determine if the difference between the two likelihoods was significant (degrees of freedom was calculated as Number of taxa – 2). A significant result (p<0.05) would reject the molecular clock hypothesis for the data under investigation.

The dates of sequence divergence can be calculated manually. To obtain an approximate dating of branching events between species and species groups, the average sequence divergence values were calculated for highly supported sister groups. Only ITS sequence data was utilised for these calculations, as rates of change for other regions are not well studied or published. The uncorrected pairwise distances were determined using PAUP*. The pairwise sequence divergence values between two sister groups were determined as the average of all pairwise sequence divergence values between species from the two clades. These average sequence divergence values were calculated from the uncorrected pairwise distance to accommodate the divergence rates previously calibrated in other studies (Richardson *et al.*, 2001). Divergence time between a pair of species was calculated as half of

the divergence value divided by the rate of change in substitutions per site per year (Yuan *et al.*, 2005).

A variety of ITS rates of divergence are listed in Richardson *et al.* (2001). Rates for ITS divergence generally fall into a range from 1.72×10^{-9} substitutions per site per year (s/s/y) in the Saxifragaceae (Vargas *et al.*, 1998) to 7.83 x 10^{-9} s/s/y in the Compositae (Sang *et al.*, 1995). The mutation rates for annuals (1-2 years) are the fastest, and additionally the rates for the Asteraceae tend to be fairly high. Since *Gazania* is a small herbaceous perennial member of the Asteraceae that can go from seed to seed set in under a year, an average for the Asteraceae mutation rates can be calculated as 5.21×10^{-9} s/s/y, with a lower extreme of 3×10^{-9} s/s/y (from the Hawaiian Silverswords; Baldwin & Sanderson, 1988), and a higher extreme of 7.83×10^{-9} s/s/y (from *Robinsonia*; Sang *et al.*, 1995).

Apart from manual calculation, there are a number of software packages that can perform dating estimates, and some can employ both strict and relaxed molecular clocks (Drummond *et al.*, 2006). BEAST (Drummond *et al.*, 2003) implements a Bayesian Markov chain Monte Carlo method to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times (Drummond *et al.*, 2006). The molecular clock assumption can either be enforced strictly, or relaxed by allowing the rate to vary throughout the tree in an autocorrelated manner (Ho *et al.*, 2005).

A relaxed clock can either use a lognormal distribution (with the variance scaled relative to the length of the branch in units of time, implying that the evolutionary rate changes continuously along the branch) or an exponential distribution (which implies that changes occurred at the nodes, with the size of the change being independent of the branch length) (Drummond *et al.*, 2006). The variable rate methods implemented in BEAST use Bayesian inference and the MCMC procedures to derive the posterior distribution of rates and times, and they do not require a starting tree topology (Rutschmann, 2006). Following a burn-in of 500,000 cycles, rates were sampled once every 1000 cycles from 5,000,000 Markov Chain Monte Carlo (MCMC) steps. Rates were estimated under a GTR model and the average mutation rate calculated above was utilised. Both the lognormal and the exponential relaxed clocks were used for comparative purposes.

Pairwise sequence divergences

Pairwise sequence divergences were tabulated using PAUP*. Frequencies of each pairwise sequence divergence distance were plotted against the number of differences between each pair of sequences.

Results

Maps of genetically cohesive species

Figures 5.3.1 to 5.3.8 are maps of the genetically discrete species found in Chapter 3. They layer three different sets of distribution data together: Roessler's original species distributions (represented by irregular shaped areas within solid outlines); the PRECIS database locality data (represented by squares); and the localities for samples collected for this study (represented by open circles).

In most cases, the species distributions mapped by Roessler do not map the true extent of the occurrences of these species across South Africa as indicated by the specimens in PRECIS. The addition of the locality data from the PRECIS database extends almost all of these species' distribution limits. The potential drawback with using PRECIS locality data is the danger of mistaken species determinations or erroneous database entries for locality data. A possible example of this is the presence of a *G. jurineifolia* subsp *scabra* sample at 3022AA (Figure 5.3.3), which lies well outside the subspecies's normal distribution, but lies well within the distribution of the other subspecies of *G. jurineifolia* (Figure 5.3.4).

There are two further major extensions of these species distributions. One occurred with the discovery of a *G. ciliaris* (Figure 5.3.7) population in the Eastern Cape at Seven Seas, near the Fish River (sampled as SR705). The other occurred with the discovery of extensive populations of the putatively rare *G. caespitosa* (Figure 5.3.8) on the high altitude areas of the Sneeuberg, Koudeveldberg, Meelberg and Toorberg mountain ranges (R. Clark, pers. comm., represented by RVC448 and RVC307). *G. caespitosa* was collected once in 1872 from the Sneeuberg and described from this exemplar. According to the PRECIS data base it was collected only twice more (in 1897 and 1976) from widely different localities (Garcia's Pass and Nuwerus) (although these may be erroneous species determinations or localities). The subsequent 2006 collections by Clark suggest that *G. caespitosa* is "very common" in the high altitude regions (around 2000 m) of the eastern and southern cape mountains (R. Clark, pers. comm.). But as this region is poorly collected, this is not entirely unexpected.

All but one of the genetically discrete species found in Chapter 3 occur in either the western half of South Africa (towards the more northern reaches of this area), or in the south-western regions of Namibia. The exception to this is *G. caespitosa*, which occurs in the high altitude regions of the mountain ranges in the eastern and southern cape. *G. ciliaris* usually occurs in the south-western cape (but a recent find has extended this range to the Eastern Cape; Figure 5.3.7).

Figure 5.3.1: Distribution map for *G. heterochaeta*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Figure 5.3.2: Distribution map for *G. lichtensteinii*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Chapter 5: Results and Discussion

Figure 5.3.3: Distribution map for *G. jurineifolia* subsp *scabra*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Figure 5.3.4: Distribution map for *G. jurineifolia* subsp *jurineifolia*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Chapter 5: Results and Discussion

Figure 5.3.5: Distribution map for *G. tenuifolia*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Figure 5.3.6: Distribution map for *G. schenckii*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Figure 5.3.7: Distribution map for *G. ciliaris*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Figure 5.3.8: Distribution map for *G. caespitosa*. Solid outline indicates Roessler's distribution, solid squares indicate PRECIS localities, and hollow circles indicate samples collected for this study.

Figure 5.3.9 illustrates the distributions for each major branch in the phylogeny of Chapter 3. *G. jurineifolia* (including both subspecies) has a distribution that extends from southern Namibia into northern central South Africa (Figure 5.3.9-A). Figure 5.3.9-B overlays the newly expanded species distributions for *G. lichtensteinii*, *G. schenckii*, *G. tenuifolia* and *G. heterochaeta* onto the same map. These species all group together with high support in the phylogenies of Chapter 3 (Figures 3.3.2 and 3.3.6), and are also sister to the K-R clade. Although these five genetically discrete species do not show any major geographical disjunctions, they nevertheless maintain their genetic separation.

The central area of overlap of these five species distributions is southern Namibia. This centre of diversity points to a possible refugial area, out of which *Gazania* radiated in the form of the K-R clade.

There is, however, a sharp disjunction with the high altitude mountainous *G. caespitosa* distribution, and a lesser disjunction with the south cape *G. ciliaris* distribution (Figure 5.3.9-A). Both these species occur together on the same branch, and share a unique 327 bp deletion in their *psbA-trnH* spacer. This suggests either dispersal to the mountain regions or a vicariance event.

K-R clade

Figure 5.3.9-C illustrates the distribution of the K-R clade as a whole, spread across much of South Africa, and showing no real pattern. When the clade is broken down into evolutionary lineages (Figures 5.3.10 and 5.3.11) (rather than "species" groupings) some patterns becomes apparent. Figure 5.3.10 overlays the widely distributed lineages that showed no clear geographic signal. Figure 5.3.11 overlays the geographical distributions for evolutionary lineages in the K-R clade that show some geographical localization, along with a summarised phylogeny of the K-R clade.

The most basal branch of the K-R clade (Branch 1) is strongly localised to the Namaqualand centre of endemism. The other basal branches (2, 3 and 4) are centred in the south western cape. The rest of the polychotomous branches either centre along the east coast or show generalised distributions that range across South Africa.

Figure 5.3.9: Summary tree of major branches in Gazania species-level phylogeny in conjunction with distributional overlays for each of the major branches in the phylogeny. Arrow line pattern indicates respective outline on accompanying map (*G. schenckii* is additionally shaded in grey in B to highlight distribution area).

Figure 5.3.10: Overlays of distributions for geographically widespread clades in the K-R clade (outlines based on distributions mapped in Chapter 4 for branches 5, 6, 9, 11 and 12).

Figure 5.3.11: Overlays of distributions for geographically limited clades in the K-R clade (outlines based on distributions mapped in Chapter 4 for branches 1, 2, 3, 4, 7, 8, 10 and *G. othonnites/sp. nov.* clade), correlated with summary of branch positions in the K-R clade phylogeny.

Divergence date estimates

There are a number of important caveats and limitations to using mutation rates to estimate divergence dates, including substitution rate heterogeneity among lineages (which the LRT tests), uncertainties regarding clock calibration, and unknown but presumable large estimation errors

(Seelanen *et al.*, 1997). The molecular clock hypothesis was rejected by the Likelihood Ratio Test (2285.0211 vs 2250.2555, p<0.0084). Therefore, any attempts at calculating dates from ITS mutation rates can only be regarded as estimates.

The date estimates for the lognormal relaxed clock model were the closest to the results of the manual calculations, with seven out of nine dates in close agreement (the dates estimated for the lognormal clock fell within the margin of standard deviation for seven of the results of the manual calculations). The exponential relaxed clock model dates were mostly in conflict with those calculated manually and using the lognormal relaxed clock model. For the purposes of further discussion below, the manual calculation dates are utilised.

Figure 5.3.12 is a replication of the totalDNA Bayesian tree from Chapter 3 (Figure 3.3.7), with the four major clades numbered for ease of reference in the following paragraphs. The average pairwise distances between and within sister clades are given in Table 4.3.1. The estimated time since divergence between each pair of lineages are also given in this table, with a possible lower and upper extreme. These estimates must, by necessity, be tentative at best, as comparative ITS mutation rates are not necessarily constant across the family or genus. Accurately estimating dates of divergence from molecular data is a challenging process (Arbogast & Slowsinki, 1998). It should be noted that a phylogeny based on ITS sequences only has a slight change in branching order (Clade 1 is sister to Clade 3, rather than to Clade 2) as compared to the branching order of the total DNA phylogeny. In addition, the divergence of populations from the ancestral population is necessarily defined by the cessation of gene flow, but whether this cessation coincides with particular geological events or occurs some time after such events is usually not known (Edwards & Beerli, 2000). None the less, these dates give a rough estimate to focus an investigation into the past factors that may have led to the current phylogeny of *Gazania*.

Gazania is estimated to have diverged from *Gorteria* and *Hirpicium* anywhere from 4.3 to 11.4 Mya, with an average estimate of 6.6 (\pm 0.5) Mya. The next divergence dates are 4.6 (\pm 0.5) Mya as an average estimate for the divergence of *G. jurineifolia*, and 4.4 (\pm 1) Mya as an average estimate for the divergence of Clades 1, 2 and 3. The average date for all three of these splits range around the start of a period of great climatic change that took place over the last several million years in southern Africa (and the rest of the world). The Miocene period extended from 50 Mya to the start of the Pliocene period at 5 Mya. This Miocene-Pliocene border correlates with the major estimated divergences of *Gazania* as a genus (6.6 Mya) and also of major lineages within *Gazania* (4.6 and 4.4 Mya).

		Manual calculations			Beast timing (Mya)		
Taxa splits	Clade splits	Average pairwise distance	Estimated average time of divergence	Estimate time of divergence at slowest rate	Estimate time of divergence at fastest rate	Relaxed clock (Exp)	Relaxed clock (Log)
jur. scabra - jur. jurineifolia	within 4	0.001928903	0.37 (±0.4) Mya	0.6 Mya	0.25 Mya	0.99 (±0.028)	0.7 (±0.008)
divergence within K-R clade	within 1	0.002849533	0.6 (±0.4) Mya	1 Mya	0.4 Mya		
	split of 1 + 2	0.023085066	4.4 (±0.5) Mya	7.7 Mya	2.9 Mya	4.8 (±0.05)	4.5 (±0.02)
KR-clade - ciliaris	split of 1 + 3	0.021972915	4.2 (±0.6) Mya	7.3 Mya	2.8 Mya	4.7 (±0.05)	4.3 (±0.02)
tenuifolia - (lichensteinii / schenckii / heterochaeta)	Within 2	0.015022028	2.8 (±0.6) Mya	5 Mya	1.9 Mya	3.7 (±0.02)	3.0 (±0.01)
heterochaeta - (schenckii/lichensteinii)	Within 2	0.012662289	2.4 (±0.5) Mya	4.2 Mya	1.6 Mya	2.9 (±0.02)	2.0 (±0.01)
lichensteinii - schenckii	Within 2	0.008297585	1.6 (±0.1) Mya	2.8 Mya	1.1 Mya	2.2 (±0.01)	1.5 (±0.007)
ciliaris - caespitosa	Within 3	0.007213994	1.4 (±0.1) Mya	2.4 Mya	0.9 Mya	2.4 (±0.04)	1.5 (±0.01)
	(1+2+3) from 4	0.023954036	4.6 (±0.5) Mya	7.9 Mya	3.1 Mya	5.1 (±0.04)	5.1 (±0.02)
Gazania - (Gorteria/Hirpicium)		0.034180443	6.6 (±0.5) Mya	11.4 Mya	4.3 Mya	15.5 (±0.1)	8.0 (±0.02)

Table 4.3.1: Divergence time estimates for each major split, including average, slowest and fastest rate of divergence for manual calculations, and comparative results for exponential and lognormal relaxed clock estimates from BEAST calculations.

The Pliocene began at the peak in global cooling which occurred at approximately 5 Mya, in response to a pulse in Antarctic ice growth (Schnitker, 1980; Lindesay, 1998). Pickford (2004) notes that the early onset of arid biotopes in the Namib arose well before they occurred anywhere else in Africa, and this started a long period of adaptation to semi-arid conditions. The isolation of the Namib promoted a high degree of isolation of the Namibian gene pool, and once having adapted to conditions in the Namib arid areas, these lineages were pre-adapted to spread into neighbouring areas as they, in turn, became arid during climate change cycles (Pickford, 2004). The peak in global cooling at 5 Mya, and a consequential change in rainfall patterns, could have paved the way for the diversification of *Gazania* in Namibia and/or Namaqualand, and subsequent southerly and easterly spread out of this region.

Apart from the peak in cooling at 5 Mya, there were further cold peaks evident between 4.2 and 3.2 Mya, when Arctic ice sheets began to develop (Kennett, 1982; Lindesay, 1998). During glacial periods a substantial lowering in temperature, the influx of polar air and a change to winter rainfall caused major shifts in vegetation (van Zinderen Bakker, 1978). The first of these peaks coincides with the divergence estimates for the Clade 3 from Clade 1 at around 4.2 Mya.

The next divergence date at 2.8 (\pm 0.6) Mya is for the divergence of the *G. tenuifolia* from the three other species in Clade 2. There is evidence from faunal diversity studies that suggest that there was the first of three peaks of aridity and faunal speciation at 2.9-2.4 Mya concurrent with key junctures in hominid evolution (deMenocal, 2004). This shift in aridity at 2.8 Mya is the result of remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles (deMenocal, 1995). This date also coincides with a pulse of change in species composition in African fauna (with the emergence of more arid-adapted species) and a key juncture in hominid evolution (the first occurrence of *Paranthropus*) around 2.8 Mya (deMenocal, 2004).

Relatively close to this date is the estimate of 2.4 (\pm 0.5) Mya for the divergence of the *G*. *heterochaeta* from *G*. *lichtensteinii* and *G*. *schenckii*. There have been multiple instances of geographic uplift of the southern African continent, including a period of geographic uplift in the Miocene, ranging from 300 m on the east coast, to 150 m on the inland of the west coast (Partridge & Maud, 1987; Lindesay, 1998). There was a second, far greater geographic uplift at about 2.5 Mya, where the South-East region elevation increased by 600 – 900 m, the south rose by 200 m and the west by 100 m, which corresponded with a decline in temperatures in these newly elevated regions (Partridge & Maud, 1987; Lindesay, 1998).

Both sediment evidence and faunal species compositions point to wetter conditions in the mid-Pliocene (3.5 Mya) followed by increasingly episodic rainfall and drier conditions after 2.5 Mya when cooler conditions prevailed (Butzer, 1984; Vrba & Denton, 1995; Lindesay, 1998). This change from wet to dry conditions in the interior near 2.5 Mya has been considered to be of "remarkable magnitude" (Partridge & Maud, 1987; Lindesay, 1998). All of these dates of significant climate change towards a drier climate correlate with the estimated dates of divergence of several clades in the *Gazania* phylogeny, suggesting that the changes in conditions lead to the rapid divergence and emergence of new entities within *Gazania* (including the split of *G. heterochaeta* from G. *lichtensteinii* and *G. schenckii*, as well as the upper estimate for the divergence of *G. caespitosa* from *G. ciliaris*.).

The remaining divergence events for genetically discrete species within clades 2 and 3 are at 1.6 (± 0.1) Mya, and 1.4 (± 0.1) Mya, both of which are in the Pleistocene. The divergence dated to 1.6 Mya also coincides with a second peak in climatic variability and increasing aridity that provoked faunal diversification (including a higher percentage of grazing animals) and also coincides with another juncture in hominid evolution (the extinction of *Homo habilis* and the first occurrence of *Homo erectus*) at around 1.8-1.6 Mya (deMenocal, 2004). The Pleistocene (which spans 1.8 Mya – 0.8 Mya) has been described as an important time for genetic diversification and speciation, based on the premise that climatic conditions in this period fostered the isolation of populations and, in some instances, allopatric speciation (Willis & Niklas, 2004).

The effects of Pleistocene climate change

During the last 2 Mya there have been periodic (or near periodic) alternations of glacial and interglacial conditions at approximately 100 000 year intervals, with each interglacial period lasted about 10 000 years (Jansson & Dynesius, 2002; Lindesay, 1998). These 100 000 year fluctuations are termed Milankovitch oscillations, which are caused by periodical changes in the orbit of the Earth, and are thought to contribute to large changes in the size and location of species' geographical distributions (Dynesius & Jansson, 2000).

The Pleistocene ice ages were environmentally distinctive and are presumed to have caused unusual patterns in organisms that many could consider are uncharacteristic of most of the Earth's history (Willis & Niklas, 2004). The repeated isolation and reexpansion of plants and animals in refugia (favorable locations with controlled microenvironments) during unfavourable conditions had important implications for evolutionary patterns (Willis & Niklas, 2004). An ideal refugium prevents extinction of genetic lineages and acts as a genetic reservoir by providing habitats for survival of plant populations during slow and abrupt climatic changes (Tribsch & Schönswetter, 2003). Besnard *et al.* (2002) note that during the Pleistocene ice ages, many species could survive only in favourable

refugia, and genetic patterns of differentiation among existing populations are often due to survival in different refugia, combined with genetic drift and founder effects during re-colonisation. Due to the periodic oscillations of the climate over the Pleistocene, resultant range contractions and expansions are believed to have played a central role in shaping the genetic and ecological diversity of many species (Excoffier, 2004).

Glacial cycles cause changes in distribution, and this can result in two different but typical genetic patterns emerging: a reduction in genetic diversity and/or genetic structuring on a regional basis (Ayoub & Riechert, 2004). This regional genetic structuring (ultimately leading to eventual monophyly) occurs when isolated populations in refugia arise during glacial maxima, and a reduction in genetic diversity is seen in populations that have expanded from glacial refugia into previously unoccupied areas (Ayoub & Riechert, 2004). Both of these phenomena are present in the K-R clade in *Gazania*: the K-R clade has a limited quantity of sequence diversity, and it also demonstrates regional genetic structuring in some lineages (i.e. the correlation between geographical locality and branches 1, 2, 3, 4, 6, 8, and 10 of the K-R phylogeny), most of which are confined to the south western cape.

Average speciation rate that can be calculated from the fossil record is roughly one new species every 10% of the average species lifetime (Niklas, 1997). Niklas (1997) calculates that if one assumes that the average generation time of an individual (from seed to sexual maturity) is about 5 years, a speciation event occurs roughly once in every 76000 generations, which is an ample number of sexual reproductive cycles for genetic divergence to have occurred in isolated plant populations during the Quaternary. There are herbaceous species where molecular and morphological evidence indicate genetic divergence leading to speciation in the last 100 kyrs (Willis & Niklas, 2004).

The divergence time for the various taxonomic entities sampled in the K-R clade can be estimated at $0.6 (\pm 0.4)$ Mya. This coincides with yet another pulse of change in species composition of certain African fauna at ± 0.7 Mya, suggesting widespread climatic change effects (deMenocal, 2004). The relatively large standard deviation in the dating estimate is due to the wide range of levels of divergence between samples in the unresolved branch. If one compares the distribution maps of the geographically limited evolutionary lineages in the unresolved K-R clade (Figure 5.3.13), one can see that only three lineages are endemic to the eastern cape, whereas six lineages are endemic to the western half of South Africa, and four of these six are confined to a southern area that corresponds with the Cape Floristic Region (CFR). These geographically limited clades could be evidence of refugia, out of which lineages have subsequently expanded and possibly hybridized to result in a mixture of characters (both morphological and genetic).

South Africa's CFR is very rich in plant species, most of which are the product of explosive speciation in the late Tertiary (Cowling & Lombard, 2002). The CFR has about 9000 species in an area of 90 000 km², of which 68.8% endemism at the species level (Linder & Hardy, 2004). The southern tip of Africa contains a number of plant lineages that are thought to have undergone recent and rapid speciation, and it could be argued that the whole flora might be the result of such a recent burst of speciation (Linder & Hardy, 2004). In southern Africa, there is an east–west gradient in the severity of the summer drought and for several groups, the greatest diversity, and apparently the most recent radiations, is situated in the more arid west; but there are no large recent radiations in the more mesic east (Linder, 2005).

Cowling & Lombard (2002) suggest that the disparity in taxa numbers between east and west (common to many lineages, and observed in the K-R clade lineages) is a consequence of higher speciation rates (promoted by enhanced opportunities for isolation of populations) and lower extinction rates (associated with more refugia) in the topographically complex montane regions of the west, which would explain the large number of rare species found there. Mountain areas in general are important refugial areas, as the high habitat diversity in mountain areas creates buffers, during not only alternations of cold and warm periods, but also of wetter and drier periods, which guarantees long-term ecological stability (Tribsch & Schönswetter, 2003). However, in the eastern mountains, differences in contemporary and historical climatic regimes reduced rates of speciation and elevated extinction rates, leading to lower steady state diversities, irrespective of landscape ruggedness (Cowling & Lombard, 2002).

Linder (2005), commenting on rapid radiations in the CFR, notes that for some lineages, the presence of a long basal branch in the phylogeny indicates that the group was present in the region for a longer period but that only one lineage from this period survives. This is likely to be the case for *Gazania* as well, with the long lineage of the K-R clade.

Population history

The graph of pairwise sequence divergence (Figure 5.3.13) shows that when the frequencies of all pairwise sequence divergences are plotted, there are two peaks. These can be correlated with two pulses of population expansion, the smaller shallower right peak correlating with an older expansion (the genetically discrete species) and the larger narrower left peak correlating with a much more recent expansion (the K-R clade). If the sequence divergence frequencies that make up the two peaks are plotted separately (Figures 5.3.14 and 5.3.15) then one can see that the K-R clade peak consists of only one peak with generally very low sequence divergence, while the genetically cohesive species peak consists of multiple peaks with a range of divergences (both low and high). A very recent

population expansion will result in a peak at the left side of the graph, comprising the comparisons among identical and highly similar sequences (Rogers & Harpending 1992), which is clearly seen for the K-R clade distribution in Figure 5.3.14. The fairly steep leading slope of the peak could also suggest an initially small founding population that lead to the K-R clade (Rogers & Harpending, 1992). The multimodal distribution for the genetically cohesive species clades seen in Figure 5.3.15 suggests long-term population stability resulting in substantial phylogenetic structure (Slatkin & Hudson, 1991).

Figure 5.3.13: Frequency of pairwise sequence divergences for all samples.

Figure 5.3.14: Frequency of pairwise sequence divergences for all samples from the K-R clade.

Figure 5.3.15: Frequency of pairwise sequence divergences for nrDNA data set for all samples from the six genetically cohesive species.

The Neighbor-Net analysis of the samples in the K-R branch has a starlike topology (Chapter 4, Figure 4.3.29), which is indicative of population expansion (Slatkin & Hudson, 1991). Mahoney (2004) observed a very similar pattern in *Plethodon*, noting that "in addition to poorly supported resolution among haplotypes, the similar length of the branches suggests descent from a single coalescent event at the base of the clade with subsequent divergence among lineages also proposed to correlate with rapid expansion". The small short branches in Figure 4.3.29 that radiate out from the central area are most likely indicative of refugial evolutionary lineages from previous periods of climate change.

Congruent patterns in SA fauna/flora

Since the climatic changes that are hypothesised to have lead to the current phylogeographic patterns of *Gazania* taxa were of a large magnitude, it is reasonable to assume that other southern African endemic organisms (both plant and animal) may echo the geographical disjunctions and phylogenetic structure in *Gazania*. Unfortunately, there are relatively few such detailed phylogeographic studies of taxa in South Africa.

East-West split

Griffieon (1995), in an unpublished thesis on *Chrysanthemoides*, recognised 16 intraspecific taxonomic entities. Of these, 10 were found in the western half of South Africa (seven were confined to the south western cape, and three to the north-western and western cape, including one in the Namaqualand centre), while only five were confined to the eastern half of South Africa (three in the

south eastern and eastern half, and two in the north eastern half). A similar East-West split is found between distributions of varieties of *Cotyledon orbiculata* (Figure 5.3.16, Mort *et al.*, 2005)

Multiple papers have explored the regional plant diversity patterns in the Cape Floristic Region (e.g Cowling & Lombard, 2002; Linder & Hardy, 2004). Species-area analyses of the CFR by Cowling & Lombard (2002) have shown that the western winter-rainfall landscapes (east of "about 21°E") have more than double the number of species than eastern nonseasonal-rainfall landscapes. Ritz *et al.* (2003) in a paper on Karoo *Euphorbia*, notice this same split, but consider the split between rainfall landscapes in South Africa to fall closer to 22.5°E, and attribute this split to western winter rainfall and eastern summer (rather than nonseasonal) rainfall landscapes. Regardless of the exact location of this rainfall zone of transition (Cowling & Lombard note that there is more likely a gradual transition over more than 100 km rather than a sharp disjunction anyway), there is a higher proportion of range-restricted, habitat-specialist species in the western floras, suggestive of a higher tempo of speciation in the west (Cowling & Lombard, 2002). *Gazania* clade distributions across the east/west divide appear to echo this pattern of speciation.

A similar pattern was found by Bakker *et al.* (2000), who investigated the phylogeny of *Pelargonium* species and found two major clades. One of these clades (comprising eight species, all of which were distinguished by small chromosomes) was confined to the south western cape, while the second clade (containing the remaining species with large chromosomes) was more widely spread across the Eastern Cape (and several other areas outside of South Africa). Bakker *et al.* (2000) credit the increase in the number of western cape clades as having been triggered by the late Pliocene aridification and the establishment of a winter rainfall climate in the Western Cape region.

Tolley *et al.* (2004) investigated the phylogeography of the southern African dwarf chameleons *Bradypodion.* They found two major clades, one of which was confined to the south western cape and southern cape, as well as a second larger more widespread clade that occurred mostly in the eastern half of South Africa (Figure 5.3.17). This second clade was a large well-supported clade with low sequence divergence, composed of several species, and they also found a strong correlation between the various clades in their phylogeny and the geographical origins of the samples in those clades. The authors suggest that repeated bouts of isolation and subsequent contact were responsible for promoting the phylogenetic diversity observed in these animals.

Figure 5.3.16: Distributions of five varieties of *Cotyledon orbiculata* (from Mort *et al.*, 2005: Figure 1).

Figure 5.3.17: Distributions of two major *Bradypodion* genetic clades (from Tolley et al., 2004). Areas in the south west shaded in red belong to one clade, all other unshaded areas belong to second clade.

North-South split

Matthee & Flemming (2002) investigated the population fragmentation in the rock agama (*Agama atra*) in southern Africa. They found three geographical disjunctions that correlated with three clades in their phylogeny (Figure 5.3.18). One of these clades occupies an area in southern Namibia that roughly correlates with the area that *G. schenckii* is restricted to, and *G. lichtensteinii*, *G. heterochaeta* and *G. jurineifolia* show distributional overlaps with. The other two clades are confined to South Africa, with a split between a northern central clade and a more southerly central clade that is spread countrywide. The geographical patterns observed in *A. atra* (congruent with the general patterns seen in *Gazania*) are attributed to vicariance caused by cyclical changes in temperature and rainfall over the last 3 million years (Matthee & Flemming, 2002).

A study of *Scarabaeus* dung beetles by Sole (2005) shows a similar three-part disjunction. The dung beetle phylogeny (Figure 5.3.19) shows three clades, the most basal being distributed in Namibia, and the other two derived sister clades being distributed in more southern areas. This pattern of disjunction between a north clade and a south clade is also seen (Figure 5.3.20) in the red rock rabbit (*Pronolagus rupestris*; Matthee & Robinson, 1996).

Figure 5.3.18 Distributions of three major *Agama atra* genetic clades (from Matthee & Flemming, 2002), 1-Namibian clade, 2 - northern central clade, 3 - eastern and central clade.

Figure 5.3.19: Distributions of three major Scarabaeus genetic clades (from Sole, 2005: Figure 1 and Figure 2).

Figure 5.3.20: Distributions of two major *Pronolagus rupestris* genetic clades (from Matthee & Robinson, 1996).

Lamb & Bauer (2000) also found a similar pattern in *Pachydactylus* geckos. Here too is a north-south split between one basal taxon (located in Namibia) and the common ancestor for other more southerly located species. Like the other animal species mentioned above, the divergence between the two occurs around the Knersvlakte (Lamb & Bauer, 2000). Although the Namibian-centred *Gazania* species have spread out of their putative northern ancestral area (most likely due to their wind-dispersed seeds and ability to thrive on disturbed areas in poor soil), the historical split between the ancestors of the northern species and the ancestor of the more widely distributed eastern species remains detectable in the present day distributions of species.

Gazania is not unique in southern African plants, as these genetic disjunctions between Namibian and South African clades exist in other plant taxa. Touloumenidou *et al.* (2007) found geographic disjunctions between two sister clades of *Monsonia* (Geraniaceae), with one confined to Namibia and the other to South Africa. Jűrgens (1997) summarised an overall similarity in North-South disjunction patterns that have been found in at least 15 plant taxa (Figure 5.3.21).

Figure 5.3.21: Summary of disjunct distributions of 15 plant taxa (from Jűrgens, 1997: Figure 16).

Caveats

As mentioned in the previous chapters, some caution must be applied to these results. The choice of a bi-parentally inherited non-hierarchical nuclear marker for a phylogeographic study (in contrast to the usual choice of maternally inherited cpDNA markers) could invite some criticism as to the accuracy of the phylogeny used in this phylogeographic study. The effect that reticulation and paralogy could

have had on the phylogeny is not known, and is hard to quantify, without a comparative organellar phylogeny. The lack of sequence diversity found in the chloroplast markers used in Chapter 3 contraindicates the use of cpDNA spacer sequence data as a comparative measure of phylogeny retrieval. Further research could involve microsatellites or AFLP data as a means to test the nuclear phylogeny utilised in this study.

Conclusions

This phylogeographic investigation into *Gazania* suggests that there have been several instances of expansion and divergence within the genus. The older expansions and divergences have created the eight genetically cohesive taxa elucidated in Chapter 3. These species, even when occurring in sympatry, retain their genetic identity.

The most recent expansions and divergences in *Gazania* have lead to the formation of a number of widely distributed morphotypes (each of which could be a result of isolation in refugia), which Roessler delimited and named as nine distinct species. However, the phylogeographic data collected here illustrates that there has been insufficient time since their divergence for species cohesion to have materialised, either through means of geographical or reproductive isolation. Reproductive isolation itself, between geographically isolated populations, evolves as an incidental outcome of genetic changes in the populations (Foster *et al.*, 1998) and insufficient time had elapsed within the isolation of refugia for enough of these incidental changes to either take place or become fixed across the population prior to re-expansion.

While some of Roessler's nine noncohesive species do show a certain amount of taxonomic cohesion and geographical localization (e.g. *G. rigens*, *G. leiopoda*), the fact that some individuals of these species may group with geographically co-occurring members of other species, rather than their more geographically distant conspecifics, suggests that their isolation or speciation is not yet complete. The identities of these troublesome samples (based on Reossler's key) have been rechecked and they are accurately identified according to Roessler's delimitations. The recent cycles of climate change that could have lead to isolation and speciation within refugia, are just as responsible for subsequent geographical expansion out of these refugia.

The ability of an organism to survive climate change is dependant on several factors, most especially seed dispersal ability and ecological generalization (Dynesius & Jansson, 2000). For organisms to survive climate oscillation, they must have high enough seed dispersal ability to track their moving habitat, and a low enough level of ecological specialisation to not need to disperse rapidly to track their habitat and even to survive locally (Dynesius & Jansson, 2000). These factors would allow populations not only to survive climate change by moving with their shifting habitat, but also to

expand out of refugia when conditions altered. *Gazania*, with its generalist pollinators (pers. obsv.), wind dispersed seeds (pers. obsv.), ability to colonise disturbed areas, and short period between germination and seedset (under a year) possesses the characters necessary to shift with climate change and expand out of refugia.

This expansion could have lead to secondary contact between and melding of incipient species, breaking down species boundaries before they were completely formed. This would have resulted in the morass of types and varieties that now exist in the south-western cape, some of which Roessler named as species, despite their often dubious status. (Roessler himself was unsure about the status of *G. serrata* as a species, referring to is as "a not quite characteristic unit, that is at best regarded provisionally as a type" (Roessler, 1959: pp 400)). The possibility that pollinators may have played a part in the diversification in *Gazania* (especially within the CFR and Namaqualand) cannot be discounted, but this has not been investigated within the scope of this research project.

Apart from the south western cape refugia, a second potentially more recent refuge is centred along the southern coast. Evidence of the South Coast refugial lineage theory is found in the presence of two localised specializations of more widely distributed morphotypes: 1) The broad-leafed form *G. linearis* subsp *ovalis*, confined to a few small localities along the southern cape coast; and 2) the grey-leafed hirsute form *G. rigens* subsp *leucolaena*, also confined to the southern cape coast. Both of these morphotype ranges overlap with the area that the genetically cohesive clade of the *G. rigens* variety occupies. Figure 5.3.22 overlays all three distributions, pointing to a possible climatic refuge, out of which the current distributions have expanded. The lack of genetic cohesion for these distinct morphotypes suggests that the isolation and differentiation was very recent, and could point to a recent refugial area that fosters the diversification of endemic lineages.

Figure 5.3.22: Distributions of two distinctive morphotypes and one genetically cohesive clade pointing to a possible Southern cape climatic refuge. Solid line = G. *linearis* subsp *ovalis*, dashed line = G. *rigens* subsp *leucolaena*, dotted line = genetically cohesive G. *rigens* clade in K-R clade.

Species

Just as there are multiple species concepts, so there are multiple ways to test species boundaries. Sites & Marshall (2003) list a number of these, both tree and non-tree based methods. Cladistic haplotype aggregation (CHA; Brower, 1999) is a tree based method that states that all members of a species form a contiguous section of an unrooted tree and are separated from all other populations by a branch along which character state change leading to a fixed character difference is inferred (Sites & Marshall, 2003). Under the CHA, genetic data defines eight species (*G. jurineifolia, G. tenuifolia, G. lichtensteinii, G. schenckii, G. caespitosa, G. ciliaris, G. heterochaeta* and the K-R clade. The exclusivity criterion (EXCL; Baum & Shaw, 1995) defines genealogical species by two criteria: species must be basal taxa (they must not themselves contain taxa), and unlinked genes should have concordant genealogical histories. Thus species are defined as exclusive groups; those in which all members are more closely related to each other than to any organism outside of the group (Sites & Marshall, 2003). The method requires the reconstruction of genealogies for unlinked loci collected from the same individuals, then a strict consensus of the trees is taken to define points of concordance (resolved nodes), and species are delimited by exclusive nodes (Sites & Marshall, 2003). This was accomplished in Chapter 3, and the same eight species are retrieved again.

What exist now in *Gazania* are seven distinct species, and an eighth entity, consisting of a collection of morphologically and geographically overlapping evolutionary lineages lacking any isolatory mechanisms. Three of these lineages could be genetically distinguished as named varieties, while the rest must be grouped under a fourth name. This fourth taxonomic entity is highly variable and

widespread, and while there are certain morphotypes or ecotypes present, these lack any genetic cohesion. These are probably the remnants of previously isolated refugial lineages that failed to achieve true disjunction from other similar entities during their periods of isolation. Subsequent post-refugial expansion has further sabotaged their chances of attaining recognisable status as species.

The Ochlospecies concept (White, 1998) describes a very variable (polymorphic) species with chaotic infraspecific variation (only partly correlated with ecology and geography) which is of such a complex pattern as to be intractable to formal taxonomic treatment (Cronk, 1998). Cronk (1998) lists 10 traits for the diagnosis of an ochlospecies (diagnosis as an ochlospecies requires only six), these include:

- 1) Non-hierarchical polymorphic variation;
- 2) Character-state distribution that is only partially correlated with geography and ecology;
- 3) Characters vary independently, and not in a correlated fashion;
- 4) Complexity of variation is not due to hybridization between currently recognisable species;
- 5) Geographically and ecologically widespread, occurring in several climatic zones;
- At a particular locality two distinct and non-intergrading forms may be found, and other forms may be found at other localities, but taken together all the forms intergrade and the classification breaks down;
- 7) Have closely related, but morphologically distinct and monotypic satellite species;
- 8) Similar variants may occur in widely separate localities and appear to be polytypic in origin;
- 9) Often have long synonymies, the variation has driven a proliferation of names that eventually proves untenable.
- 10) They tend to occur in medium to large genera usually with more than 50 species.

The K-R clade of *Gazania* meets nine of those requirements (the tendency for ochlospecies to occur in large genera of 50 or more species does not fit *Gazania*, but seems a rather trivial character anyway).

One of the two proposed mechanisms that creates an ochlospecies is based on refugial isolation, reexpansion and subsequent hybridization after glacial-related climate change (the Prance hypothesis); the other proposed mechanism is based on the rapid population expansion of a colonising ecogeneralist, without any allopatric isolation stages (the rapid expansion hypothesis; Cronk, 1998). While *Gazania* is a colonising generalist (often found growing in disturbed areas in poor soil, and with wind dispersed seeds), the recent cycles of climate change in South Africa, and the concentration of localised genetic lineages in the western cape mountain areas, both suggest that the Prance hypothesis is more likely. Cronk (1998) considers the presence of clades that show more geographical structuring of genetic haplotypes than morphotypes to be an indicator of the refugial hypothesis.

The situation in the K-R clade of *Gazania* is not that rare, with a number of recent phylogeographic studies having yielded data that are consistent with the hypothesis that many plant species may have fractured into isolated, independently evolving populations that then came back into contact during interglacial periods (Comes and Kadereit, 1998; Noyes, 2006.). The principal effects of global climate change may thus have been to increase genetic variance within plant species, with population subdivision during recent climactic events contributing to genetic diversity, but not to speciation. (Noyes, 2006).

In conclusion, recent climate-driven radiation within *Gazania* has given rise to eight genetically distinct species, seven of which (*G. jurineifolia*, *G. heterochaeta*, *G. tenuifolia*, *G. caespitosa*, *G. ciliaris*, *G. lichtensteinii* and *G. schenckii*) are diagnosable by both the Morphological and the Phylogenetic species concepts. The eighth entity (following repeated cycles of refugial isolation and possible range expansion hybridization) is an ochlospecies that is clearly genetically distinct from the other seven species. It also possesses some lineages within it that show some partial genetic, morphological and geographical cohesion, but not sufficient to warrant full species status. The general conclusions from this investigation, each of the previous chapters and the proposed changes in status of species in *Gazania* are discussed in further detail in the final Chapter.

<u>Chapter 6.</u> <u>General conclusions</u>

This study of the systematics of *Gazania*, its recent evolutionary history, and the identification of refugia in the arid inland of southern Africa is novel research, and is in a field of plant species-level phylogeographic research that seems rarely attempted by other researchers who focus on the systematics of South Africa endemic genera. Given the difficulty in defining taxonomic entities within this genus, the possible reluctance of other researchers to approach the subject is understandable.

Recent evolutionary history

The genus *Gazania* is yet another example of a South African endemic clade that has undergone rapid and recent cladogenesis (see Linder, 2003, for other examples). This rapid cladogenesis in *Gazania* is hypothesised to be in response to fluctuating climatic conditions over the last few million years.

There are several other possible reasons for the diversification of the many lineages that comprise the CFR flora; among them, Linder (2003) lists:

1) adaptation to fire, (*Gazania* does not appear to show any specialised adaptations to the frequent fires that burn the fynbos of the CFR);

2) edaphic specialization, (edaphic specialization cannot be ruled out, but it was not investigated in this study. It should be noted that *Gazania* is a wide-spread colonising generalist that grows easily in a variety of soil types, so soil specialization may not be an important factor);

3) microhabitats in the mountainous regions, (*Gazania* may have diversified within the microhabitats of the mountainous regions of the CFR that could have acted as refugia in the past, but it is not localised or limited to them now);

4) pollinator selection, (the pollination of *Gazania* was not investigated in this study, but *Gazania* seems to attract generalist pollinators. However, regional variations in UV reflectance patterns could reveal further information and is suggested as a future avenue of research);

5) flowering seasonality, (flowering time in *Gazania* is not narrowly limited to a short period of the year);

6) and climatic specialization driven by steep gradients, (this cannot be ruled out without further detailed investigation into climatic data for *Gazania*).

However, it should be noted that unlike many other endemic CFR genera that have undergone rapid cladogenesis, *Gazania* does not contain hundreds of distinct localized species. This is most likely due to a lack of specialization (ecological, morphological or pollinator) in *Gazania* in combination with wind-dispersed seeds and a tendency to easily colonise disturbed sites with poor soil, leading to a wide distribution.

The taxonomic confusion that plagues this genus is most likely a result of alternating cycles of climate driven refugial isolation and subsequent expansion and hybridization events. Roessler's reservations about the status and validity of some of the taxonomic entities within this genus are proven well-founded by the results of the morphometric, phylogenetic and phylogeographic study of hundreds of samples from across southern Africa.

Caveats

Prior to a full reorganization of the genus *Gazania*, further research involving other genetic markers should be undertaken. Use of low copy nuclear markers, chloroplast microsatellites and AFLP could provide more clarity on the confusing taxonomic situation within *Gazania*. A much greater morphological sampling, including type specimens, is necessary before any meaningful nomenclatural analysis can be undertaken. As such, the taxonomic suggestions that follow are best regarded as preliminary until further more detailed research can be undertaken.

Morphological characters and species phylogeny

Figure 6.1 is a summary phylogeny of the species within *Gazania*, with various autapomorphic and synapomorphic morphological characters mapped onto the branches. Most of the characters (e.g. habit, obovate leaves) appear in multiple places in the phylogeny. The morphological characters are homoplasious when interpreted in context of the phylogeny.

Figure 6.1: Summary DNA species phylogeny of Gazania with morphological character states mapped onto branches. 1 = Developed stem habit, 2 = White flowers, 3 = Multiple rows of involucral parietal scales, 4 = Mild succulence, 5 = Leaf margins dentate, 6: black bar = Linear leaf (< 4mm wide), 6: hollow bar = obovate leaf (>4 mm wide), 7 = All leaves dissected, 8 = involucral base truncate. Asterisks indicate partial presence of numbered character, i.e. some individuals may not show it.

Valid taxonomic entities with genetic and morphological distinction

The results of the investigations undertaken on *Gazania* in the previous chapters suggest that there are a number of genetically and morphologically distinct taxonomic entities that correlate with Roessler's species and that are without difficulty considered as valid taxa. Those considered valid under the Phylogenetic and Morphological species concepts are:

- 1) G. jurineifolia
- 2) G. tenuifolia
- 3) G. heterochaeta
- 4) G. lichtensteinii
- 5) G. schenckii
- 6) G. caespitosa
- 7) G. ciliaris

Problematic "species" lacking genetic and morphological distinction

The remaining nine species as delimited by Roessler are more challenging to assign taxonomic ranks to. One entity (*G. linearis* subspecies *ovalis*) has clear easily recognisable morphological distinction and geographic localization, yet does not show any evidence of genetic isolation. Another entity (*G. rigens*) shows clear morphological distinction, as well as geographical and ecological localization, but only incomplete evidence of genetic cohesion. Yet another (*G. leiopoda*) shows partial genetic cohesion and geographical localization, but little clear morphological distinction. A fourth entity (*G. othonnites/sp. nov.*) shows genetic cohesion, geographical localization and ecological specialization (by the presence of mild succulence).

For the rest of the taxonomic entities, as defined by Roessler, there are few informative morphological characters and those that do exist show large amounts of intra-specific variability. In conjunction with either recent or ongoing gene flow between these entities, there seems little chance of distinguishing discrete species within this impenetrable complex. The oldest species name for all nine of Roessler's species that fall within the K-R complex is that of *G. rigens* L. (1763), indicating that this should be the name of the ochlospecies.

It would seem more practical to define the entities within the "K-R" complex as members of a widely spread and highly variable ochlospecies. Within this ochlospecies are some consistently distinguishable varieties:

- 1) G. rigens var. leiopoda (formerly G. leiopoda under Roessler),
- 2) G. rigens var ovalis (formerly G. linearis subspecies ovalis under Roessler),
- 3) G. rigens var rigens (formerly G. rigens under Roessler),

4) G. rigens var othonnites (formerly G. othonnites under Roessler, and now including the putative new species G. sp. nov.).

However, the presence of these lineages within a larger clade will render that larger clade a paraphyletic or metaphyletic. Archibald (1994) illustrates the difference between paraphyletic and metaphyletic in Figure 6.2. The genetically distinct branches within the K-R clade (those numbered 1-12 in Chapter 4) are rendered paraphyletic, while the samples that cluster along the backbone of the clade are rendered metaphyletic. This distinction becomes important when attempting to apply the Metaspecies/Mixotaxic concepts to the K-R clade. A metaspecies is a previously named portion of a polytomy for which positive evidence of monophyly or paraphyly is lacking (Figure 6.2). A mixotaxon one is where some (but not all) constituent clades may possess autapomorphies (Figure 6.2), which describes the K-R clade.

Figure 6.2: An illustration of the difference between paraphyletic taxa (P), metaphyletic taxa (Me) and monophyletic taxa (Mo), "MixT" marks the base of a mixotaxon, "MetSp" marks the base of a metaspecies. (Based on Archibald, 1995: Figure 1).

The remainder of the entities within the K-R complex (those not identified in the four varieties named above) lack sufficient genetic signal or morphological distinctiveness to warrant separate names. For just this situation, Olmstead (1995) proposes the concept of an apospecies which possesses a unique derived character, while an associated Plesiospecies lacks any uniquely derived character (Figure 6.3 illustrates the relationship between the two). In the K-R clade of *Gazania*, the four genetically recognisable lineages could be considered apospecies, whilst the remaining mixture of samples forms a plesiospecies. Despite describing extremely similar entities, the metaspecies concept is dismissed by Olmstead (1995) as "a conditional statement of lack of knowledge concerning relationships".

Figure 6.3: Diagrammatic illustration of the relationship between Plesiospecies and Apospecies (From Olmstead, 1995, Figure 2). Horizontal bars indicate unique characters that diagnose each clade.

Whether one chooses to define the greater unresolved portion of the K-R clade as a plesiospecies, or as para/metaphyletic members of a mixotaxon is a matter of personal taste. Species concepts are difficult to apply in a practical diagnostic sense in *Gazania*, as those based purely on morphology will conflict with those based purely on genes. Samples of *G. rigens* (*sensu* Roessler) diagnosed by morphology may or may not fall into the genetically monophyletic apospecies of *G. rigens* var. *rigens* diagnosed in this investigation. The contradiction between morphometric species designation and genetic species designation is yet another example of the problems incurred when investigating low-level phylogeny.

Sites & Marshall (2003) observe that speciation processes create fuzzy boundaries under which all methods of diagnosing species will occasionally fail or be discordant with each other (as clearly observed in *Gazania*, where application of the morphological and phylogenetic species concepts within the K-R clade are in conflict). It is these "problematic" taxa that should be of particular interest to evolutionary biologists, because these taxa are the most promising candidates for providing unique insights into the crucial early stages of the speciation process (Shoemaker *et al.*, 2006). Studies of differentiated populations have rarely been incorporated into research on speciation, even though population differentiation is envisioned as the first stage in speciation in the most widely favoured speciation models (Foster *et al.*, 1998).

The current taxonomic situation in *Gazania* is a complex mix of seven species that are distinct under the Morphological and Phylogenetic Species concepts, and an eighth ochlospecies mixotaxon, with four diagnosable apotaxa.

Morphological key to taxonomic entities within Gazania.

Below is the morphological key to those taxonomic entities within *Gazania* that show genetic and morphological distinction as species. *G. lichtensteinii* appears twice in the key due to the presence of both the developed and rosette stem habits. *G. rigens* appears in multiple places in the key due to the broad range of morphological variation that is found within this ochlospecies. Three of the four morphologically identifiable varieties within *G. rigens* are present in the key, except for *G. rigens* var *leiopoda*, which shows no clear morphological distinction, despite some geographical and genetic cohesion.

1) Stem developed with leaves spaced along entire length.

2) Leaves linear (< 2 mm wide)	G. caespitosa
2) Leaves obovate/obovate-lanceolate/lanceolate (> 2 mm wide)	
3) All leaves deeply pinnatifid (1-5 lacinae)	G. rigens
3) Leaves entire or some few leaves pinnatifid (1-3 lacinae)	
4) Leaf margin entire	G. rigens var. rigens
4) Leaf margin dentate/denticulate	
5) Involucre tomentose, older stems woody	G. schenckii
5) Involucre glabrous, stem not woody	G. lichtensteinii
1) Stem shortened with leaves crowded at base in rosette.	
6) Leaf abaxial surface glabrous, succulent glaucous leaves.	G. rigens var othonnites/sp. nov.
6) Abaxial surface tomentose.	
7) Leaf margins dentate/denticulate.	G. lichtensteinii
7) Leaf margins entire or ciliate	
8) Multiple rows of linear parietal scales upwards from trun	cate involucre base G. tenuifolia
8) Most involucral scales terminal, some few single parietal	
9) Inner involucre scales greatly and finely acuminate	(> 8 mm long)
10) Inner involucral scale margins entire	
11) Leaves lanceolate/elliptic, entire leaves >	> 10 mm wide, lacinae of pinnatifid
ieaves > 4 mm wide.	G. rigens var. ovalis
11) Leaves linear, lanceolate, entire leaves <	10mm wide, lacinae of
pinnatifid leaves < 4 mm wide.	G. rigens

10) Inner involucral scale margins ciliate.	G. ciliaris
9) Inner involucre scales < 8 mm long.	
12) Outer involucral scales < 4 mm long, inner > 4 mm long. F	Ray florets white. G. jurineifolia
12) Outer involucral scales > 4 mm long, inner < 4 mm long. For orange.	Ray florets yellow /
13) Leaf obovate	G. heterochaeta
13) Leaf linear/lanceolate	G. rigens

References

Abdel Khalik, K., van der Maesen, L.J.G., Koopman, W.J.M. & van den Berg, R.G. 2002. Numerical taxonomic study of some tribes of Brassicaceae from Egypt. *Plant Syst. Evol.* 233: 207-221.

Ackerfield, J. & Wen, J. 2002. A morphometric analysis of *Hedera* L. (the ivy genus, Araliaceae) and its taxonomic implications. *Adansonia*. 24(2):197-212.

Albach, D.C. & Chase, M.W. 2004. Incongruence in *Veronicaea* (Plantaginaceae): evidence from two plastid and a nuclear ribosomal DNA region. *Mol. Phylogenet. Evol.* 32: 183-197.

Albrecht, G.H. 1978. Some comments on the use of ratios. Syst. Zool. 27(1): 67-71.

Arbogast, B.S & Kenagy, G.J. 2001. Comparative phylogeography as an integrative approach to historical biogeography. *J. Biogeogr.* 28(7): 819-825.

Arbogast, B.S. & Slowsinki, J.B. 1998. Pleistocene speciation and the mitochondrial DNA clock. *Science*. 282:1955a.

Archibald, J.D. 1994. Metataxon concepts and assessing possible ancestry using phylogenetic systematics. *Syst. Biol.* 43(1): 27-40.

Atchley, W.R. & Anderson, D. 1978. Ratios and the statistical analysis of biological data. *Syst. Zool.* 27(1):71-78.

Atchley, W.R., Nordheim, E.V., Gunsett, F.C. & Crump, P.L. 1982. Geometric and probabilistic aspects of statistical distance functions. *Syst. Zool.* 31(4):445-460.

Avise, J.C. 2000. *Phylogeography: the history and formation of species*. Harvard University Press, Cambridge.

Avise, J.C. 2004. *Molecular markers, natural history and evolution*. (2nd Ed.) Sinauer Associates Inc. Sunderland.

Ayoub, N.A. & Riechert, S.E. 2004. Blackwell Publishing, Ltd. Molecular evidence for Pleistocene glacial cycles driving diversification of a North American desert spider, *Agelenopsis aperta*. *Mol. Ecol.* 13: 3453-3465

Bakker, F.T., Culham, A., Pankhurst, C.E. & Gibby, M. 2000. Mitochondrial and chloroplast DNAbased phylogeny of *Pelargonium* (Geraniaceae). *Am. J. Bot.* 87(4): 727-734.

Baldwin, B.G. & Markos, S. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS + ITS trees of *Calycadenia* (Compositae). *Mol. Phylogenet. Evol.* 10(3): 449-463.

Baldwin, B.G. & Sanderson, M.J. 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). *Proc. Natl. Acad. Sci. USA* 95: 9402-9406.

Barker, F.K. & Lutzoni, F.M. 2002. The utility of the Incongruence Length Difference Test. *Syst. Biol.* 51(4): 625-637.

Barraclough, T.G., Vogler, A.P. & Harvey, P.H. 1998. Revealing the factors that promote speciation. *Phil. Trans. R. Soc. Lond. B.* 353: 241-249.

Baum, D.A. & Shaw, K.L. 1995. Genealogical perspectives on the species problem. In: *Experimental and Molecular Approaches to Plant Biosystematics*. (Eds) P.C. Hoch, & A.G. Stephenson. Missouri Botanical Garden.

Bayer, R.J., Soltis, D.E. & Soltis, P.S. 1996. Phylogenetic inferences in *Antennaria* (Asteraceae: Gnaphalieae: Cassiniinae) based on sequences from nuclear ribosomal DNA internal transcribed spacers (ITS). *Am. J. Bot.* 83(4): 516-527.

Bellarosa, R., Simeone, M.C., Papini, A. & Schirone, B. 2005. Utility of ITS sequence data for phylogenetic reconstruction of Italian *Quercus* spp. *Mol. Phylogenet. Evol.* 34: 355-370.

Bena, G., Jubier, M.-F., Olivieri, I. & Lejeune, B. 1998. Ribosomal External and Internal Transcribed Spacers: Combined Use in the phylogenetic analysis of *Medicago* (Leguminosae). *J. Mol. Evol.* 46:299–306.

Bermingham, E. & Moritz, C. 1998. Comparative phylogeography: concepts and applications. *Mol. Ecol.* 7: 367-369.

Besnard, G., Khadari, B., Baradat, P. & Bervillé, A. 2002. *Olea europaea* (Oleaceae) phylogeography based on chloroplast DNA polymorphism. *Theor. Appl. Genet.* 104: 1353-1361.

Bookstein, F.L. 1982. Foundations of morphometrics. Ann. Rev. Ecol. Syst. 13: 451-470.

Borazan, A. & Babac, M.T. 2003. Morphometric leaf variation in oaks (*Quercus*) of Bolu, Turkey. *Ann. Bot. Fennici.* 40: 233-242.

Boyd, A. 2002. Morphological analysis of sky island populations of *Macromeria viridiflora* (Boraginaceae). *Syst. Bot.* 27:116–126.

Brower, A.V.Z. 1999. Delimitation of phylogenetic species with DNA sequences: a critique of Davis and Nixon's population aggregation analysis. *Syst. Biol.* 48:199–213.

Bryant, D. & Moulton, V. 2004. Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. *Mol. Biol. Evol.* 21(2): 255-265.

Buckler, E.S., Ippolito, A. & Holtsford, T.P. 1997. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. *Genetics*. 145:821-832.

Butzer, K.W. 1984. Late Quarternary environments in South Africa. In: *Late Cainozoic Paleoclimates of the southern hemisphere*. (Ed.) J.C. Vogel. Balkema, Rotterdam.

Campbell, C.S., Wright, W.A., Cox, M., Vining, T.F., Major, C.S. & Arsenault, M.P. 2005. Nuclear ribosomal DNA ITS1 in *Picea* (Pinaceae): sequence divergence and structure. *Mol. Phylogenet. Evol.* 35: 165-185.

Carr GD, King RM, Powell AM, Robinson H. 1999. Chromosome numbers in Compositae. XVIII. *Am. J. Bot.* 86: 1003–1013.

Castro, S., Silveira, P., Pereira Coutinho, A. & Figueiredo, E. 2005. Systematic studies in *Tyloseam* (Leguminosae). *Bot. J. Linn. Soc.* 147: 99-115.

Chan, R., Baldwin, B.G. & Ornduff, R. 2001. Goldfields revisited: a molecular phylogenetic perspective on the evolution of *Lasthenia* (Compositae: Heliantheae sensu lato). *Int. J. Plant. Sci.* 162(6): 1347-1360.

Chandler, G.T., Bayer, R.J. & Crisp, M.D. 2001. A molecular phylogeny of the endemic Australian genus *Gastrolobium* (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. *Am. J. Bot.* 88(9): 1675-1687.

Chandler, G.T. & Crisp, M.D. 1998. Morphometric and phylogenetic analysis of the *Daviesia ulicifolia* complex (Fabaceae, Mirbelieae). *Plant Syst. Evol.* 209:93–122.

Chase, M.W. & Cox, A.V. 1998. Genes sequences, collaboration and analysis of large data sets. *Aust. Syst. Bot.* 11: 215-229.

Cheng, Y.-P., Hwang, S.-Y. & Lin, T.-P. 2005. Potential refugia in Taiwan revealed by the phylogeographical study of *Castanopsis carlesii* Hayata (Fagaceae). *Mol. Ecol.* 14: 2075–2085.

Clegg, M.T., Brown, A.D.H. & Whitfeld, P.R. 1984a. Chloroplast DNA diversity in wild and cultivated barley: implications for genetic conservation. *Genetic Research* 43: 339-343.

Clegg, M.T., Rawson, J.R.Y. & Thomas, K. 1984b. Chloroplast DNA variation in pearly millet and related species. *Genetics*. 106: 449-461.

Clegg, M.T., Gaut, B.S., Learn, G.H. & Morton, B.R. 1995. Rates and patterns of chloroplast DNA evolution. In: *Tempo and Mode in evolution: Genetics and Paleontology 50 years after Simpson*. (Eds) W.A. Fitch & F.J. Ayala. National Academy of Sciences.

Clevinger, J.A. & Panero, J.L. 2000. Phylogenetic analysis of *Silphium* and subtribe Engelmanniinae (Asteraceae: Heliantheae) based on ITS and ETS sequence data. *Am. J. Bot.* 87(4): 565-572.

Comes, H.P. & Kadereit, J.W. 1998. The effect of Quaternary climatic changes on plant distribution and evolution. *Trends Plant Sci.* 3(11):432-438

Cowling, R.M. & Lombard, A.T. 2002. Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. *Divers. Distrib.* 8: 163-179.

Creer, S., Malhotra, A. & Thorpe, R.S. 2003. Assessing the phylogenetic utility of four mitochondrial genes and a nuclear intron in the Asian pit viper genus, *Trimeresurus*: Separate, simultaneous, and conditional data combination analyses. *Mol. Biol. Evol.* 20(8):1240–1251.

Crisp, M.D. & Weston, P.H. 1993. Geographic and ontogenetic variation in morphology of Australian waratahs (Telopea: Proteaceae). *Syst. Biol.* 42: 49-76.

Crompton, C.W., Stahevitch, A.E. & Wojtas, W.A. 1990. Morphometric studies of the *Euphorbia* esula group in North America. *Can. J. Bot.* 68: 1978-1988.

Cronk, Q.C.B. 1998. The ochlospecies concept. In: *Chorology, taxonomy and ecology of the floras of Africa and Madagascar*. (Eds) C.R. Huxley, J.M. Lock & D.F. Cutler. Royal Botanic Gardens, Kew.

Crowe, T.M. 1994. Morphometrics, phylogenetic models and cladistics: means to an end or much ado about nothing? *Cladistics*. 10:77-84.

Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined? *Mol. Biol. Evol.* 14(7): 733-740.

Cupido, C.N. 2003. Systematic studies in the genus *Merciera* (Campanulaceae): A re-assessment of species boundaries. *Adansonia*. 25(1):33-44.

Davis, J.I. 1983. Phenotypic plasticity and the selection of taxonomic characters in *Puccinellia* (Poaceae). *Syst. Bot.* 8(4): 341-353.

Dawson, M.N. 2005. Incipient speciation of *Catostylus mosaicus* (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. *J. Biogeogr.* 32: 515-533.

de Meeus, T., Durand, P. & Renaud, F. 2003. Species concepts: what for? *Trends in parasitology*. 19(10): 425-427.

deMenocal, P.B. 1995. Plio-Pleistocene African climate. Science. 270: 53-59.

deMenocal, P.B. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. *Earth Planet. Sc. Lett.* 220: 3-24.

Dobeš, C.H., Mitchell-Olds, T. & Koch, M.A. 2004. Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American *Arabis drummondii*, *A. X divaricarpa* and *A. holboelii* (Brassicaceae). *Mol. Ecol.* 13: 349-370.

Doebeli, M. & Dieckmann, U. 2003. Speciation along environmental gradients. *Nature*. 421: 259-264.

Downie, S.R., Hartman, R.L., Sun F.-J. & Katz-Downie, D.S. 2002. Polyphyly of the spring-parsleys (*Cymopterus*): molecular and morphological evidence suggests complex relationships among the perennial endemic genera of western North American Apiaceae. *Can. J. Bot.* 80(12): 1295-1324.

Dowton, M. & Austin, A.D. 2002. Increased congruence does not necessarily indicate increased phylogenetic accuracy – the behaviour of the Incongruence Length Difference test in mixed-model analyses. *Syst. Biol.* 51(1): 19-31.

Doyle, J.J. 1992. Gene trees and species tree: molecular systematics as one-character taxonomy. *Syst. Bot.* 17(1): 144-163.

Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. *Phytochem. Bull.* 19(1): 11-15.

Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. *PLoS Biol.* 4(5):e88.

Drummond, A.J. & Rambaut, A. 2003. BEAST version 1.0. Available at http://evolve.zoo.ox.ac.uk/beast/

Dynesius, M. & Jansson, R. 2000. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. *Proc. Natl. Acad. Sci. USA*. 97(16): 9115-9120.

Edwards, S.V. & Beerli, P. 2000. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. *Evolution*. 54(6): 1839-1854.

Edwards, K.J. & Gadek, P.A. 2001. Evolution and biogeography of *Alectryon* (Sapindaceae). *Mol. Phylogenet. Evol.* 20(1): 14-26.

Excoffier, L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. *Mol. Ecol.* 13:853-864.

Farris, J.S., Källersjö, M., Kluge, A.G. & Bult, C. 1994. Testing significance of incongruence. *Cladistics*. 10: 315-319.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. *J. Mol. Evol.* 17: 368-376.

Fishbein, M. & Soltis, P.E. 2004. Further resolution of the rapid radiation of *Saxifragales* (Angiogperms, Eudicots) supported by mixed-model Bayesian analysis. *Syst. Bot.* 29(4): 883-891.

Foster, S.A., Scott, R.J. & Cresko, W.A. 1998. Nested biological variation and speciation. *Phil. Trans. Biol.* 353: 207-218.

Funk, V.A., Chan, R. & Keeley, S.C. 2004. Insights into the evolution of the tribe Arctoteae (Compositae: subfamily Cichorioideae s.s.) using trnL-F, ndhF, and ITS. *Taxon*. 53(3): 637-655.

Gielly, L., Yuan, Y.-M., Kupper, P. & Taberlet, P. 1996. Phylogenetic use of noncoding regions in the genus *Gentiana* L.: chloroplast *trnL*(UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. *Mol. Phylogenet. Evol.* 5(3): 460-466.

Goertzen, L.R., Cannone, J.J., Gutell, R.R. & Jansen, R.K. 2003. ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. *Mol. Phylogenet. Evol.* 29: 216-234.

Graham, S.W., Kohn, J.R., Morton, B.R., Eckenwalder, J.E. & Barrett, S.C.H. 1998. Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. *Syst. Biol.* 47(4): 545-567.

Grant, W.S. & Bowen, B.W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. *J. Hered.* 89(5): 415-425

Griffioen, R.C. 1995. A taxonomic study of Chrysanthemoides Tourn. ex Medik. (Compositae). Thesis, University of Cape Town.

Hamilton, M.B. 1999. Tropical tree gene flow and seed dispersal: deforestation affects the genetic structure of the surviving forest fragments. *Nature* 401: 129-130.

Harrison, R.G. 1991. Molecular changes at speciation. Annu. Rev. Ecol. Syst. 22: 281-308.

Harrison, R.G. 2001. Genealogies and geography: deciphering recent evolutionary history. *Evolution*. *55*(3): 646-649.

Henderson, A. 2006. Traditional morphometrics in plant systematics and its role in palm systematics. *Bot. J. Linn. Soc.* 151(1): 103-111.

Hendry, A.P., Vamosi, S.M., Latham, S.J., Heilbuth, J.C. & Day, T. 2000. Questioning species realities. *Conservation Genetics* 1: 67-76.

Heuertz, M., Fineschi, S., Anzidei, M., Pastorelli, R., Salvinia, D., Paule, L., Frascaria-Lacoste, N., Hardy, O.J., Vekemans, X. & Vendramin, G.G. 2004. Chloroplast DNA variation and postglacial recolonization of common ash (*Fraxinus excelsior* L.) in Europe. *Mol. Ecol.* 13: 3437-3452.

Hey, J., Waples, R.S., Arnold, M.L., Butlin, R.K. & Harrison, R.G. 2003. Understanding and confronting species uncertainty in biology and conservation. *Trends Ecol. Evol.* 18(11): 597-603.

Hillis, M. 1978. On ratios - a response to Atchley, Gaskins and Anderson. Syst. Zool. 27(1): 61-62.

Hipp, A.L., Hall, J.C. & Sytsma, K.J. 2004. Congruence versus phylogenetic accuracy: revisiting the Incongruence Length Difference test. *Syst. Biol.* 53(1): 81-89.

Ho, S.Y.W., Phillips, M.J., Cooper, A. & Drummond, A.J. 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. *Mol. Biol. Evol.* 22(7):1561–1568.

Holdregger, R. & Abbott, R.J. 2003. Phylogeography of the Arctic-Alpine *Saxifraga oppositifolia* (Saxifragaceae) and some related taxa based on cpDNA and ITS sequence variation. *AMJB* 90: 931-936.

Hollingsworth, M.L., Hollingsworth, P.M., Jenkins, G.I., Bailey, J.P. & Ferris, C. 1998. The use of molecular markers to study patterns of genotypic diversity in some invasive alien *Fallopia* spp. (Polygonaceae). *Mol. Ecol.* 7:1681-1691.

Huelsenbeck, J.P., Bull, J.J. & Cunningham, C.W. 1996. Combining data in phylogenetic analysis. *Trends Ecol. Evol.* 11(4): 152-158.

Humphries, J.M., Bookstein, F.L., Chernoff, B., Smith, G.R., Elder, R.L. & Poss, S.G. 1981. Multivariate discrimination by shape in relation to size. *Syst. Zool.* 30:291–308.

Hung, Y.-T., Chen, C.A., Wu, W.-J., Lin, C.-C. & Shih, C.-J. 2004. Phylogenetic utility of the ribosomal internal transcribed spacer 2 in *Strumigenys* spp. (Hymenoptera: Formicidae). *Mol. Phylogenet. Evol.* 32: 407-415.

James, F.C. & McCulloch, C.E. 1990. Multivariate analysis in ecology and systematics: panacea or pandora's box? *Annu. Rev. Ecol. Syst.* 21:129-166.

Jansson, R. & Dynesius, M. 2002. The fate of clades in a world of recurrent climate change: Milankovitch oscillations and evolution. *Annu. Rev. Ecol. Syst.* 33: 741-777.

Jeandroz, S., Roy, A. & Bousquet, J. 1997. Phylogeny and phylogeography of the circumpolar genus *Fraxinus* (Oleaceae) based on Internal Transcribed Spacer sequences of nuclear ribosomal DNA. *Mol. Phylogenet. Evol.* 7(2): 241-251.

Jensen, R.J. 2003. The conundrum of morphometrics. Taxon. 52: 663-671.

Johnson, L.A. & Soltis, D.E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. *Ann. Miss. Bot. Gard.* 82: 149-175.

Jűrgens, N. 1997. Floristic biodiversity and history of African arid regions. *Biodivers. Conserv.* 6: 495-514.

Karis, P.O. 2006. Morphological data indicates two major clades of the subtribe Gorteriinae (Asteraceae-Arctotideae). *Cladistics*. 22(3): 199-221.

Kellogg, E.A., Appels, R. & Mason-Gamer, R.J. 1994. When genes tell different stories: the diploid genera of Triticeae (Gramineae). *Syst. Bot.* 21(3): 321-348.

Kennedy, M., Holland, B.R., Gray, R.D. & Spencer, H.G. 2005. Untangling long branches: Identifying conflicting phylogenetic signals using spectral analysis, Neighbor-Net, and consensus networks. *Syst. Biol.* 54(4): 620-633.

Kennett, J.P. 1982. Marine geology. Prentice-Hall, Englewood Cliffs.

Kim S.-C., Crawford, D.J., Jansen, R.K. & Arnoldo, S.-G. 1999 The use of a non-coding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuceae). *Plant Syst. Evol.* 215: 85-99.

Kores, P.J., Molvray, M. & Darwin, S.P. 1993. Morphometric variation in three species of Cyrtostylis (Orchidaceae). *Syst. Bot.* 18(2):274-282.

Lamb, T. & Bauer, A.B. 2000. Relationships of the *Pachydactylus rugosus* group of geckos (Reptilia: Squamata: Gekkonidae). *Afr. Zool.* 35: 55–67.

Levasseur, C. & Lapointe, F.J. 2001. War and peace in phylogenetics: a rejoinder on total evidence and consensus. *Syst. Biol.* 50(6):881-891.

Lee, C., Kim, S.-C., Lundy, K. & Santo-Guerra, A. 2005. Chloroplast DNA phylogeny of the woody *Sonchus* alliance (Asteraceae: Sonchinae) in the Macronesian islands. *Am. J. Bot.* 92(1): 2072-2075.

Lee, J., Baldwin, B.G. & Gottlieb, L.D. 2002. Phylogeny of *Stephanomeria* and related genera (Compositae - Lactuceae) based on analysis of 18S-16S nuclear rDNA ITS and ETS sequences. 2002. *Am. J. Bot.* 89(1): 160-168.

Li, W.-H. 1997. Molecular evolution. Sinauer Press, Sunderland Massachusetts.

Lilliefors, H. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. *J. Amer. Stat. Assoc.* 62: 399-402.

Linder, C.R., Goertzen, L.R., Vanden Heuvel, B., Francisco-Ortega, J. & Jansen, R.K. 2000. The complete external transcribed spacer of 18S-26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. *Mol. Phylogenet. Evol.* 14(2): 285-303.

Linder, H.P. & Hardy, C.R. 2004. Evolution of the species-rich Cape flora. *Phil. Trans. R. Soc. Lond. B.* 359: 1623-632.

Linder, H.P. 2005. Evolution of diversity: the Cape flora. Trends Plant Sci. 10(11): 536-541.

Lindesay, J. 1998. Past climates of Southern Africa. In: *Climates of the southern continents: Present, past and future*. (Eds) J.E. Hobbs, J. Lindesay & H.A. Bridgman. John Wiley & Sons Ltd..

Liston, A., Robinson, W.A., Oliphant, J.M. & Alvarez-Buylla, E.R. 1996. Length variation in the nuclear ribosomal DNA Internal Transcribed Spacer Region of non-flowering seed plants. *Syst. Bot.* 21(2): 109-120.

Maddison, D.R. 1991. The discovery and importance of multiple islands of most-parsimonious trees. *Syst. Biol.* 40: 315-328.

Mahoney, M.J. 2004. Molecular systematics and phylogeography of the *Plethodon elongatus* species group: combining phylogenetic and population genetic methods to investigate species history. *Mol. Ecol.* 13:149–166.

Manos, P.D., Doyle, J.J & Nixon, K.C. 1999. Phylogeny, biogeography and processes of molecular differentiation in *Quercus* subgenus *Quercus* (Fagaceae). *Mol. Phylogenet. Evol.* 12(3): 333-349.

Mantel, N. 1967. Ranking procedures for arbitrarily restricted observations. Biometrics. 23: 65-78.

Marcussen, T. 2003. Evolution, phylogeography, and taxonomy within the *Viola alba* complex (Violaceae). *Plant. Syst. Evol.* 237:51-74.

Matthee, C.A. & Flemming, A.F. 2002. Population fragmentation in the southern rock agama, *Agama atra*: more evidence for vicariance in Southern Africa. *Mol. Ecol.* 11: 465–471.

Matthee C.A. & Robinson, T.J. 1996. Mitochondrial DNA differentiation among geographical populations of *Pronolagus rupestris*, Smith's red rock rabbit (Mammalia: Lagomorpha). *Heredity*. 76: 514–523.

Mayden, R.L. 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. In: *Species: The units of diversity*. (Eds) M. Claridge, H. Dawah, & M. Wilson Chapman and Hall, London.

Mayr, E. 1965. Numerical phenetics and taxonomic theory. Syst. Zool. 14(2): 73-97.

McDade, L.A. 1997. Hybrids and phylogenetic systematics III. Comparison with distance methods. *Syst. Bot.* 22(4):669-683.

Mehra, P.N. & Remananandan, P. 1969. IOPB chromosome number reports XXII. *Taxon.* 8: 433-442.

Mes, T.H.M. & t'Hart, H. 1994. *Sedum surculosum* and *S. jaccardianum* (Crassulaceae) share a unique 70bp deletion in the chloroplast DNA trnL(UAA)-trnF(GAA) intergenic spacer. *Plant Syst. Evol.* 206: 411-420.

Mickevich, M.F. & Farris, J.S. 1981. Implications of congruence in *Menidia*. Syst. Zool. 30: 351-320.

Mickevich, M.F. & Johnson, M.S. 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. *Syst. Zool.* 25(3):260-270.

Mishler, B.D. & Theriot, E.C. 2000. A critique from the Mishler and Theriot phylogenetic species concept perspective. In: *Species concepts and phylogenetic theory - a debate*. (Eds) Q.D. Wheeler & R. Meier. Columbia University Press, New York.

Mort, M.E., Archibald, J.K., Randle, C.P., Levsen, N.D., O'Leary, T.R., Topalov, K., Wiegand, C.M. & Crawford, D.J. 2007. Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci. *Am. J. Bot.* 94(2):173-183.

Mort, M.E., Levsen, N., Randle, C.P., Van Jaarsveld, E. & Palmer, A. 2005. Phylogenetics and diversification of *Cotyledon* (Crassulaceae) inferred from nuclear and chloroplast DNA sequence data. *Am. J. Bot.* 92(7): 1170-1176.

Muir, G., Fleming, C.C. & Schlötterer, C. 2001. Three divergent rDNA clusters predate the species divergence in *Quercus petraea* (Matt.) Liebl. and *Quercus robur* L. *Mol. Biol.* 18(2): 112-119.

Nielsen, L.R. 2004. Molecular differentiation within and among island populations of the endemic plant *Scalesia affinis* (Asteraceae) from the Gala´pagos Islands. *Heredity*. 93:434-442.

Niklas, K.J. 1997. The evolutionary biology of plants. University of Chicago Press.

Nixon, K.C. & Wheeler, Q.D. 1990. An amplification of the phylogenetic species concept. *Cladistics*. 6: 211-223.

Nordenstam, B. Chromosome Numbers in South African Compositae. Aquilo Ser. Bot. 6.

Noyes, R.D. 2006. Intraspecific nuclear ribosomal DNA divergence and reticulation in sexual diploid *Erigeron strigosus* (Asteraceae). *Am. J. Bot.* 93(3): 470-479.

O'Kane, S.L., Schaal, B.A. & Al-Shehbaz, I.A. 1996. The origins of *Arabidopsis suecica* (Brassicaceae) as indicated by nuclear rDNA sequences. *Syst. Bot.* 21(4): 559-566.

Okuyama, Y., Fujii, N., Wakabayashi, M., Kawakita, A., Ito, M., Watanabe, M., Murakami, N. & Kato, M. 2005. Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed introgression patterns in three molecular data partition phylogenies of Asian *Mitella* (Saxifragaceae). *Mol. Biol. Evol.* 22(2): 285-296.

Olmstead, R.G. 1995. Species concepts and plesiomorphic species. Syst. Bot. 20(4): 623-630.

Olmstead, R.G. & Palmer, J.D. 1994. Chloroplast DNA systematics: a review of methods and data analysis. *Am. J. Bot.* 81(9): 1205-1224.

Oxelman, B., Liden, M. & Berglund, D. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). *Syst. Evol.* 206: 393-410.

Oxnard, C.E. 1978. One biologist's view of morphometrics. Ann. Rev. Ecol. Syst. 9: 219-241.

Palmer, J.D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. *Am. Nat.* 130: S6-S29.

Palmer, J.D. & Zamir, D. 1982. Chloroplast DNA evolution and phylogenetic relationships in *Lycopsericon. Proc. Natl. Acad. Sci. U.S.A.* 79: 5006-5010.

Partridge, T.C. & Maud, R.A. 1987. Geomorphic evolution of southern Africa since the Mesozoic. S. *Afr. J. Geol.* 90: 179-208.

Perl-Treves, R. & Galun, E. 1985. The *Cucumis* plastome: physical map, intrageneric variation and phylogenetic relationships. *Theoret. Appl. Genet.* 71:417-429.

Peterson, A., John, H., Koch, E. & Peterson, J. 2004. A molecular phylogeny of the genus *Gagea* (Liliaceae) in Germany inferred from non-coding chloroplast and nuclear DNA sequences. *Plant Syst. Evol.* 245: 145-162.

Phillips, R.B. 1983. Shape characters in numerical taxonomy and problems with ratios. *Taxon*. 32:535-544.

Pickford, M. 2004. Southern Africa: a cradle of evolution. S.A. J. Sci. 100: 205-214

Pimentel, R.A. 1981. A comparative study of data and ordination techniques based on a hybrid swarm of sand verbenas (*Abronia Juss.*) *Syst. Zool.* 30: 250-267.

Popp, M. & Oxelman, B. 2001. Inferring the history of the polyploid *Silene aegaea* (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. *Mol. Phylogenet. Evol.* 20(3): 474-481.

Presch, W. 1979. Phenetic analysis of a single data set: phylogenetic implications. *Syst. Zool.* 28(3): 366-371.

Provan, J., Murphy, S. & Maggs, C.A. 2005. Tracking the invasive history of the green alga *Codium fragile* ssp. *tomentosoides*. *Mol. Ecol.* 14:189-194.

Ramirez, M.J. 2006. Further problems with the incongruence length difference test: "hypercongruence" effect and multiple comparisons. *Cladistics*. 22: 289-295.

Reeves, G., Chase, M.W., Goldblatt, P., Rudall, P., Gay, M.F., Cox, A.V., Lejeune, B. & Souza-Chies. T. 2001. Molecular systematics of Iridaceae: evidence from four plastid DNA regions. *Am. J. Bot.* 88(11): 2074-2087.

Richardson, J.E., Pennington, R.T., Pennington, T.D. & Hollingsworth, P.M. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. *Science*. 293: 2242-2245.

Riddle, B.R. & Hafner, D.J. 1999. Species as units of analysis in ecology and biogeography: time to take the blinders off. *Global Ecol.Biogeogr.* 8: 433-441.

Rieseberg, L.H., Beckstrom-Sternberg, S., Liston, A. & Arias, D.M. 1991. Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in *Helianthus* sect. *Helianthus* (Asteraceae). *Syst. Bot.* 16(1):50-76.

Riggins, R., Pimentel, R.A. & Walters, D.R. 1977. Morphometrics of *Lupinus nanus* (Leguminosae).I. Variation in natural populations. *Syst. Bot.* 2(4): 317-326.

Ritz, C.M., Zimmerman, N.F.A. & Hellwig, F.H. 2003. Phylogeny of subsect. Meleuphorbia (A. Berger) Pax & Hoffm. (*Euphorbia* L.) reflects the climatic regime in South Africa. *Plant Syst. Evol.* 241: 245-259.

Roessler, H. 1959. Revision der Arctotideae-Gorteriinae (Compositae). *Mitteilungen der Botanischen Staatssammlung München* Band III: 71-500

Rogers, A.R., Harpending, H. 1992. Population growth makes waves in the distribution of pairwise genetic distances. *Mol. Biol. Evol.* 9: 552–569.

Rohlf, F.J. 1990. Morphometrics. Ann. Rev. Ecol. Syst. 21: 299-316.

Rohlf, F.J. & Marcus, L.F. 1993. A revolution in morphometrics. TREE. 8(4): 129-132

Rutschmann, F. 2006. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. *Divers. Distrib.* 12:35-48.

Ryder, O.A. 1986. Species conservation and systematics: the dilemma of subspecies. *TREE*. 1(1): 9-10.

Sang, T., Crawford, D.J., Stuessy, T.F. & Solva O.M. 1995. ITS sequences and the phylogeny of the genus *Robinsonia* (Asteraceae). *Systematic Botany*. 20(1): 55-64.

Sang, T., Crawford, D.J. & Stuessy, T.F. 1997. Chloroplast DNA phylogeny, reticulate evolution and biogeography of *Paeonia* (Paeoniaceae). *Am. J. Bot.* 84(8): 1120-1136.

Santiago-Valentin, E. & Olmstead, R.G. 2003. Phylogenetics of the Antillean Goetzeoideae (Solanaceae) and their relationships within the Solanaceae based on chloroplast and ITS DNA sequence data. *Syst. Bot.* 28(2): 452-460.

Schaal, B.A., Hayworth, D.A., Olsen, K.M., Rauscherm J.T. & Smith, W.A. 1998. Phylogeographic studies in plants: problems and prospects. *Mol. Ecol.* 7: 465-474.

Schilling, E.E. & Panero, J.L. 1996. Phylogenetic reticulation in subtribe Helianthinae. *Am. J. Bot.* 83(7): 939-948.

Schnitker, D. 1980. Global palaeoceonography and its deep water linkage to the Antarctic glaciation. *Earth Sci. Rev.* 16: 1-20.

Scotland, R.W., Olmstead, R.G. & Bennett, J.R. 2003. Phylogeny reconstruction: the role of morphology. *Syst. Biol.* 52(4): 539-548.

Seelanan, T., Schnable, A. & Wendel, J.F. 1997. Congruence and consensus in the cotton tribe (Malvaceae). *Syst. Bot.* 22(2): 259-290.

Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. & Small, R.L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *Am. J. Bot.* 92(1): 142-166.

Shoemaker, D.D., Ahrens, M.E. & Ross, K.G. 2006. Molecular phylogeny of fire ants of the *Solenopsis saevissima* species-group based on mtDNA sequences. *Mol. Phylogenet. Evol.* 38: 200-215.

Siddall, M.E. 1997. Prior agreement: arbitration or arbitrary? Syst. Biol. 46(4): 765-769.

Simmons, M.P. & Ochoterena, H. 2000. Gaps as characters in sequence-based phylogenetic analyses. *Syst. Biol.* 49: 369-381.

Sites, J.W. & Marshall, J.C. 2003. Delimiting species: a renaissance issue in systematic biology. *TREE*. 18(9): 462-470.

Slatkin, M. & Hudson, R.R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. *Genetics*. 129:555-562.

Small, R.L. Lickey, E.B., Shaw, J. & Hauk, W.D. 2005. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. *Mol. Phylogenet. Evol.* 36:509-522.

Sole, C.L., Scholtz, C.H. & Batos, A.D.S. 2005. Phylogeography of the Namib Desert dung beetles *Scarabaeus (Pachysoma)* MacLeay (Coleoptera: Scarabaeidae). *J. Biogeogr.* 32:75-84.

Soliva, M., Kocyan, A. & Widmer, A. 2001. Molecular phylogenetics of the sexually deceptive orchid genus *Ophrys* (Orchidaceae) based on nuclear and chloroplast DNA sequences. *Mol. Phylogenet. Evol.* 20(1): 78-88.

Soltis, D.E. & Soltis, P.S. 1998. Choosing an approach and an appropriate gene for phylogeographic analysis. In: *Molecular systematics of plants II: DNA sequencing.* (Eds) D.E. Soltis, P.S. Soltis & J.J. Doyle. Kluwer academic publishers. pp 1-42.

Soltis, D.E., Soltis, P.S., Mort, M.E., Chase, M.W., Savolainen, V., Hoot, S.B. & Morton, C.M. 1998. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. *Syst. Biol.* 47: 32-42.

Somers, K.M. 1986. Multivariate allometry and removal of size with principal components analysis. *Syst. Zool.* 35(3): 359-368.

Somers, K.M. 1989. Allometry, isometry and shape in principal components analysis. *Syst. Zool.* 38(2): 169-173.

Stevens, P.F. 1991. Character states, morphological variation, and phylogenetic analysis: a review. *Syst. Bot.* 16(3): 553-583.

Swofford, D.L. 2001. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA.

Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Mol. Biol.* 17: 1105-1109.

Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. In: *Some mathematical questions in biology - DNA sequence analysis*. (Ed) R.M. Miura. Pp. 57-86. American Mathematics Society.

Tolley, K.A., Tilbury, C.R., Branch, W.R. & Matthee, C.A. 2004. Phylogenetics of the southern African dwarf chameleons, *Bradypodion* (Squamata: Chamaeleonidae). *Mol. Phylogenet. Evol.* 30: 354–365.

Touloumenidou, T., Bakker, F.T. & Albers, F. 2007. The phylogeny of *Monsonia* L. (Geraniaceae). *Plant. Syst. Evol.* 264:1-14.

Tribsch, A. & Schönswetter, P. 2003. Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the Eastern Alps. *Taxon.* 52: 477-497.

van Zinderen Bakker, E.M. 1978. Quaternary vegetation change in southern Africa. In: *Biogeography and ecology of southern Africa*. (Ed) M.J.A. Werger. Dr. W. Junk.

Vargas, P., Baldwin, B.G. & Constance, L. 1998. Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of *Sanicula* (Apiaceae). *Proc. Natl. Acad. Sci. USA*. 95: 235-240.

Vrba, E.S. & Denton, G.H. 1995. *Palaeoclimate and evolution with emphasis on human origins*. Yale University Press, New Haven.

Vriesendorp, B. & Bakker, F.T. 2005. Reconstructing patterns of reticulate evolution in angiosperms: what can we do? *Taxon*. 54(3):593-604.

Wallis, G.P. & Trewick, S.A. 1998. Finding fault with vicariance: a critique of Heads. *Syst. Biol.* 50(4): 602-609.

Walsh, H.E., Kidd, M.G., Moum, T. & Friesen, V.L. Polytomies and the power of phylogenetic inference. *Evolution*. 53(3):932-937.

Wanntorp, L., Wanntorp, H.-E. 2003. The biogeography of *Gunnera* L.: vicariance and dispersal. *J. Biogeogr.*. 30(7): 979-987.

Wanntorp, L., Wanntorp, H.-E., Oxelman, B., Kallersjo, M. 2001. Phylogeny of *Gunnera*. *Plant Syst. Evol.* 226: 85-107.

Wendel, J.F. & Doyle, J.J. 1998. Phylogenetic incongruence: window into genome history and molecular evolution. In: *Molecular systematics of plants II: DNA sequencing*. (Eds) D.E. Soltis, P.S. Soltis & J.J. Doyle. Kluiwer Academic Publishers.

Wendel, J.F., Schnabel, A. & Seelanen, T. 1995. Bidirectional interlocus concerted evolution following allopolyploidy speciation in cotton (*Gossypium*). *Proc. Natl. Acad. Sci. USA*. 92: 280-284.

Wheeler, Q.D. & Platnick, N.I. 2000. The Phylogenetic Species Concept (*sensu* Wheeler & Platnick). In: *Species concepts and phylogenetic theory - a debate*. (Eds) Q.D. Wheeler & R. Meier. Columbia University Press, New York

White, F. 1998. The vegetative structure of African Ebenaceae and the evolution of rheophytes and ring species. In: *The biological monograph: the importance of field studies and functional syndromes for taxonomy and evolution of tropical plants*. (Eds) H.C. Fortune-Hopkins, C.R. Huxley, C.M. Pannell, G.T. Prance & F. White. Royal Botanical Gardens, Kew.

Whitten, W.M., Williams, N.H. & Chase, M.W. 2000. Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. *Am. J. Bot.* 87(12): 1842-1856.

Wiens, J.J. & Penkrot, T.A. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (*Sceloporus*). *Syst. Bot.* 51(1): 69-91.

Williams, D.M. 1994. Combining trees and combining data. Taxon. 43: 449-455

Willis, K.J. & Niklas, K.J. 2004. The role of Quaternary environmental change in plant macroevolution: the exception or the rule? *Phil. Trans. R. Soc. Lond. B.* 359: 159-172.

Yoder, A.D., Irwin, J.A. & Payseur, B.A. 2001. Failure of the ILD to determine data combinability for slow Loris phylogeny. *Syst. Biol.* 50(3): 408-424

Yuan, Y.M. Wohlhauser, S., Möller, M., Klackenberg, J., Callmander, M.W. & Küpfer, P. 2005. Phylogeny and biogeography of *Exacum* (Gentianaceae): a disjunctive distribution in the Indian Ocean basin resulted from long distance dispersal and extensive radiation. *Syst. Biol.* 54(1): 21-34.

	caespitosa	ciliaris	heterochaeta	jurineifolia	krebsiana	leiopoda
Annual or perennial	perennial	perennial	perennial	perennial	perennial	perennial
Habit	subshrub	herbaceous	herbaceous	herbaceous	herbaceous	herbaceous
Stem developed/rosette	developed	rosette	rosette	rosette	rosette	rosette
Leaves:						·
whole/pinnate/both	whole	both	both	pinnate	both	pinnate
leaf shape	linear	linear/linear- lanceolate	obovate		linear/linear-lanceolate	
margins revolute	yes	yes	somewhat	yes	yes	yes
width (whole leaf, mm)	1-1.5 mm	1 -4 mm	30-60 mm		(1-)2-6(-8) mm	
length (whole leaf, mm) Laciniae:	20 - 30 mm	40-80 (-150) mm	(5-)8-15(-25)mm	10-50(-70) mm	(30-)60-180(-250) mm	(30-)40-80 mm
number of pairs		1-4	1-3	2-5	1-4	(4-)5-7
opposite/alternate		opp/alt		opposite	opposite	opposite
width of lacinae		1-2 mm			1-3(-4) mm	2-3.5 mm
length of lacinae		2-10 mm		2-5(-8) mm	3-10(-15) mm	3-7(-10) mm
width of middle stem		1-2 mm		1-2(-3) mm	1-2 mm	1 mm
notes on laciniae			apex rounded			apex acute/obtuse
terminal : side lacinae (longer/shorter/same)						similar
apex in spinule excurrent	yes	yes	yes	yes	yes	yes
other notes	edges ciliate with 1mm long spinules	setae all the way up to 2-3 mm long ciliate				
Top surface:	smooth/glabrous	setose (rough)	densely setose	rough/densely setose	smooth/rough	hispid
Lower surface:	tomentose	tomentose	tomentose	tomentose	tomentose	tomentose

Appendix 1: Summary of morphological characters from Roessler's species descriptions.

Capitula:						
on peduncles/scapes	peduncles	scapes	scapes	scapes	scapes	scapes
peduncle/scape length	30-50 mm	40-100(-140)mm	30-80(-120) mm	5-40(-80) mm	(30)-50-120(-150) mm	(30-)60-100(- 120) mm
(mm)	30-40 mm	40-70 mm	(30-)40-70 mm	25-50 (-70) mm	30-60 mm	(50-)60-80 mm
glabrous/tomentose	glabrous	setose	glabrous	glabrous	glabrous	
Involucre:						
glabrous/tomentose/ciliate	glabrous	glabrous	glabrous/partially setose	glabrous	glabrous	setose
fused part shape	subcampanulate	subcylindrical	campanulate	campanulate	campanulate	broadly cupuliform
base shape	obtuse	truncate, pleated annulus	obtuse	obtuse	obtuse	obtuse
base intrusa/subintruse	intrusa	margin in annulus	subintrusa		subintrusa	
height	7-8 mm	8-10(-12) mm	8-10 mm	6-8(-10) mm	7-10 mm	10-15 mm
width	4 mm	7-9 mm	(5-)7-9 mm	4-7(-8) mm	(4-)5-8 mm	10-15 mm
scales seriate number	2-3	2-3	2-3	3	2-3	2-3
parietal scales	no	few	few	few	few	few
scales inserted where	margin of fused part	margin of fused part	margin of fused part	margin of fused part	margin of fused part	
Outer involucral scales:						
shape	linear-triangulate	linear/linear- triangulate	linear-lanceolate/ triangulate	linear/triangulate- lanceolate	linear	oblong- linear/triangulate
length	5 mm	6-10 mm	2-4 mm	1-3 mm		2-5 mm
width	1-2 mm	1 mm	1 mm	1 mm	1 mm	1-1.5 mm
tip shape	acute	acute	short setae excurrent		acute	acute
margin description	shortly denticulate	ciliate with setae 1mm long	with setulae excurrent	densely ciliate with 0.2mm spinules	shortly ciliate	most shortly ciliate

Inner involucral scale:						
shape	ovate-triangulate	narrowly triangulate	narrowly/ovate triangulate	ovate/narrow triangulate	narrowly/ovate triangulate	ovate/narrowly triangulate
length	7-8 mm	7-12(-20) mm	4-8 mm	(3-)4-6(-8) mm	See Note 1	4-7 mm
width	2-3 mm	2-3 mm	2-3 mm	1.5-2.5 (-3) mm	See Note 1	2-4 mm
tip shape	acuminate	acuminate			acuminate/acute/obtuse	obtuse/acute
margin description	membranous/entire	membranous, minutely ciliate	membranous, minutely ciliate/ entire	membranous, scarecly ciliate/entire	membranous/ entire	membranous, entire
Ligules:						
Colour	yellow	yellow	yellow/orange	white		orange
Eye spots		black/bicoloured	sometimes black/bicoloured			black/bicoloured
Other notes				disc florets sparsely hairy		

Ctd...

	lichtensteinii	linearis linearis	linearis ovalis	maritima	othonnites	pectinata
Annual or perennial	annual/perennial	perennial	perennial	perennial	perennial	annual?
Habit	herbaceous	herbaceous	herbaceous	herbaceous	herbaceous	herbaceous
Stem developed/rosette	rosette/developed	rosette	rosette	developed	rosette	rosette
Leaves:						
whole/pinnate/both	entire	both	both	both	both	both
leaf shape	obovate	linear	linear	linear- lanceolate	linear/ linear- oblong	linear/linear- lanceolate
margins revolute	denticulate	yes	yes	yes	fleshy	yes
width (whole leaf, mm)	(3-)5-10 (-20) mm	1-5(-10) mm	1-25 mm		1-3 mm	1-3(-6) mm
length (whole leaf, mm)	(15-)20-40(-70) mm	(80-)100-300 mm	(80-)100-300 mm	20-60(- 110)mm	20-50(-70) mm	(80-)100-250 mm
Laciniae:				1 /	1	
number of pairs		1-6	1-6	1-5	1-3	(1-)2-8
opposite/alternate		opposite	opposite	opposite	opposite	opposite
width of lacinae		1-4(-7) mm	1-10 mm	1-4 mm		1-2(-4) mm
length of lacinae		5-15(-25) mm	5-15(-25) mm	4-15(-20) mm	1-5 mm	5-15(-25) mm
width of middle stem		1-2 mm	1-2 mm			1-2 mm
notes on laciniae						apex acute
terminal : side lacinae (longer/shorter/same)				wider(6mm wide)		
apex in spinule excurrent	obtuse	yes	yes	yes	yes	yes
other notes	white ciliate spinules at edges			margin covered in tiny spinules		
Top surface:	tomentose (glabrous)	smooth/ciliate/ rough	smooth/ciliate/ rough	glabrous	glabrous, glaucous	smooth

					glabrous,	
Lower surface:	tomentose	tomentose	tomentose	tomentose	glaucous	tomentose
Capitula:		1	1	1	1	1
on peduncles/scapes	peduncles	scapes	scapes	peduncles	scapes	scapes
	(10-)20-60(-120)				20-100(-130)	(80-)150-300
peduncle/scape length	mm	100-350 mm	100-350 mm	20-100 mm	mm	mm
with ligules expanded						
(mm)	20-40 mm	40-70 mm	40-70 mm	30-40 mm	20-35 mm	45-70(-90) mm
				tomentose/		
glabrous/tomentose	glabrous	glabrous/setose	glabrous/setose	glabrous	glabrous	glabrous/setose
Involucre:	Ŭ					
glabrous/tomentose/ciliate	glabrous	glabrous/setose	glabrous/setose	glabrous	glabrous	glabrous/setose
		campanulate/	campanulate/			
fused part shape	cylindrical	subcupuliform	subcupuliform	campanulate	turbinate	campanulate
base shape		obtuse	obtuse	obtuse		obtuse
				subintrusa		
base intrusa/subintruse	intrusa	subintrusa	subintrusa	(slight)	intrusa	subintrusa
height	7-10 mm	8-12 mm	8-12 mm	8-10 mm	6-9 mm	8-11 mm
width	3-5 mm	6-12(15) mm	6-12(15) mm	5-8 mm	3-6 mm	6-10(-15) mm
scales seriate number	2	2-3	2-3	2	2-3	2-3
parietal scales	none	few	few	few	few	few
	margin of fused	margin of fused	margin of fused	margin of	margin of	margin of fused
scales inserted where	part	part	part	fused part	fused part	part
Outer involucral scales:						
shape						
	linear/ triangulate	linear	linear			linear
length	1-2 mm				1.5-2 mm	7-10(-20) mm
width	1-1.5 mm				1.5-2 mm	1mm

tip shape						acute
margin description	minutely ciliate	ciliate setose	ciliate setose	with spinules ciliate		ciliate setose
Inner involucral scale:						
shape	ovate-triangulate					
length	4-7 mm	(8-)10-15(18) mm	(8-)10-15(18) mm		4-6 mm	8-15 mm
width	2-3 mm	1.5-2 mm	1.5-2 mm		1.5-3 mm	2 mm
tip shape		finely acuminate	finely acuminate			finely acuminate
margin description	membranous, entire	membranous, entire	membranous, entire	membranous, entire		membranous, entire
Ligules:						
Colour	yellow/orange	yellow/orange	yellow/orange	yellow/orange	yellow	yellow/orange
Eye spots	bicoloured	black/bicoloured	black/bicoloured			black/greybrown
Other notes	some green stripes					

Ctd...

	rigens	rigida	schenckii	serrata	tenuifolia
Annual or perennial	perennial	perennial	perennial	perennial	annual
Habit	herbaceous	herbaceous	subshrub	herbaceous	herbaceous
Stem developed/rosette	developed	rosette	developed	rosette	rosette
Leaves:					
whole/pinnate/both	both	both	whole	both	both
leaf shape	lanceolate/ obovate-lanceolate	linear- lanceolate	obovate- spathulate	lanceolate	linear
margins revolute	somewhat	yes	dentate	yes	
width (whole leaf, mm)	(4-)5-10(-23) mm	2-5 mm	5-10(-15) mm	(3-)5-9 mm	1 mm
length (whole leaf, mm)	(30-)40-80(-110) mm	40-100(-150) mm	15-30(-35) mm	(40-)60-150 mm	(20-)30-60(-80) mm
Laciniae:		•		· · ·	
number of pairs	1-2	1-2(-5)		(1-)2-4	1-5
opposite/alternate	opposite	opposite		opposite	opposite
width of lacinae		1-3 mm		2-5(-7) mm	1mm
length of lacinae		5-15(-20) mm		5-15 mm	2-8(-12) mm
width of middle stem		1 mm		1-2 mm	1 mm
notes on laciniae					
terminal : side lacinae (longer/shorter/same)	all same	same		2x wider/longer	
apex in spinule excurrent	no	yes	yes	yes	
other notes					
Top surface:	glabrous/tomentose	smooth/setose (rough)	tomentose	rough, setose	roughly setose
Lower surface:	tomentose	tomentose	tomentose	tomentose	tomentose
Capitula:					

on peduncles/scapes	peduncles	scapes	peduncles	scapes	peduncles
peduncle/scape length	40-100(-150) mm	40-150 mm	20-60 mm	50-150 mm	20-80(-140) mm
with ligules expanded (mm)	25-80 mm	40-60 mm	20-30(-35) mm	45-75 mm	10-15 mm
glabrous/tomentose	glabrous/tomentose	setose	tomentose	setose	glabrous/cobwebby
Involucre:					
glabrous/tomentose/ciliate	glabrous/tomentose	setose	tomentose	setose	
fused part shape	campanulate	campanulate	cylindrical	campanulate	cylindrical
base shape	obtuse	obtuse	obtuse	obtuse	truncate
base intrusa/subintruse	subintrusa	subintrusa	little intrusa	subintrusa	pleated annulus
height	8-10 mm	9-11 mm	6-9 mm	8-12 mm	4-5 mm
width	7-15 mm	(6-)8-12(-15) mm	3-5 mm	7 -10 mm	3-5 mm
scales seriate number	2-3	2-3	2	2-3	
parietal scales	few	few	few/no	few	many rows
scales inserted where	margin of fused part	margin of fused part	margin of fused part	margin of fused part	all over
Outer involucral scales:					
shape	triangulate- lanceolate	linear	same as inner, but smaller	linear	(parietal)subulate
length	4-7 mm	5-8 mm		5-12 mm	1-2 mm
width		1 mm		1 mm	
tip shape		acute		acute	acute
margin description	tomentose on outside	setose ciliate		setose	ciliate/entire

Inner involucral scale:					
shape	narrowly triangulate	triangulate	narrowly triangulate	narrowly triangulate	(terminal) triangulate- subulate
length	5-10 mm	4-6 mm	6-9 mm	8-10 mm	5-6 mm
width		2 mm	2-3 mm	2-2.5 mm	1(-1.5) mm
tip shape	acuminate	obtuse/acute		acuminate	
margin description	glabrous	membranous, entire	entire	membranous, entire	membranous, entire
Ligules:					·
Colour	yellow	yellow/orange	yellow	yellow/orange	yellow/orange
Eye spots	sometimes black spots	often black/grown	rarely black spot	sometimes black/bicoloured	black/bicoloured
Other notes					disc florets sparsely hairy

Morphometric characters and abbrev	/iations used	in data	table.
------------------------------------	---------------	---------	--------

Character	Abbrev			
Habit	Habit			
Involucre setose	InvSet			
Parietal scales	ParScl			
Involucre base	InvBase			
Adaxial leaf indumentum	LfIndu			
Leaf margin	LfMarg			
Leaf dissectedness	LfDiss			
Outer involcral scale length	OIL			
Outer involcral scale width	OIW			
Inner involcral scale length	IIL			
Inner involcral scale width	IIW			
Involucre length	InvL			
Involucre width	InvW			
Leaf length	LfLgth			
Leaf width	LfWdth			
Stem length	StmLgth			
Log(Outer involcral scale length)	LogOIL			
Log(Outer involcral scale width)	LogOIW			
Log(Inner involcral scale length)	LogIIL			
Log(Inner involcral scale width)	LogIIW			
Log(Involucre length)	LogInvL			
Log(Involucre width)	LogInvW			
Log(Leaf length)	LogLfLgth			
Log(Leaf width)	LogLfWdth			
Log(Stem length)	LogStmLgth			
Log(Outer Involucral scale length/width)	LogOIRAT			
Log(Inner Involucral scale length/width)	LogIIRAT			
Log(Outer/Inner Involucral scale length)	LogOI/II			
Log(Involucral length/width)	LogInvRAT			
Log(Leaf length/width)	LogLFRAT			

	Cil1	Cil2	Cil3	Cil4	Cil5	Cil6	Cil7	Het1	Het2	Het3	Het4	Het5	Het6
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	1	0	0	0	0	0	0	0	0	0	0	0	0
ParScl	1	1	1	1	1	1	1	0	0	0	0	0	0
InvBase	2	1	0	3	3	3	3	2	2	2	2	1	1
LfIndu	2	2	2	2	0	2	0	2	2	2	2	2	2
LfMarg	3	3	3	3	0	3	2	3	3	3	3	3	3
LfDiss	5	5	5	5	1	5	5	4	4	4	4	4	5
OIL	7.67	11.4	8.59	10.16	6.2	8.38	10.56	4.4	4.47	3.44	3.72	4.13	3.82
OIW	1.57	2.18	1.82	2.67	1.74	2.23	2.3	2.12	2.05	2.3	1.37	2.97	1.53
IIL	10.13	10.55	12.37	9.37	14.99	10.31	22.32	5.53	6.74	5.78	7.16	7.65	6.68
IIW	3.74	4.32	2.97	2.68	1.93	2.56	3.33	2.1	1.77	1.5	1.47	3.56	2.06
InvL	7.48	7.31	8.59	7.34	8.4	7.55	4.74	9.53	8.73	9.89	7.02	11.36	8.95
InvW	8.32	10.96	9.96	9.34	8.62	8.04	12.12	9.1	10.14	9.65	7.25	14.25	9.72
LfLgth	72.75	147.3	67.53	58.9	89.28	45.94	150.31	48.03	47.53	51.1	41.94	59.69	61.44
LfWdth	3.13	5.06	4.9	2.85	1.09	2.38	0.84	9.28	10.83	8.58	5.59	17.92	9.26
StmLgth	64.59	200	100.99	49.68	105	38.38	160	55.17	54.9	49.72	34.41	83.43	101.7
LogOIL	0.88480	1.05690	0.93399	1.00689	0.79239	0.92324	1.02366	0.64345	0.65031	0.53656	0.57054	0.61595	0.58206
LogOIW	0.19590	0.33846	0.26007	0.42651	0.24055	0.34830	0.36173	0.32634	0.31175	0.36173	0.13672	0.47276	0.18469
LogIIL	1.00561	1.02325	1.09237	0.97174	1.17580	1.01326	1.34869	0.74273	0.82866	0.76193	0.85491	0.88366	0.82478
LogIIW	0.57287	0.63548	0.47276	0.42813	0.28556	0.40824	0.52244	0.32222	0.24797	0.17609	0.16732	0.55145	0.31387
LogInvL	0.87390	0.86392	0.93399	0.86570	0.92428	0.87795	0.67578	0.97909	0.94101	0.99520	0.84634	1.05538	0.95182
LogInvW	0.92012	1.03981	0.99826	0.97035	0.93551	0.90526	1.08350	0.95904	1.00604	0.98453	0.86034	1.15381	0.98767
LogLfLgth	1.86183	2.16820	1.82950	1.77012	1.95075	1.66219	2.17699	1.68151	1.67697	1.70842	1.62263	1.77590	1.78845
LogLfWdth	0.49554	0.70415	0.69020	0.45484	0.03743	0.37658	-0.07572	0.96755	1.03463	0.93349	0.74741	1.25334	0.96661
LogStmLgth	1.81017	2.30103	2.00428	1.69618	2.02119	1.58410	2.20412	1.74170	1.73957	1.69653	1.53668	1.92132	2.00732
LogOIRAT	0.68890	0.71845	0.67392	0.58038	0.55184	0.57494	0.66194	0.31712	0.33855	0.17483	0.43382	0.14319	0.39737
LogIIRAT	0.43274	0.38777	0.61961	0.54360	0.89024	0.60502	0.82625	0.42051	0.58069	0.58584	0.68760	0.33221	0.51091
LogOI/II	-0.12081	0.03365	-0.15838	0.03515	-0.38341	-0.09001	-0.32503	-0.09927	-0.17835	-0.22537	-0.28437	-0.26771	-0.24271
LogInvRAT	-0.04622	-0.17589	-0.06427	-0.10465	-0.01123	-0.02731	-0.40772	0.02005	-0.06502	0.01067	-0.01400	-0.09844	-0.03584
LogLFRAT	1.36629	1.46405	1.13930	1.31527	1.91333	1.28561	2.25271	0.71396	0.64234	0.77493	0.87522	0.52256	0.82184
	Het7	Het8	Het9	Jur1	Jur2	Jur3	Jur4	Jur5	Jur6	Jur7	Jur8	Jur9	KrbA1
------------	----------	----------	---------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	0	0	0	0	0	0	0	0	0	0	0	0	1
ParScl	0	0	1	1	1	1	1	0	0	0	0	0	0
InvBase	2	1	2	0	0	2	2	0	0	2	2	0	1
LfIndu	2	2	2	2	2	2	2	2	2	2	2	2	1
LfMarg	3	3	3	3	3	3	3	3	3	3	3	3	3
LfDiss	2	5	5	6	6	6	6	6	6	6	6	3	5
OIL	3.97	3.68	6.84	3.11	2.94	3.51	2.84	3.11	3.5	2.62	2.99	1.93	1.67
OIW	1.93	1.23	1.58	2	2.06	1.34	1.75	1.72	2.17	1.3	1.74	1.72	0.77
IIL	10.25	6.55	6.09	8.83	9.84	5.15	5.85	3.79	5.65	4.9	5.94	4.94	2.11
IIW	2.23	2.2	2.94	2	2.39	1.99	2.33	2.06	2.56	2.6	1.98	1.72	1.28
InvL	7.74	8.79	8.15	5.52	5.51	5.63	5.59	5.66	5.41	5.34	6.17	7.22	6.67
InvW	6.5	7.94	7.8	9.13	8.92	7.84	6.06	7.82	8.74	9.58	10.15	6.91	3.56
LfLgth	62.73	55.44	64.51	39.69	37.03	38.97	21.59	65.21	48.04	30.18	40.91	42.86	32.03
LfWdth	6.84	15.71	8.04	2.74	3.82	2.84	1.85	2.93	3.68	2.74	3.03	3.62	2.68
StmLgth	118.15	67.93	102.61	44.19	45.9	22.27	16.29	65.88	39.4	21.43	15	51.67	17.22
LogOIL	0.59879	0.56585	0.83506	0.49276	0.46835	0.54531	0.45332	0.49276	0.54407	0.41830	0.47567	0.28556	0.22272
LogOIW	0.28556	0.08991	0.19866	0.30103	0.31387	0.12710	0.24304	0.23553	0.33646	0.11394	0.24055	0.23553	-0.11351
LogIIL	1.01072	0.81624	0.78462	0.94596	0.99300	0.71181	0.76716	0.57864	0.75205	0.69020	0.77379	0.69373	0.32428
LogIIW	0.34830	0.34242	0.46835	0.30103	0.37840	0.29885	0.36736	0.31387	0.40824	0.41497	0.29667	0.23553	0.10721
LogInvL	0.88874	0.94399	0.91116	0.74194	0.74115	0.75051	0.74741	0.75282	0.73320	0.72754	0.79029	0.85854	0.82413
LogInvW	0.81291	0.89982	0.89209	0.96047	0.95036	0.89432	0.78247	0.89321	0.94151	0.98137	1.00647	0.83948	0.55145
LogLfLgth	1.79748	1.74382	1.80963	1.59868	1.56855	1.59073	1.33425	1.81431	1.68160	1.47972	1.61183	1.63205	1.50556
LogLfWdth	0.83506	1.19618	0.90526	0.43775	0.58206	0.45332	0.26717	0.46687	0.56585	0.43775	0.48144	0.55871	0.42813
LogStmLgth	2.07243	1.83206	2.01119	1.64532	1.66181	1.34772	1.21192	1.81875	1.59550	1.33102	1.17609	1.71324	1.23603
LogOIRAT	0.31323	0.47594	0.63640	0.19173	0.15448	0.41820	0.21028	0.25723	0.20761	0.30436	0.23512	0.05003	0.33623
LogIIRAT	0.66242	0.47382	0.31627	0.64493	0.61460	0.41295	0.39980	0.26477	0.34381	0.27522	0.47712	0.45820	0.21707
LogOI/II	-0.41193	-0.25039	0.05044	-0.45320	-0.52465	-0.16650	-0.31384	-0.08588	-0.20798	-0.27189	-0.29812	-0.40817	-0.10157
LogInvRAT	0.07583	0.04417	0.01906	-0.21853	-0.20921	-0.14381	-0.03506	-0.14039	-0.20831	-0.25382	-0.21618	0.01906	0.27268
LogLFRAT	0.96242	0.54765	0.90437	1.16093	0.98649	1.13741	1.06708	1.34745	1.11576	1.04197	1.13039	1.07334	1.07742

	KrbA2	KrbA4	KrbA5	KrbA6	KrbA8	KrbA9	KrbA10	KrbA12	KrbK2	KrbK3	KrbK4	KrbK5	KrbK7
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	0	0	0	0	0	0	0	1	0	0	0	0	0
ParScl	1	0	0	0	0	0	0	0	0	0	1	0	0
InvBase	2	1	1	8	1	2	2	0	1	2	2	2	2
LfIndu	0	0	0	0	0	0	3	3	2	1	2	0	0
LfMarg	3	3	0	0	3	3	3	3	3	3	3	3	3
LfDiss	5	5	5	1	1	5	5	5	5	1	4	1	1
OIL	4.44	7.79	2.14	2.31	2.5	2.52	3.4	3.4	4.48	3.5	5.62	4.94	7.43
OIW	1.26	2.32	0.87	1.91	0.82	0.93	2.05	1.9	1.8	1.83	1.34	1.3	1.33
IIL	5.47	6.82	4.1	3.07	4.28	2.53	3.85	5	6.3	3.84	4.33	5.53	6.9
IIW	2.64	2.89	1.37	1.75	2.01	1.65	2.7	2.3	1.91	1.86	1.67	1.5	2.2
InvL	8.84	10.98	7.74	6.42	5.68	5.53	7.62	8.66	7.71	7.04	8.33	5.68	7.81
InvW	9.31	10.96	3.19	4.81	4.17	5.05	7.07	5.44	6.33	5.82	7.59	6.56	7.56
LfLgth	137.14	165	62.14	48.75	91.95	33.28	139.45	49.66	77.71	48.15	100.23	52.53	75.08
LfWdth	3.46	14.76	1.91	2.49	6.05	2.3	4.31	2.68	3.45	5.16	7.47	5.29	3.54
StmLgth	113.71	82.7	58.66	33	83.65	17.21	141.22	47.54	103.96	35.75	107.71	13.03	77.58
LogOIL	0.64738	0.89154	0.33041	0.36361	0.39794	0.40140	0.53148	0.53148	0.65128	0.54407	0.74974	0.69373	0.87099
LogOIW	0.10037	0.36549	-0.06048	0.28103	-0.08619	-0.03152	0.31175	0.27875	0.25527	0.26245	0.12710	0.11394	0.12385
LogIIL	0.73799	0.83378	0.61278	0.48714	0.63144	0.40312	0.58546	0.69897	0.79934	0.58433	0.63649	0.74273	0.83885
LogIIW	0.42160	0.46090	0.13672	0.24304	0.30320	0.21748	0.43136	0.36173	0.28103	0.26951	0.22272	0.17609	0.34242
LogInvL	0.94645	1.04060	0.88874	0.80754	0.75435	0.74273	0.88195	0.93752	0.88705	0.84757	0.92065	0.75435	0.89265
LogInvW	0.96895	1.03981	0.50379	0.68215	0.62014	0.70329	0.84942	0.73560	0.80140	0.76492	0.88024	0.81690	0.87852
LogLfLgth	2.13716	2.21748	1.79337	1.68797	1.96355	1.52218	2.14442	1.69601	1.89048	1.68260	2.00100	1.72041	1.87552
LogLfWdth	0.53908	1.16909	0.28103	0.39620	0.78176	0.36173	0.63448	0.42813	0.53782	0.71265	0.87332	0.72346	0.54900
LogStmLgth	2.05580	1.91751	1.76834	1.51851	1.92247	1.23578	2.14990	1.67706	2.01687	1.55328	2.03226	1.11494	1.88975
LogOIRAT	0.54701	0.52605	0.39089	0.08258	0.48413	0.43292	0.21973	0.25273	0.39601	0.28162	0.62263	0.57978	0.74714
LogIIRAT	0.31638	0.37289	0.47606	0.24410	0.32825	0.18564	0.15410	0.33724	0.51831	0.31482	0.41377	0.56663	0.49643
LogOI/II	-0.09060	0.05775	-0.28237	-0.12353	-0.23350	-0.00172	-0.05398	-0.16749	-0.14806	-0.04026	0.11325	-0.04900	0.03214
LogInvRAT	-0.02250	0.00079	0.38495	0.12539	0.13421	0.03943	0.03254	0.20192	0.08565	0.08265	0.04040	-0.06256	0.01413
LogLFRAT	1.59809	1.04840	1.51234	1.29178	1.18180	1.16046	1.50994	1.26787	1.35266	0.96995	1.12768	0.99695	1.32652

	KrbK8	KrbK9	KrbK10	KrbK11	KrbK12	KrbK13	KrbK14	KrbK16	KrbK17	KrbK18	KrbK19	KrbK20	KrbK22
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	0	0	1	0	1	0	0	0	0	0	0	0	0
ParScl	1	1	1	0	0	0	0	0	0	0	0	1	1
InvBase	2	2	2	1	1	1	1	2	1	1	1	2	2
LfIndu	0	2	3	2	2	0	0	2	0	3	3	0	2
LfMarg	3	3	3	3	3	0	3	3	3	3	3	1	1
LfDiss	5	1	5	5	5	1	1	1	5	1	1	1	5
OIL	8.24	6.96	3.54	5.72	2.99	4.57	6.63	4.27	3.82	7.24	9.68	4.93	4.07
OIW	1.8	0.98	1.66	2.11	1.79	1.66	1.3	1.66	2.44	1.28	1.48	1.76	1.86
IIL	7.11	9.78	5.55	6.08	5.28	3.96	5.09	5.21	6.11	6.43	7.76	6.82	5.76
IIW	2.84	1.38	2.87	2.07	2.24	1.54	1.2	2.23	2.29	2.64	2.45	3.39	1.86
InvL	7.03	8.41	8.61	8.66	11.76	8.01	8.4	7.57	9.11	8.73	7.75	7.82	8.45
InvW	7.6	5.92	10.82	7.2	12.92	8.71	7.54	6.09	6.72	7.86	9.43	11.45	6.65
LfLgth	105.78	70.05	200	80.85	200	90.49	37.49	85.15	75.74	200	140.11	149.64	162
LfWdth	5.41	2.56	4.77	2.91	4.44	3.25	1.43	6.16	6.79	6.43	5.82	6	4.75
StmLgth	152.27	79.24	125.68	108.88	230	51.56	23.62	59.04	74.71	138.43	93.75	130.45	149
LogOIL	0.91593	0.84261	0.54900	0.75740	0.47567	0.65992	0.82151	0.63043	0.58206	0.85974	0.98588	0.69285	0.60959
LogOIW	0.25527	-0.00877	0.22011	0.32428	0.25285	0.22011	0.11394	0.22011	0.38739	0.10721	0.17026	0.24551	0.26951
LogIIL	0.85187	0.99034	0.74429	0.78390	0.72263	0.59770	0.70672	0.71684	0.78604	0.80821	0.88986	0.83378	0.76042
LogIIW	0.45332	0.13988	0.45788	0.31597	0.35025	0.18752	0.07918	0.34830	0.35984	0.42160	0.38917	0.53020	0.26951
LogInvL	0.84696	0.92480	0.93500	0.93752	1.07041	0.90363	0.92428	0.87910	0.95952	0.94101	0.88930	0.89321	0.92686
LogInvW	0.88081	0.77232	1.03423	0.85733	1.11126	0.94002	0.87737	0.78462	0.82737	0.89542	0.97451	1.05881	0.82282
LogLfLgth	2.02440	1.84541	2.30103	1.90768	2.30103	1.95660	1.57392	1.93018	1.87933	2.30103	2.14647	2.17505	2.20952
LogLfWdth	0.73320	0.40824	0.67852	0.46389	0.64738	0.51188	0.15534	0.78958	0.83187	0.80821	0.76492	0.77815	0.67669
LogStmLgth	2.18261	1.89894	2.09927	2.03695	2.36173	1.71231	1.37328	1.77115	1.87338	2.14123	1.97197	2.11544	2.17319
LogOIRAT	0.66065	0.85138	0.32890	0.43311	0.22282	0.43981	0.70757	0.41032	0.19467	0.75253	0.81561	0.44733	0.34008
LogIIRAT	0.39855	0.85046	0.28641	0.46793	0.37239	0.41017	0.62754	0.36853	0.42621	0.38661	0.50070	0.30358	0.49091
LogOI/II	0.06406	-0.14773	-0.19529	-0.02651	-0.24696	0.06222	0.11480	-0.08641	-0.20398	0.05153	0.09601	-0.14094	-0.15083
LogInvRAT	-0.03386	0.15247	-0.09922	0.08019	-0.04086	-0.03639	0.04691	0.09448	0.13215	0.04559	-0.08521	-0.16560	0.10404
LogLFRAT	1.29121	1.43717	1.62251	1.44379	1.65365	1.44472	1.41858	1.14060	1.04746	1.49282	1.38155	1.39690	1.53282

	KrbK23	KrbK24	KrbK25	KrbK26	KrbK27	KrbK28	KrbS1	KrbS2	KrbS3	KrbS4	KrbS5	KrbS6	Leio1
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	0	0	0	0	0	0	0	0	0	0	0	0	1
ParScl	1	1	1	0	0	0	1	0	1	0	0	1	0
InvBase	2	1	2	0	0	2	2	2	0	0	2	2	0
LfIndu	0	0	0	0	0	0	2	2	2	0	0	2	2
LfMarg	0	3	3	0	3	0	3	3	3	3	0	3	3
LfDiss	1	1	5	1	1	1	1	1	1	1	1	1	6
OIL	3.88	5.43	6.68	3.81	4.79	4.59	2.57	2.19	2.1	2.81	3.32	5.1	3.32
OIW	1.63	1.56	0.99	0.91	1.69	2.23	1.18	0.93	1.68	1.98	1.17	1.42	1.55
IIL	4.35	6.42	7.36	5.44	4.56	5.29	3.04	3.45	3.51	3.05	4.01	4.69	4.73
IIW	1.5	1.7	1.74	1.35	1.18	2.99	1.46	1.74	1.76	1.71	1.67	2.03	2.34
InvL	5.63	8.89	6.36	5.48	7.2	8.08	7.14	7.58	9.12	5.39	7.08	7.58	8.38
InvW	4.83	5.42	6.51	3.13	9.25	11.32	8.05	5.25	5.81	4.95	6.13	6.56	10.94
LfLgth	101.99	83.93	181	89.25	135	114.85	116.28	70.12	95.62	54.07	87.19	79.99	60.22
LfWdth	5.32	6.43	5.37	1.03	1.54	1.24	6.66	4.01	6.76	5.9	2.95	2.03	2.77
StmLgth	64.06	100.85	200	74.36	137	176	57.98	48.57	31.85	20.24	81.05	56.37	42.82
LogOIL	0.58883	0.73480	0.82478	0.58092	0.68034	0.66181	0.40993	0.34044	0.32222	0.44871	0.52114	0.70757	0.52114
LogOIW	0.21219	0.19312	-0.00436	-0.04096	0.22789	0.34830	0.07188	-0.03152	0.22531	0.29667	0.06819	0.15229	0.19033
LogIIL	0.63849	0.80754	0.86688	0.73560	0.65896	0.72346	0.48287	0.53782	0.54531	0.48430	0.60314	0.67117	0.67486
LogIIW	0.17609	0.23045	0.24055	0.13033	0.07188	0.47567	0.16435	0.24055	0.24551	0.23300	0.22272	0.30750	0.36922
LogInvL	0.75051	0.94890	0.80346	0.73878	0.85733	0.90741	0.85370	0.87967	0.95999	0.73159	0.85003	0.87967	0.92324
LogInvW	0.68395	0.73400	0.81358	0.49554	0.96614	1.05385	0.90580	0.72016	0.76418	0.69461	0.78746	0.81690	1.03902
LogLfLgth	2.00856	1.92392	2.25768	1.95061	2.13033	2.06013	2.06551	1.84584	1.98055	1.73296	1.94047	1.90304	1.77974
LogLfWdth	0.72591	0.80821	0.72997	0.01284	0.18752	0.09342	0.82347	0.60314	0.82995	0.77085	0.46982	0.30750	0.44248
LogStmLgth	1.80659	2.00368	2.30103	1.87134	2.13672	2.24551	1.76328	1.68637	1.50311	1.30621	1.90875	1.75105	1.63165
LogOIRAT	0.37664	0.54168	0.82914	0.62188	0.45245	0.31351	0.33805	0.37196	0.09691	0.15204	0.45295	0.55528	0.33081
LogIIRAT	0.46240	0.57709	0.62633	0.60527	0.58708	0.24778	0.31852	0.29727	0.29979	0.25130	0.38043	0.36368	0.30565
LogOI/II	-0.04966	-0.07274	-0.04210	-0.15467	0.02137	-0.06164	-0.07294	-0.19737	-0.22309	-0.03559	-0.08201	0.03640	-0.15372
LogInvRAT	0.06656	0.21490	-0.01012	0.24324	-0.10881	-0.14644	-0.05210	0.15951	0.19582	0.03698	0.06257	0.06277	-0.11577
LogLFRAT	1.28265	1.11571	1.52770	1.93777	1.94281	1.96671	1.24203	1.24270	1.15060	0.96210	1.47064	1.59554	1.33726

	Leio2	Leio3	Leio4	Leio5	Lei06	Leio7	Leio8	Leio9	Leio10	Leio11	Lict1	Lict3	Lict4
Habit	1	1	1	1	1	1	1	1	1	1	0	0	0
InvSet	1	1	0	0	1	1	0	0	1	0	0	0	0
ParScl	0	0	0	0	1	1	0	1	1	1	0	0	0
InvBase	1	1	1	1	1	0	1	1	2	0	1	1	1
LfIndu	2	0	2	2	2	2	0	2	2	1	0	1	0
LfMarg	3	3	3	3	3	3	3	3	3	3	1	3	3
LfDiss	6	4	5	5	6	6	5	4	6	3	3	1	2
OIL	4.29	3.83	8.54	6.37	5.41	4.09	4.8	3.36	3.57	2.68	1.95	1.43	2.57
OIW	3.51	2.58	2.18	2.92	2.83	3.17	2.49	2.03	2.03	1.76	1.91	1.06	1.51
IIL	5.95	5.55	9.43	6.93	6.22	6.01	7.25	5.6	5.9	4.23	6.11	5.64	8.28
IIW	3.04	2.35	2.28	2.41	3.32	3.62	2.68	2.15	2.44	1.84	2.74	2.13	3.1
InvL	11.46	9.35	12.53	10.49	13.17	11.92	8.48	7.71	10.25	6.21	7.89	8.48	9.82
InvW	12.43	9.22	14.76	10.49	15.87	14.04	7.59	9.14	13.93	8.07	6.44	4.2	10.32
LfLgth	73.41	102.17	80.97	90.02	129.43	110.43	108.51	67.29	74.01	50.49	23.22	28.05	46.78
LfWdth	3.09	6.14	6.24	3.5	2.62	4	7.11	2.62	3.2	2.57	4.34	2.66	9.98
StmLgth	93.17	175	240	116.71	150.26	111.39	170	54.08	84.82	110	80.44	39.53	55.44
LogOIL	0.63246	0.58320	0.93146	0.80414	0.73320	0.61172	0.68124	0.52634	0.55267	0.42813	0.29003	0.15534	0.40993
LogOIW	0.54531	0.41162	0.33846	0.46538	0.45179	0.50106	0.39620	0.30750	0.30750	0.24551	0.28103	0.02531	0.17898
LogIIL	0.77452	0.74429	0.97451	0.84073	0.79379	0.77887	0.86034	0.74819	0.77085	0.62634	0.78604	0.75128	0.91803
LogIIW	0.48287	0.37107	0.35793	0.38202	0.52114	0.55871	0.42813	0.33244	0.38739	0.26482	0.43775	0.32838	0.49136
LogInvL	1.05918	0.97081	1.09795	1.02078	1.11959	1.07628	0.92840	0.88705	1.01072	0.79309	0.89708	0.92840	0.99211
LogInvW	1.09447	0.96473	1.16909	1.02078	1.20058	1.14737	0.88024	0.96095	1.14395	0.90687	0.80889	0.62325	1.01368
LogLfLgth	1.86576	2.00932	1.90832	1.95434	2.11203	2.04309	2.03547	1.82795	1.86929	1.70321	1.36586	1.44793	1.67006
LogLfWdth	0.48996	0.78817	0.79518	0.54407	0.41830	0.60206	0.85187	0.41830	0.50515	0.40993	0.63749	0.42488	0.99913
LogStmLgth	1.96928	2.24304	2.38021	2.06711	2.17684	2.04685	2.23045	1.73304	1.92850	2.04139	1.90547	1.59693	1.74382
LogOIRAT	0.08715	0.17158	0.59300	0.33876	0.28141	0.11066	0.28504	0.21884	0.24517	0.18262	0.00900	0.13003	0.23096
LogIIRAT	0.29164	0.37323	0.61658	0.45872	0.27265	0.22017	0.43220	0.41575	0.38346	0.36152	0.34829	0.42290	0.42667
LogOI/II	-0.14206	-0.16109	-0.04305	-0.03659	-0.06059	-0.16715	-0.17910	-0.22185	-0.21818	-0.19821	-0.49601	-0.59594	-0.50810
LogInvRAT	-0.03529	0.00608	-0.07114	0.00000	-0.08099	-0.07109	0.04815	-0.07389	-0.13323	-0.11378	0.08819	0.30515	-0.02157
LogLFRAT	1.37580	1.22116	1.11314	1.41027	1.69373	1.44103	1.18360	1.40965	1.36414	1.29327	0.72837	1.02305	0.67093

	Lict5	Lict6	Lict8	Lict10	Lict11	Linlin1	Linlin2	Linlin3	Linlin4	Linlin5	Linlin6	Linlin9	Linlin10
Habit	0	0	0	0	0	1	1	1	1	1	1	1	1
InvSet	0	0	0	0	0	1	0	0	0	0	0	0	0
ParScl	0	0	0	0	0	1	0	1	1	1	1	1	1
InvBase	1	1	1	1	1	2	1	2	2	1	1	1	2
LfIndu	1	1	1	1	1	0	2	0	0	0	0	0	0
LfMarg	3	3	3	3	3	0	3	3	3	1	3	3	3
LfDiss	4	3	3	3	1	1	5	4	1	5	1	1	5
OIL	3.37	3.54	2.13	2.57	2.5	1.87	5.6	9.33	13.47	7.79	4.53	12.53	5.95
OIW	2.44	2.29	1.3	1.41	1.58	1.4	1.49	2.01	1.66	1.77	1.17	1.36	0.55
IIL	4.34	3.55	5.18	4.92	5.21	5.31	4.82	10.56	12.24	8.92	8.88	17.44	7.23
IIW	1.76	2.28	1.92	2.37	2.26	1.42	1.03	1.93	1.86	1.8	1.4	2.2	2.52
InvL	5.04	6.61	8.39	7.82	8	6.2	10.24	9.91	7.3	5.91	7.01	9.29	7.69
InvW	3.37	3.22	4.5	4.99	5.09	6.11	10.24	10.88	10.25	5.07	3.34	7.26	7.38
LfLgth	57.28	29.48	32.97	29.12	25.86	108.39	151.02	121.66	230	85.81	57.96	210	82.59
LfWdth	10.24	11.91	6.55	7.93	7.19	2.05	2.32	6.73	3.81	4.21	1.57	3.33	3.15
StmLgth	52.94	13.97	70.33	33.97	26.35	111.98	230	125.46	380	91.92	70.5	235	74.11
LogOIL	0.52763	0.54900	0.32838	0.40993	0.39794	0.27184	0.74819	0.96988	1.12937	0.89154	0.65610	1.09795	0.77452
LogOIW	0.38739	0.35984	0.11394	0.14922	0.19866	0.14613	0.17319	0.30320	0.22011	0.24797	0.06819	0.13354	-0.25964
LogIIL	0.63749	0.55023	0.71433	0.69197	0.71684	0.72509	0.68305	1.02366	1.08778	0.95036	0.94841	1.24155	0.85914
LogIIW	0.24551	0.35793	0.28330	0.37475	0.35411	0.15229	0.01284	0.28556	0.26951	0.25527	0.14613	0.34242	0.40140
LogInvL	0.70243	0.82020	0.92376	0.89321	0.90309	0.79239	1.01030	0.99607	0.86332	0.77159	0.84572	0.96802	0.88593
LogInvW	0.52763	0.50786	0.65321	0.69810	0.70672	0.78604	1.01030	1.03663	1.01072	0.70501	0.52375	0.86094	0.86806
LogLfLgth	1.75800	1.46953	1.51812	1.46419	1.41263	2.03499	2.17903	2.08515	2.36173	1.93354	1.76313	2.32222	1.91693
LogLfWdth	1.01030	1.07591	0.81624	0.89927	0.85673	0.31175	0.36549	0.82802	0.58092	0.62428	0.19590	0.52244	0.49831
LogStmLgth	1.72378	1.14520	1.84714	1.53110	1.42078	2.04914	2.36173	2.09851	2.57978	1.96341	1.84819	2.37107	1.86988
LogOIRAT	0.14024	0.18917	0.21444	0.26071	0.19928	0.12571	0.57500	0.66669	0.90926	0.64356	0.58791	0.96441	1.03415
LogIIRAT	0.39198	0.19229	0.43103	0.31722	0.36273	0.57281	0.67021	0.73811	0.81827	0.69509	0.80228	0.89912	0.45774
LogOI/II	-0.10986	-0.00123	-0.38595	-0.28203	-0.31890	-0.45325	0.06514	-0.05378	0.04159	-0.05883	-0.29231	-0.14360	-0.08462
LogInvRAT	0.17480	0.31235	0.27055	0.19511	0.19637	0.00635	0.00000	-0.04056	-0.14740	0.06658	0.32197	0.10708	0.01787
LogLFRAT	0.74770	0.39362	0.70188	0.56492	0.55590	1.72324	1.81355	1.25713	1.78080	1.30926	1.56723	1.79978	1.41862

	Linlin12	Linlin13	Linlin15	Linlin21	Linlin23	Linlin24	Linlin25	Linlin26	Linlin27	Linlin28	Linlin29	LinO1	LinO2
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	1	1	0	0	0	0	0	0	0	0	0	0	1
ParScl	1	1	1	0	1	0	0	0	1	0	0	1	1
InvBase	1	1	1	1	2	1	1	2	1	0	2	1	2
LfIndu	2	2	2	0	0	0	2	0	0	1	0	0	2
LfMarg	1	3	3	3	3	3	3	3	3	0	0	3	3
LfDiss	5	1	5	1	1	1	5	1	5	1	1	1	5
OIL	7.42	5.03	9.24	8.27	7.99	6.36	5.6	5.48	8.89	11.7	12.85	9.33	10.41
OIW	1.71	1.6	1.34	1.55	1.05	1.06	1.49	2.42	1.54	1.94	2.39	2.35	1.8
IIL	13.16	11.26	7.62	9.1	13.07	8.39	4.82	6.32	12.69	12.9	12.5	16.2	16.38
IIW	2.61	2.28	2.14	1.55	2.04	1.71	1.03	1.78	2.19	1.26	2.52	1.51	1.81
InvL	9.2	9.5	6.85	8.27	7.83	6.39	10.24	7.31	7.43	8.08	10.32	9.35	6.92
InvW	7.21	9.01	5.93	5.7	5	5.98	10.24	7.06	9.59	9.76	8.32	13.76	14.63
LfLgth	81.71	73.34	101.94	210	19.5	141.44	151.02	87.49	83.07	170	180	122.13	88.16
LfWdth	3.23	3.53	3.61	3.68	2.06	7.28	2.32	5.43	5.97	2.02	1.22	24.67	13.27
StmLgth	94.25	49.97	74.36	153.28	240	139.13	230	120	210	150	170	290	124.48
LogOIL	0.87040	0.70157	0.96567	0.91751	0.90255	0.80346	0.74819	0.73878	0.94890	1.06819	1.10890	0.96988	1.01745
LogOIW	0.23300	0.20412	0.12710	0.19033	0.02119	0.02531	0.17319	0.38382	0.18752	0.28780	0.37840	0.37107	0.25527
LogIIL	1.11926	1.05154	0.88195	0.95904	1.11628	0.92376	0.68305	0.80072	1.10346	1.11059	1.09691	1.20952	1.21431
LogIIW	0.41664	0.35793	0.33041	0.19033	0.30963	0.23300	0.01284	0.25042	0.34044	0.10037	0.40140	0.17898	0.25768
LogInvL	0.96379	0.97772	0.83569	0.91751	0.89376	0.80550	1.01030	0.86392	0.87099	0.90741	1.01368	0.97081	0.84011
LogInvW	0.85794	0.95472	0.77305	0.75587	0.69897	0.77670	1.01030	0.84880	0.98182	0.98945	0.92012	1.13862	1.16524
LogLfLgth	1.91228	1.86534	2.00834	2.32222	1.29003	2.15057	2.17903	1.94196	1.91944	2.23045	2.25527	2.08682	1.94527
LogLfWdth	0.50920	0.54777	0.55751	0.56585	0.31387	0.86213	0.36549	0.73480	0.77597	0.30535	0.08636	1.39217	1.12287
LogStmLgth	1.97428	1.69871	1.87134	2.18549	2.38021	2.14342	2.36173	2.07918	2.32222	2.17609	2.23045	2.46240	2.09510
LogOIRAT	0.63741	0.49745	0.83857	0.72717	0.88136	0.77815	0.57500	0.35497	0.76138	0.78038	0.73051	0.59881	0.76218
LogIIRAT	0.70262	0.69360	0.55154	0.76871	0.80665	0.69077	0.67021	0.55030	0.76302	1.01022	0.69551	1.03054	0.95664
LogOI/II	-0.24885	-0.34997	0.08372	-0.04154	-0.21373	-0.12030	0.06514	-0.06194	-0.15456	-0.04240	0.01199	-0.23963	-0.19686
LogInvRAT	0.10585	0.02300	0.06264	0.16163	0.19479	0.02880	0.00000	0.01511	-0.11083	-0.08204	0.09356	-0.16781	-0.32514
LogLFRAT	1.40307	1.31757	1.45084	1.75637	0.97617	1.28844	1.81355	1.20716	1.14347	1.92510	2.16891	0.69465	0.82240

	LinO3	LinO4	LinO5	LinO6	LinO7	LinO8	LinO9	LinO10	Marit	Oth	Pct1	Pct2	Pct3
Habit	1	1	1	1	1	1	1	1	0	1	1	1	1
InvSet	0	0	0	0	0	0	0	0	0	1	0	1	1
ParScl	1	1	1	1	1	1	1	1	0	0	1	0	1
InvBase	2	2	2	0	2	2	2	0	2	2	1	1	1
LfIndu	0	0	0	0	0	0	0	0	0	1	0	2	0
LfMarg	0	0	2	2	2	2	2	2	0	3	0	3	3
LfDiss	1	1	5	5	1	5	1	1	5	5	6	5	5
OIL	4.89	6.22	7.02	10.53	8.34	9.55	11.25	7.63	2.95	3.34	7.26	4.68	3.94
OIW	1.45	2.08	2.52	2.1	2.15	1.77	1.43	1.68	1.06	1.27	1.88	1.78	1.21
IIL	11.83	10.83	12.91	20.09	16.54	22.76	20.06	15.1	3.9	5.11	4.03	3.53	5.77
IIW	2.69	1.18	1.94	2.07	1.74	2.88	1.92	1.95	1.18	0.85	2	1.34	0.9
InvL	8.57	8.27	8.98	11.34	12.55	12.21	11.53	10.68	6.86	6.67	10.42	7.58	10.32
InvW	10.16	11.48	12.07	14.16	10.71	14.05	10.46	12.08	3.9	5.76	7.2	7.58	12.15
LfLgth	76.55	120.13	93.97	110.44	212	155.09	155.47	81.02	50.17	48.05	68.73	99.45	69.25
LfWdth	10.65	14.81	15.17	11.04	25.28	22.1	19.98	17.32	2.18	2.91	1.21	1.52	7.56
StmLgth	142.86	150.56	114.56	124.57	103.93	153.93	220	130.4	52.4	63.46	75.02	70.91	73.67
LogOIL	0.68931	0.79379	0.84634	1.02243	0.92117	0.98000	1.05115	0.88252	0.46982	0.52375	0.86094	0.67025	0.59550
LogOIW	0.16137	0.31806	0.40140	0.32222	0.33244	0.24797	0.15534	0.22531	0.02531	0.10380	0.27416	0.25042	0.08279
LogIIL	1.07298	1.03463	1.11093	1.30298	1.21854	1.35717	1.30233	1.17898	0.59106	0.70842	0.60531	0.54777	0.76118
LogIIW	0.42975	0.07188	0.28780	0.31597	0.24055	0.45939	0.28330	0.29003	0.07188	-0.07058	0.30103	0.12710	-0.04576
LogInvL	0.93298	0.91751	0.95328	1.05461	1.09864	1.08672	1.06183	1.02857	0.83632	0.82413	1.01787	0.87967	1.01368
LogInvW	1.00689	1.05994	1.08171	1.15106	1.02979	1.14768	1.01953	1.08207	0.59106	0.76042	0.85733	0.87967	1.08458
LogLfLgth	1.88395	2.07965	1.97299	2.04313	2.32634	2.19058	2.19165	1.90859	1.70044	1.68169	1.83715	1.99760	1.84042
LogLfWdth	1.02735	1.17056	1.18099	1.04297	1.40278	1.34439	1.30060	1.23855	0.33846	0.46389	0.08279	0.18184	0.87852
LogStmLgth	2.15491	2.17771	2.05903	2.09541	2.01674	2.18732	2.34242	2.11528	1.71933	1.80250	1.87518	1.85071	1.86729
LogOIRAT	0.52794	0.47573	0.44494	0.70021	0.58873	0.73203	0.89582	0.65722	0.44452	0.41994	0.58678	0.41983	0.51271
LogIIRAT	0.64323	0.96275	0.82312	0.98701	0.97799	0.89778	1.01903	0.88894	0.51918	0.77900	0.30428	0.42067	0.80693
LogOI/II	-0.38368	-0.24084	-0.26459	-0.28055	-0.29737	-0.37717	-0.25118	-0.29645	-0.12124	-0.18467	0.25563	0.12247	-0.16568
LogInvRAT	-0.07391	-0.14244	-0.12843	-0.09645	0.06885	-0.06096	0.04230	-0.05350	0.24526	0.06370	0.16054	0.00000	-0.07090
LogLFRAT	0.85660	0.90910	0.79200	1.00016	0.92356	0.84619	0.89105	0.67004	1.36199	1.21780	1.75436	1.81576	0.96190

	Pct4	Pct5	Pct6	Pct7	Pct8	Rigid1	Rigid3	Rigid4	Rigid5	Rigid6	Rigid7	Rigid8	Rigid9
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	0	0	0	1	1	0	0	1	0	0	2	1	1
ParScl	1	1	1	1	1	1	0	1	1	1	1	0	0
InvBase	2	1	2	1	0	2	1	1	1	2	2	2	2
LfIndu	2	2	0	2	2	2	2	2	2	2	0	0	0
LfMarg	3	3	3	3	3	3	3	3	3	3	3	0	3
LfDiss	4	5	5	5	5	6	6	5	6	6	5	5	5
OIL	8.9	6.2	7.44	7.08	6.97	2.96	2.79	3.72	5.09	6.29	2.52	5.88	3.33
OIW	1.03	0.87	1.85	1.13	1.96	1.1	1.6	2.08	1.74	0.82	1.66	1.72	1.44
IIL	9.32	6.84	8.95	4.89	9.94	4.33	3.64	4.59	6.29	6.82	4.11	5.89	5.85
IIW	1.89	2.13	2.39	2.15	2.25	1.61	2.22	2.52	1.47	1.63	2.41	1.33	2
InvL	9.23	10.48	8.79	8.92	8.99	8.31	8.58	12.36	12.03	9.34	7.26	9.31	6.48
InvW	12.45	11.43	17.49	10.26	10.49	9.72	8.69	19.81	11.85	9.34	10.13	8.87	8.71
LfLgth	114.81	165	200	140	150	68.57	98.5	110	39.76	47.13	65.66	146.55	77.87
LfWdth	3.04	10.5	8.45	5.08	6.35	1.9	2.86	4.84	1.44	2.58	2.47	4.99	2.17
StmLgth	98.42	230	240	150	140	83.91	117.68	120	80.6	42.12	35.27	91.45	83.04
LogOIL	0.94939	0.79239	0.87157	0.85003	0.84323	0.47129	0.44560	0.57054	0.70672	0.79865	0.40140	0.76938	0.52244
LogOIW	0.01284	-0.06048	0.26717	0.05308	0.29226	0.04139	0.20412	0.31806	0.24055	-0.08619	0.22011	0.23553	0.15836
LogIIL	0.96942	0.83506	0.95182	0.68931	0.99739	0.63649	0.56110	0.66181	0.79865	0.83378	0.61384	0.77012	0.76716
LogIIW	0.27646	0.32838	0.37840	0.33244	0.35218	0.20683	0.34635	0.40140	0.16732	0.21219	0.38202	0.12385	0.30103
LogInvL	0.96520	1.02036	0.94399	0.95036	0.95376	0.91960	0.93349	1.09202	1.08027	0.97035	0.86094	0.96895	0.81158
LogInvW	1.09517	1.05805	1.24279	1.01115	1.02078	0.98767	0.93902	1.29688	1.07372	0.97035	1.00561	0.94792	0.94002
LogLfLgth	2.05998	2.21748	2.30103	2.14613	2.17609	1.83613	1.99344	2.04139	1.59945	1.67330	1.81730	2.16599	1.89137
LogLfWdth	0.48287	1.02119	0.92686	0.70586	0.80277	0.27875	0.45637	0.68485	0.15836	0.41162	0.39270	0.69810	0.33646
LogStmLgth	1.99308	2.36173	2.38021	2.17609	2.14613	1.92381	2.07070	2.07918	1.90634	1.62449	1.54741	1.96118	1.91929
LogOIRAT	0.93655	0.85287	0.60440	0.79695	0.55098	0.42990	0.24148	0.25248	0.46617	0.88484	0.18129	0.53385	0.36408
LogIIRAT	0.69295	0.50668	0.57343	0.35687	0.64520	0.42966	0.21475	0.26041	0.63133	0.62160	0.23182	0.64626	0.46613
LogOI/II	-0.02003	-0.04266	-0.08025	0.16072	-0.15415	-0.16520	-0.11550	-0.09127	-0.09193	-0.03513	-0.21244	-0.00074	-0.24471
LogInvRAT	-0.12997	-0.03768	-0.29880	-0.06078	-0.06702	-0.06807	-0.00553	-0.20487	0.00655	0.00000	-0.14467	0.02103	-0.12844
LogLFRAT	1.57711	1.19629	1.37417	1.44026	1.37332	1.55738	1.53707	1.35655	1.44108	1.26168	1.42460	1.46789	1.55491

	Rigid12	Rigid13	Rigid14	Rigs2	Rigs3	Rigs4	Rigs5	Rigs6	Rigs7	Rigs9	Rigs10	Rigs11	Rigs16
Habit	1	1	1	0	0	0	0	0	0	0	0	0	0
InvSet	1	1	0	1	1	1	0	1	1	0	0	0	1
ParScl	1	0	0	1	1	1	1	1	1	1	1	1	0
InvBase	1	0	2	0	0	0	1	0	0	0	1	0	2
LfIndu	2	2	2	1	0	1	0	0	1	0	0	0	1
LfMarg	3	3	3	0	0	0	0	0	0	0	0	0	0
LfDiss	5	5	3	5	5	1	1	1	1	5	1	1	1
OIL	3.33	5.18	2.12	3.71	2.43	3.59	5.2	3.63	2.33	7.44	9.55	4.47	3.12
OIW	1.28	1.06	1.05	1.67	3.26	1.99	2.92	2.16	1.67	2.35	1.8	1.64	1.82
IIL	4.71	4.26	3.74	6.48	5.45	6.34	5.32	4.71	4.14	10.46	10.52	6.81	4.66
IIW	2.33	2.2	2.04	1.89	2.68	1.91	1.88	2.4	1.56	2.36	2.48	2.78	1.64
InvL	7.15	10.24	7.6	9.97	10.03	9.48	9.66	7.78	8.39	9.6	8.23	7.38	6.53
InvW	7.99	5	6.12	11.87	17.05	13.33	11.76	8.23	8.77	9.49	10.53	6.88	6.03
LfLgth	109.65	102.25	150.42	70.13	60.8	58.67	76.76	26.91	37.29	113.59	114.04	63.2	35.06
LfWdth	1.99	3.63	2.08	8.82	13.31	6.23	14.35	4.71	8.76	18.37	12.97	9.65	6.53
StmLgth	180	88.97	142	56.33	77.16	61.02	100	23.94	28.59	93.13	114.02	41.94	33.23
LogOIL	0.52244	0.71433	0.32634	0.56937	0.38561	0.55509	0.71600	0.55991	0.36736	0.87157	0.98000	0.65031	0.49415
LogOIW	0.10721	0.02531	0.02119	0.22272	0.51322	0.29885	0.46538	0.33445	0.22272	0.37107	0.25527	0.21484	0.26007
LogIIL	0.67302	0.62941	0.57287	0.81158	0.73640	0.80209	0.72591	0.67302	0.61700	1.01953	1.02202	0.83315	0.66839
LogIIW	0.36736	0.34242	0.30963	0.27646	0.42813	0.28103	0.27416	0.38021	0.19312	0.37291	0.39445	0.44404	0.21484
LogInvL	0.85431	1.01030	0.88081	0.99870	1.00130	0.97681	0.98498	0.89098	0.92376	0.98227	0.91540	0.86806	0.81491
LogInvW	0.90255	0.69897	0.78675	1.07445	1.23172	1.12483	1.07041	0.91540	0.94300	0.97727	1.02243	0.83759	0.78032
LogLfLgth	2.04001	2.00966	2.17731	1.84590	1.78390	1.76842	1.88513	1.42991	1.57159	2.05534	2.05706	1.80072	1.54481
LogLfWdth	0.29885	0.55991	0.31806	0.94547	1.12418	0.79449	1.15685	0.67302	0.94250	1.26411	1.11294	0.98453	0.81491
LogStmLgth	2.25527	1.94924	2.15229	1.75074	1.88739	1.78547	2.00000	1.37912	1.45621	1.96909	2.05698	1.62263	1.52153
LogOIRAT	0.41523	0.68902	0.30515	0.34666	-0.12761	0.25624	0.25062	0.22545	0.14464	0.50051	0.72473	0.43546	0.23408
LogIIRAT	0.30566	0.28699	0.26324	0.53511	0.30826	0.52106	0.45175	0.29281	0.42388	0.64662	0.62756	0.38910	0.45354
LogOI/II	-0.15058	0.08492	-0.24654	-0.24220	-0.35079	-0.24699	-0.00991	-0.11311	-0.24964	-0.14796	-0.04201	-0.18284	-0.17423
LogInvRAT	-0.04824	0.31133	0.09406	-0.07576	-0.23042	-0.14802	-0.08543	-0.02442	-0.01924	0.00501	-0.10703	0.03047	0.03460
LogLFRAT	1.74116	1.44976	1.85924	0.90044	0.65973	0.97393	0.72828	0.75689	0.62909	0.79123	0.94412	0.81619	0.72990

	Rigs17	Rigs19	Rigs20	Rigs21	Rigs22	Rigs23	Serr1	Serr2	Serr3	Serr4	Serr6	Serr7	Serr8
Habit	0	0	0	0	0	0	1	1	1	1	1	1	1
InvSet	0	0	1	0	1	1	0	0	0	0	1	1	1
ParScl	1	1	1	1	1	0	1	1	1	0	0	0	1
InvBase	2	2	2	2	2	0	2	2	0	1	1	2	0
LfIndu	0	0	0	0	0	0	2	0	2	0	3	2	2
LfMarg	0	0	0	0	0	0	3	0	3	1	3	3	3
LfDiss	5	5	1	1	1	1	5	4	5	6	4	1	5
OIL	5.51	3.36	5.97	4.58	6.26	6.42	5.68	5.44	6.48	5.02	5	9.81	5.04
OIW	2.44	2.26	2.38	2.74	2.15	3.54	1.14	3.11	1.61	2.56	2.24	1.54	1.07
IIL	6.12	6.09	6.93	5.23	8.14	4.75	7.36	4.95	5.56	7.6	6.59	10.51	4.78
IIW	2.05	1.72	1.83	2.96	1.93	2.15	1.84	2.64	2.02	2.99	1.64	3.92	2.04
InvL	5.5	7.76	5.64	9.06	9.23	8.67	8.47	8.38	10.7	9.74	9.03	8	9.83
InvW	8.91	9.01	11.1	10.56	10.37	8.19	9.21	10.1	11.46	12.54	8.12	8.18	10.81
LfLgth	86.74	82.37	66.73	69.86	77.33	76.03	160	151.3	180	90.17	135.1	117.74	94.53
LfWdth	9.98	9.18	10.38	12.99	15.27	11.76	4.67	5.51	3.08	1.9	3.84	5.81	5.04
StmLgth	81.94	88.18	35.53	54.87	70.03	36.89	230	135.83	160	194	210	53.23	95.09
LogOIL	0.74115	0.52634	0.77597	0.66087	0.79657	0.80754	0.75435	0.73560	0.81158	0.70070	0.69897	0.99167	0.70243
LogOIW	0.38739	0.35411	0.37658	0.43775	0.33244	0.54900	0.05690	0.49276	0.20683	0.40824	0.35025	0.18752	0.02938
LogIIL	0.78675	0.78462	0.84073	0.71850	0.91062	0.67669	0.86688	0.69461	0.74507	0.88081	0.81889	1.02160	0.67943
LogIIW	0.31175	0.23553	0.26245	0.47129	0.28556	0.33244	0.26482	0.42160	0.30535	0.47567	0.21484	0.59329	0.30963
LogInvL	0.74036	0.88986	0.75128	0.95713	0.96520	0.93802	0.92788	0.92324	1.02938	0.98856	0.95569	0.90309	0.99255
LogInvW	0.94988	0.95472	1.04532	1.02366	1.01578	0.91328	0.96426	1.00432	1.05918	1.09830	0.90956	0.91275	1.03383
LogLfLgth	1.93822	1.91577	1.82432	1.84423	1.88835	1.88098	2.20412	2.17984	2.25527	1.95506	2.13066	2.07092	1.97557
LogLfWdth	0.99913	0.96284	1.01620	1.11361	1.18384	1.07041	0.66932	0.74115	0.48855	0.27875	0.58433	0.76418	0.70243
LogStmLgth	1.91350	1.94537	1.55060	1.73933	1.84528	1.56691	2.36173	2.13300	2.20412	2.28780	2.32222	1.72616	1.97813
LogOIRAT	0.35376	0.17223	0.39940	0.22311	0.46414	0.25853	0.69744	0.24284	0.60475	0.29246	0.34872	0.80415	0.67305
LogIIRAT	0.47500	0.54909	0.57828	0.24721	0.62507	0.34426	0.60206	0.27300	0.43972	0.40514	0.60404	0.42832	0.36980
LogOI/II	-0.04560	-0.25828	-0.06476	-0.05764	-0.11405	0.13084	-0.11253	0.04099	0.06650	-0.18011	-0.11992	-0.02993	0.02300
LogInvRAT	-0.20952	-0.06486	-0.29404	-0.06654	-0.05058	0.02474	-0.03638	-0.08108	-0.02980	-0.10974	0.04613	-0.00966	-0.04127
LogLFRAT	0.93909	0.95293	0.80812	0.73062	0.70451	0.81058	1.53480	1.43869	1.76672	1.67631	1.54632	1.30675	1.27314

	Serr9	spnov1	spnov2	spnov3	Ten1	Ten2	Ten3	Ten4	Ten5	Ten6	Ten7	Ten8	Ten9	Ten10
Habit	1	1	1	1	1	1	1	1	1	1	1	1	1	1
InvSet	1	1	1	1	0	1	1	0	0	0	0	0	0	0
ParScl	1	0	0	0	2	2	2	2	2	2	2	2	2	2
InvBase	2	0	1	0	3	3	3	3	3	3	3	3	3	3
LfIndu	2	0	1	0	0	2	2	0	0	0	0	0	0	0
LfMarg	3	0	0	0	3	2	3	3	2	2	2	2	2	2
LfDiss	5	1	3	3	6	6	6	6	6	5	5	6	6	6
OIL	10.56	3.8	2.44	3.8	3.72	2.43	3.78	3.34	2.85	2.67	2.22	2.2	3.25	2.74
OIW	1.45	2.46	1.53	1.2	0.9	0.63	0.68	0.79	0.64	0.89	0.73	0.56	0.99	0.49
IIL	7.81	5.61	3.58	4.96	5.95	6.72	5.5	4.6	4.48	5.87	4.19	5.12	6.68	6.46
IIW	2.54	3.19	1.27	1.4	0.92	1.85	1.79	1.33	1.08	1.1	1.22	0.97	1.55	1.34
InvL	11.43	6.53	7.42	6.5	3.88	3.96	4.19	4.16	4.37	4.57	3.25	4.13	4.29	4.33
InvW	11.15	10.2	5.71	5.67	5.4	3.17	5.75	4.88	4.17	4.49	3.77	3.87	5.12	4.53
LfLgth	122.96	57.3	32.4	81.46	34.35	37.63	44.11	4.98	38.27	71.59	52.14	55.34	45.72	52.1
LfWdth	6.54	6.5	4.4	3.23	1.35	1.3	1.45	1.42	1.14	1.62	0.88	1.2	1.18	1.16
StmLgth	131.16	59.58	32.55	57.84	84.86	49.77	70.33	38.3	37.84	63.72	51.18	52.8	89.92	60.74
LogOIL	1.02366	0.57978	0.38739	0.57978	0.57054	0.38561	0.57749	0.52375	0.45484	0.42651	0.34635	0.34242	0.51188	0.43775
LogOIW	0.16137	0.39094	0.18469	0.07918	-0.04576	-0.20066	-0.16749	-0.10237	-0.19382	-0.05061	-0.13668	-0.25181	-0.00436	-0.30980
LogIIL	0.89265	0.74896	0.55388	0.69548	0.77452	0.82737	0.74036	0.66276	0.65128	0.76864	0.62221	0.70927	0.82478	0.81023
LogIIW	0.40483	0.50379	0.10380	0.14613	-0.03621	0.26717	0.25285	0.12385	0.03342	0.04139	0.08636	-0.01323	0.19033	0.12710
LogInvL	1.05805	0.81491	0.87040	0.81291	0.58883	0.59770	0.62221	0.61909	0.64048	0.65992	0.51188	0.61595	0.63246	0.63649
LogInvW	1.04727	1.00860	0.75664	0.75358	0.73239	0.50106	0.75967	0.68842	0.62014	0.65225	0.57634	0.58771	0.70927	0.65610
LogLfLgth	2.08976	1.75815	1.51055	1.91094	1.53593	1.57553	1.64454	0.69723	1.58286	1.85485	1.71717	1.74304	1.66011	1.71684
LogLfWdth	0.81558	0.81291	0.64345	0.50920	0.13033	0.11394	0.16137	0.15229	0.05690	0.20952	-0.05552	0.07918	0.07188	0.06446
LogStmLgth	2.11780	1.77510	1.51255	1.76223	1.92870	1.69697	1.84714	1.58320	1.57795	1.80428	1.70910	1.72263	1.95386	1.78347
LogOIRAT	0.86230	0.18885	0.20270	0.50060	0.61630	0.58627	0.74498	0.62612	0.64866	0.47712	0.48303	0.59423	0.51625	0.74755
LogIIRAT	0.48782	0.24517	0.45008	0.54935	0.81073	0.56020	0.48751	0.53891	0.61785	0.72725	0.53585	0.72250	0.63444	0.68313
LogOI/II	0.13101	-0.16918	-0.16649	-0.11570	-0.20397	-0.44176	-0.16287	-0.13901	-0.19643	-0.34213	-0.27586	-0.36685	-0.31289	-0.37248
LogInvRAT	0.01077	-0.19369	0.11377	0.05933	-0.14356	0.09664	-0.13745	-0.06933	0.02035	0.00767	-0.06446	0.02824	-0.07681	-0.01961
LogLFRAT	1.27419	0.94524	0.86709	1.40174	1.40559	1.46159	1.48317	0.54494	1.52595	1.64534	1.77269	1.66386	1.58822	1.65238

cpDNA primer screening and selection for Chapter 3

For the six cpDNA regions initial screened, nine samples were selected to determine if any inter- and intraspecific variability could be distinguished in each region (see Table A3.1 for sample details). Table A3.2 lists the primers details for the regions not detailed in Chapter 3, Table 3.2.3.

Table A3.1: Nine samples used for primer screening (full details in Table 3.2.1).

Species	subspp	Sample
leiopoda		M240901
linearis	linearis	RM1010
linearis	ovalis	RM854
rigida		M280902
tenuifolia		CAM1601
jurineifolia	scabra	CAM1604
lichtensteinii		CAM1916
rigens	leucolaena	RM952_1
krebsiana	serrulata	RM965

Table A3.2: Rejected cpDNA regions primer names, uses, authors, sequences, PCR annealing temperature and number of cycles.

Name	Use	Reference	Sequence	Anneal Temp	No. Cycles
trnC-psbM					
trnCF	Amplif/Seq	Shaw et al., 2005	CCA GTT CRA ATC YGG GTG	52°C	30
			ATG GAA GTA AAT ATT CTY GCA TTT ATT		
psbMR	Amplif/Seq	Shaw et al., 2005	GC		

trnS-trnfM					
trnS	Amplif/Seq	Demesure et al., 1995	GAG AGA GAG GGA TTC GAA CC	52°C	30
trnfM	Amplif/Seq	Demesure et al., 1995	CAT AAC CTT GAG GTC ACG GG		

trnT-trnL					
				53-	
Tab a	Amplif/Seq	Taberlet et al., 1991	CAT TAC AAA TGC GAT GCT CT	55°C	30-35
tab b	Amplif/Seq	Taberlet et al., 1991	TCT ACC GAT TTC GCC ATA TC		

Table A3.3 presents a list of comparative information of each region's length, variability, informativeness and data signal strength. Initial investigations into relative variability and information content indicated that although the *trnC-psb*M and *trnT-trnL* regions proved to be the most variable and informative of all the cpDNA regions, there were significant amplification and sequencing problems with both. In the *trnC-psb*M region, one sample (even when PCR amplification produced a clean clear band on an agarose gel) could not be successfully sequenced in either direction, and another sample could not be successfully sequenced with the reverse primer. Table A3.4 lists the indel information for each region. In the *trnT-trnL* region, the presence of multiple poly-A/T strings (up to

17 bp in length) in almost all samples made amplification and bidirectional sequencing problematic. The *psbA-trnH* region can be seen to be highly prone to multibase repeat insertions, while the *trnS-fM* region is prone to single base pair repeat strings.

			Variable (Characters	Parsimon		
	No. samp.	Tot. chars	Number	%	Number	%	g_1
<i>trnS-trnf</i> M	9	1021	14	1.4	0	0	
<i>trn</i> L-F	9	858	23	2.7	0	0	
<i>trn</i> C <i>-psb</i> M	8	541	20	3.7	5	0.9	-0.77
psbA <i>-trn</i> H	9	533	34	6.4	1	0.2	-2.823
<i>rp</i> S16	9	827	15	1.8	2	0.3	-0.588
trnT-trnL	9	545	22	4	3	0.6	-0.491

Table A3.3: Characteristics of each cpDNA region, including number of samples, total number of characters, number and percentage of variable and parsimony informative characters, as well as data signal statistic.

The *psbA-trn*H and *rp*S16 regions were thus the next most profitable cpDNA regions to pursue for potential phylogenetic signal content. The *trn*L-F regions (jointly amplified by the "tab c" and "tab f" primers) had the next highest number of variable characters, and this region was tentatively pursued in the hopes that a greater sample size would render more phylogenetically informative sites.

Region	Indels	Poly-N repeat strings	Other
	2 x 1 bp	poly-G (6-8 bp)	1 x 5 bp repeat insertion
<i>rp</i> S16	1 x 9 bp	poly-A (9-13 bp)	
<i>trn</i> L-F	1 x 1 bp		
	1 x 2 bp	poly-A (3-4 bp)	
trop fM		poly-T (9-13 bp)	
tmS-tivi		poly-C (3-4 bp)	
		poly-T (7-8 bp)	
	1 x 1 bp	poly-T (11-17 bp)	1 x 4 bp repeat insertion
<i>trn</i> T-L	1 x 5 bp	poly-A string (8-10 bp, some with T inserts)	
	4 x 1 bp	poly-A (7-9 bp)	1 x 5 bp repeat insertion
	1 x 6 bp		2 x 6 bp repeat insertion
	1 x 19 bp		1 x 5 bp repeat insertion (imperfect)
psbA-trnH	1 x 269 bp		1x (3xTTAAA) repeat insertion (3rd repeat imperfect)
			1 x 4 bp repeat insertion (imperfect)
			1 x (2x5 bp) repeat insertion
			1 x 11bp inversion (inside larger matchpaired region)
	1 x 1bp	poly-A (7-13 bp)	
<i>trn</i> C-psbM	1 x 5bp	poly-T (8-9 bp)]
		poly-T (5-6 bp)	7

Table A3.4: Indel information for each cpDNA region.

[10	20	30	40	50	60	70	80	90	100	110]
Berkheya	TCGAACCCTGCATAGC	AGAACGACC	CGTGAACACGI	TAACCACAAC	CGGGTGCTAAG	GGGGACAGGT	TTATAGCCG	GCGACCCTTGG	TGCCCTGCC	TACTTGCGTGC	ATGT
Gorteria	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACCCACAAC	CGGGTGTCAAG	GGGGACAGGC	TC-TAGCCG	GCGACCCTTGG	TGCCCCGCC	AACGTGCGTGC	ATGT
Hirpicium	TCGAACCATGCATAGC	AGAACGACC	CGCGAACACGI	ГААССАСААС	CGGGTGTCAAG	GGGGACAGGC	TC-TAGCCG	GCGACCCTTGG	TGCCTTGCC	TATGTGCGTGC	ATGT
caespitosa_RC448	TCGAACCCTGCAAAGC	AGAACGACC	YGCGAACACGI	FACATACAAC	CGGGTGTCAMG	GGGGACAGGC	AC-TAGCCR	GCGACCCTTGA	TGCCCTGCC	TACCTRCGTGC	ATGT
caespitosa_RVC307	TCGAACCCTGCAAAGC	AGAACGACC	YGCGAACACGT	FACATACAAC	CGGGTGTCAMG	GGGGACAGGC	AC-TAGCCR	GCGAYCCTTGA	TGCCCTGCC	TACCTRCGTGC	ATGT
ciliaris_RM1230	TCGAACCCTGCAAAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACAGGC	AC-TAGCCG	GCGACTCTTGA	TGCCCTGCC	TACCTGCGTAC	ATGT
ciliaris_RM1382	TCGAACCCTGCAAAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACAGGC	GC-TAGCCG	GCGACTCTTGA	TGCCCTGCC	TACCTGCGTAC	ATGT
heterochaeta_RM1429_1	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACATGT	FACATACAMC	CGGGTGTAAAG	GGGCAGGC	TC-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TTCCTGCGTGC	ATGT
heterochaeta_RM1451	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACATGI	FACATACAAC	CGGGTGTAAAG	GGGCAGGC	TC-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TTCCTGCGTGC	ATGT
jurineifolia_jur_SR682	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGI	FACATACAAT	CGGGTGTTAAG	GGGGACAGGC	TA-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TACCTGCGTGC	ATGT
jurineifolia_jur_RM1518	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAT	CGGGTGTTAAG	GGGGACAGGC	TA-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TACCTGCGTGC	ATGT
jurineifolia_scab_CAM1604	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAT	CGGGTGTTAAG	GGGGACAGGC	TA-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TACCTGCGTGC	ATGT
jurineifolia_scab_CAM2652	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAT	CGGGTGTTAAG	GGGGACAGGC	TA-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TACCTGCGTGC	ATGT
krebsiana_arctotoides_RM868	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGI	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
krebsiana_arctotoides_RM876	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
krebsiana_krebsiana_RM1114	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
krebsiana_krebisiana_RM1136	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTTC	ATGT
krebsiana_serrulata_RM863	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
krebsiana_serrulata_RM965	TCGAACCCTGCATAGC	AGAACGACC	CGTGAACACGI	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
leiopoda_M240901	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAACCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
leiopoda_RM1309	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	AACCTGCGTGC	ATGT
lichtensteinii_CAM1916	TCGAACCCTGCATAGC	RGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTAAAG	GGGGGGCAGGC	TC-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TTCCTGCGTAC	ATGT
lichtensteinii_RM1249	TCGAACCCTGCATAGC	AGAACGACC	YGCGAACACGI	FACATACAAC	CGGGTGTAAAG	GGGGGGCAGGC	TC-TAGCCG	GCGACCCTTGA	CGCCCTGCC	TTCCTGCGTAC	ATGT
linearis_linearis_RM1010	???????????????????????????????????????	???ACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
linearis_linearis_SH113	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGYCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
linearis_ovalis_NDsn	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	RACCTGCGTGC	ATGT
linearis_ovalis_RM854	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
maritima_RM1038	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
maritima_M290606_6	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCWGCGTGC	ATGT
othonnites_RM1306	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCA	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTTC	ATGT
pectinata_M120903	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GTGACCCATGA	TGCCCTGCC	TACCTGCGTAC	ATGT
pectinata_RM1044	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGATTGGC	TC-TWGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigida_M280902	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAACCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigida_RM840	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigens_leucolaena_RM773	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigens_leucolaena_RM952_1	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigens_rigens_RM763	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigens_rigens_SR463	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigens_uniflora_JC201205	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
rigens_uniflora_RM920	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
schenckii	??????????????????????????????????????	??????????	??????????GI	FACATACAAC	CGGGTGTTAAG	GGGGGGCAGGC	TC-TAGCCG	GCGACCCTTGA	CGCCTTGCC	TTCCTGCGTAC	ATGC
serrata_M250904_15	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAACCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
serrata_RM898	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TARCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
tenuifolia_CAM1601	???????????????????????????????????????	??????????	???????????????????????????????????????	???????????????????????????????????????	?????????ATG	GGGGACAGGC	TC-TAGCCS	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
tenuifolia_M2730	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACACGT	FACATACAAC	CGGGTGTAAAG	GGGGACAGGC	TC-TAGCCG	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTGC	ATGT
spnov_M040906_33	TCGAACCCTGCATAGC	AGAACGACC	CGCGAACRCG	FACATACAAC	CGGGTGTCAAG	GGGGACTGGC	TC-TAGCCA	GCGACCCTTGA	TGCCCTGCC	TACCTGCGTTC	ATGT

Best-Rypin TOCCTOTTY 0000000000000000000000000000000000	[120	130	140	150	160	170	180	190	200	210	220]
Gorte-ia TOCCCTTATAGGG-CTCATAGAC- OTEXTITIOGGCTATAAACCOGGCATOGCAAACAAACATAAGAAGGCATOTATCTTOTCOTCCT Casepitosa_RC48 ACCCTTTTIGGGCTGAACACCOGGCATOGCAAACCOGGCATOTCCAAAACAAACATAAGAAGGCTGCAACTOTCOTCCGT casepitosa_RC48 ACCCTTTTIGGGCTGAACACCOGGCATOGCAACGCGGCATOTCCAAGAAACAAACATAAGAAGGCTGCAACTOTCCCTCGCCCCCT casepitosa_RC48 ACCCTTTTIGGGCTGAAACCOGGCAAGGCAAACCOGGCAAGGCAAAACAAAA	Berkheya	TGCCTCGTTYGGGGGCT	CATGAAC	GTCACWTAGGC	ATCAAAACA	AACCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAATATAAGA	AGGGATCGTW	IC-GTGTCGTC	CCGT
Hitpiclum TECCCOTTINGGECTOTADACUTATITISCATTABAACABACCOGGECAGGECATTICCAAGABAACABAACBAAGABAGGETOTATICTITOTOTICCOT caseptics_RV317 ACCCTTITIGGGECTOTADACGTARITISCATCABAACABACCOGGECAGGECATTICCAAGABAACBAACCAAGAGGGECTOTACCTTOTICTICCOTCOT caseptics_RV317 ACCCTTITIGGGECTOTADACGTARITISGGATACAAACABACCOGGECAGGECATTICCAAGABAACBAACCAAGAGGGECTOTACCTTOTICTICCOTCOT clilsis_RV327 CCCTTITIGGGECTOTADACGTARITISGGATACAAACABACCAGGECAGGECAGGECAGGATTISCCAAGABAACBAACABAACBAAGGECAGGECTOTICTICTICTICCOTCOT heterochast_RV1451 ACCCTTITIGGGECTOTADACGTARITISGGATCAAAACAAACCCOGGECAGGCACGTATISCCAAGABAACBAACABAACBAAGABAGGECAGGUTTISCCAAGABAACBAACABAACBAAGABAGGECAGGUTTISCCAAGABAACBAACABAACBAAACBAAGABAGGECAGGUTTISCCAAGABAACBAAACABAACBAAGABAGGECAGGUTTISCCAAGABAACBAAACABAACBAAGABAGGECAGGUTTISCCAAGABAACBAAACBAAACBAAGABAGGECAGGUTTISCCAAGABAACBAAACBAAACBAAGABAGGECAGGUTTISCCAAGABAACBAAACBAAACBAAACBAAACBAAACBAAA	Gorteria	TGCCTCTATAGGG-CT	CATGAAC	GTCATGTCGGC	ATCAAAACA	AACCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACATAAGA	AGGGCTCGTA	TCGTGTCGTC	CCGT
case_pic.es_UC307AddCCTTTTTGGGCTGAACCTARTGTGGCATCAAACAAACCOGGCAGGGCAGGCAGGAAACAAAACHAAACH	Hirpicium	TGCCCCGTTTGGGGGCT	CGTGAAC	GTCATGTTGGC	ATYAAAACA	AAACCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACAATAGA	AGGGCTCGTA	TCTTGTCGTC	CCGT
cnampitong_WC307 ACCCCTTTTEGGGCTSNTAMC-GTANNETWGCATCAMACAMACCUGGCAGGCATGTGCAAGGAAMCAMACCTAAGGAAGGCATTTGCAGGCAGGCATGTGCCAGGAATGCAAAGGAAGG	caespitosa RC448	AGCCCTTTTTGGGGGCT	SGTGAAC	GTAGTGTTGGC	ATCAAAACA	AACCCCGGCAC	GCATGTGCC	AAGGAAAACI	AAACATAAGA	AGGGCTCGYA	TCTTGTCGTC	CCGT
e111aria_RR1230 TECCUTTITIGGGCTORINALTRATGTIGGCATCAAACAAACCOGGCAGGCATGTGCAAGAAACAAACCAAAGGGCTGGCATTAGCAAGAAACAAAC	caespitosa RVC307	AGCCCTTTTTGGGGGCT	SGTGAAC	-GTAGNGTTGGC	ATCAAAACA	AACCCCGGCAC	GCATGTGCC	AAGGAAAACI	MAAACATAAGA	AGGGCTCGCA	TCTTGTCGTC	CCGT
elliaria_RMI382 gecctrittingescreatingescresponsescresposescreatingescreatingescreatingescreatingescreatin	ciliaris RM1230	TGCCCTTTTTGGGGGCT	CGTGAAC	GTAGTGTTGGC	ATCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACATAAGA	AGGGCTCGCA	TCTTGTCGTC	CCGT
heterochaeta, RH149_1 AGC-TTTYGGG-CTGGGAACTRATEGGCATCCAALGAAGCAGGCATGTCCCAAGGAAACAAACAAACAAGAAGGAGGCTGGTACGTGTGCCCCGT jurineifolia, jur, RH51 AGCCCTTTTGGGGCTCGGAAC-GTAAACAAACCAGGCAGGCATGTCCCAAGGAAACAAACAA	ciliaris RM1382	GGCCCTTTTTGGRGCT	CGTGAAC	GTAGTGTTGGC	ATCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACATAAGA	AGGGCTCGCA	TCTTGTCGTC	CCGT
heteschaeta, EM1451 AGC-TTTTGGG-TCGGGAGC-GTAGTGGCAAACAAACCASCCCCGCAGGCAGGCACGGCAGGCAGG	heterochaeta RM1429 1	AGCC-TTTCYGGG-CT	CGTGAAC	GTAGTGTCGGC	ATCCAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACAAAAGA	AGGGCTCGTA	TCGTGTCGTC	CCGT
jurisifolia_jur_BR62 ACCCTOTTTOGGCCTOTAGACGTHATGAGCACCAMALACAMACCAMACCAMACAMACAMACAMACAMAC	heterochaeta RM1451	AGCC-TTTCTGGG-CT	CGTGAAC	GTAGTGTTGGC	ATCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACAAAAGA	AGGGCTCGTA	TCGTGGCGTC	CCGT
jurineifolia_jur_eMI518 jurineifolia_jus_exhb518 ACCCUTTITTGGGCCUTTAGGC-UTTAGGCCCAAAACACAAACACCOGGCAGGCACTURCOCAAAACATAGAAGGGCUTGTACCCUTGUTGGCCUTGUT jurineifolia_scab_CAAAG52 ACCCUTTITGGGCCUTGAAC-UTTAGGCACCAAAACACAAACATAGGAAGGCAUGTACAAACATAGAAGGGCUTGTACCUTGUTGGUTG	jurineifolia jur SR682	AGCCCTGTTTGGGGGCT	CTTGAAC	GTTATGTAGGC	ACCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACATAAGA	AGGGCTCGTA	CCGTGTCGTC	CCGT
jurineifolia_seab_CMM1642 AGCCCTTTTGGGGTCTTGAC_GTAT_TITAGGGTCGTGACAGAAACCAGGGCAGGCAGGCAGGCAGGC	jurineifolia jur RM1518	AGCCCTGTTTTGGGCCT	CTTGAAC	GTTATGTAGGC		AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAAGA	AGGGCTCGTA	CCATGTCGTC	CCGT
jurineifolia_esta_CMM252 AGCCCTTTTGGGGCTCTTGAAC-GTTATGTGGGCACCGAAGCCGGGCAGGCAGGCAGGCAGGC	jurineifolia scab CAM1604	AGCCCTGTTTGGGGGCT	CTTGAAC-G	TTA-TGTAGGC	ACCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAAGA	AGGGCTCGTA	CCGTGTCGTC	CCGT
prebsiana_arctotoides_NM668 ACCCTTTTGGGGCTOGTGAACTHAGTGTGGCATCTAAACAAACCCOGGCAGGCATGTGCCAAGGAAACAAAACTAGGAAGGGCTOGTAACGAAGGCTOGTACCTTGGCACGGAGGGCAGGGC	jurineifolia scab CAM2652	AGCCCTGTTTGGGGGCT	CTTGAAC	GTTATGTAGGC	ACCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAAGA	AGGGCTCGTA	CCRTGTCGTC	CCGT
hrebsiana_srctotoide_RM876 AGCCTTTTTGGGCTTGTGAACTTAGTGTGGCATCTAAACAAACCCGGCAGGCATGTGCCAAGGAAACAAAC	krebsiana arctotoides RM868	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCGTGTCGTC	CCGT
krebsiana_krebsiana_RMI114 AGCCCTTTTGGGGCTGGGAACTTAGTGTTGGCATCTAAACAAACCCGGGCAGGGCA	krebsiana arctotoides RM876	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCGTGKCGTC	CCGT
krebsiana_krebisiana_RM1136 AGCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCA	krebsiana krebsiana RM1114	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCATGGCGTC	CCGT
krebsiana_serrulata_RM633AGCCCTTTTGGGGCTGTAAC TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTCCCAGGAAACAAAC	krebsiana krebisiana RM1136	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAAACATAGGA	AGGGCTCGTA	CCGTGGCGTC	CCGT
krebsiana_serrulata_RM965AGCCCTTTTGGGGCTGTGAC TTAGTGTTGGCATCTAACAACCCGGCAGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTGTACCGTGGGCCGGTleiopoda_M240901AGCCCTTTTGGGGCTGTGAC TTAGTGTTGGCATCTAAACAAACCCGGCAGGCAGGCAGGC	krebsiana serrulata RM863	AGCCCTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCGTGGCGTC	CCGT
leiopoda_N240901AGCCCTTTTGGGGCTCGTGAAC TAGTGTTGGCATCTAAACAAACCAGGCACGGCACGGCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGCTCCGTleiopoda_RN1309AGCCCTTTTGGGGCTCGTGAAC TAGTGTTGGCATCTAAACAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTCGTACCGTGGCGTCCCGTlichtensteinii_RN1249GGCCCTTTCGGG-CTCGTGAACGCTAGTGTGGCATCGAAACAAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTCGTACCGTGGCGTCCGTlinearis_linearis_SH113AGCCCTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTCGTACCGTGGCGTCGGCGTlinearis_ovalis_NDanAGCCCTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTCGTACCGTGGCGTCCGTmaritima_RN1038AGCCCTTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTCGTACCGTGGCGTCCCGTmaritima_RN1038AGCCCTTTTTGGGGCTCGTGAAC TAGTGTTGGCATCTAAACAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTpectinat_N120903AGCCCTTTTGGGGCTCGTGAAC TAGTGTTGGCACGACGCATGTGCCCAGGCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTpectinat_N120903AGCCCTTTTGGGGCTCGTGAAC TTAGTGTTGGCACTAAACAAACCCGGCACGGCATGTGCCAAGGAAAAAAAA	krebsiana serrulata RM965	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCGTGGCGTC	CCGT
leiopod_RM1309AGCCCTTTTGGGGCTCGTGACTTAGTGTTGGCATCTAACAACCCCGGCACGGCATGTGCCAAGGAAAACAAAC	leiopoda M240901	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCGTGGCGTC	CCGT
lichtensteinii_CAM1916GGCCTTTCTGGG-CTGTGAACGTGTAGTGTTGGCATCAAAACAAACATAAGAAACATAAGAAGGGCTGTATCGTGTGCCCGTlichtensteinii_RM1249GGCCTTTCTGGG-CTGGTGAACGTGTGGTGAGTGTGGCATCAAAACAAACCCGGGCAGGCA	leiopoda RM1309	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATATGA	AGGGCTCGTA	CCGTGGCGTC	CCGT
lichtensteinii_RN1249GGCCTTTTTGGG-CTCGTGAACGTGTAGTGTGGCATCAAACAAACCCCGGCACGGCATGTGCCAAGGAAACAAAC	lichtensteinii CAM1916	GGCCCTTTCTGGG-CT	CGTGAACGT	GTAGTGTTGGC	ATCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAAGA	AGGGCTCGTA	TCGTGTCGTC	CCGT
linearis_linearis_RM1010AGCCCTTTTTGGGGTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCA	lichtensteinii RM1249	GGCCCTTTCTGGG-CT	CGTGAACGT	GTAGTGTTGGC	ATCAAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAAGA	AGGGCTCGTA	TCGTGTCGTC	CCGT
linearis_linearis_SH113AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGGGCTCCGTlinearis_ovalis_NDsnAGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGGGCTCCCGTmaritima_RM1038AGCCCTTTTTGGGGCTCGTGAAC - TCAGTGTTGGCATCTAAACAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGGGCTCCCGTmaritima_N29060_6AGCCCTTTTTGGGGCTCGTGAAC - TCAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGGCGTCCCGTpectinata_N120903AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGGCGTCCCGTpectinata_N120903AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigida_M280902AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigida_M280902AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_leucolaena_RM9521AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_rigens_RM763AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_uniflora_L201205AGCCCTTTTTGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_uniflora_RM930AGCCCTTTTTGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_uniflora_RM930AGCCCTTTTTGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT <tr< td=""><td>linearis linearis RM1010</td><td>AGCCCTTTTTTGGGGGCT</td><td>CGTGAAC</td><td>TTAGTGTTGGC</td><td>ATCTAAACA</td><td>AACCCCCGGCAC</td><td>GCATGTGCC</td><td>AAGGAAAAC</td><td>AAACATAGGA</td><td>AGGGCTCGTA</td><td>CCGTGGCGTC</td><td>CCGT</td></tr<>	linearis linearis RM1010	AGCCCTTTTTTGGGGGCT	CGTGAAC	TTAGTGTTGGC	ATCTAAACA	AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCGTGGCGTC	CCGT
linearis_ovalis_NDsnAGCCTTTTTGGGGCTCGTGAACTTAGTGTGGCATCTAAACAAACCCCGGCACGGCA	linearis linearis SH113	AGCCCTTTTTTGGGGCCT	CGTGAAC	TTAGTGTTGGC		AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA		CCGT
Interis_ovalis_RM854AGCCCTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCA	linearis ovalis NDsn	AGCCCTTTTTTGGGGCCT	CGTGAAC	TTAGTGTTGGC		AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA	CCATGGCGTC	CCGT
maritima_RM1038 AGCCCTTTTTGGGGCTCGTGAACTCAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCGT maritima_M290606_6 AGCCCTTTTTGGGGCTCGTGAACTCAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGCCGT pectinata_M10903 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGGGCTCCGT pectinata_M1040 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGGGCTCCGT rigida_RM840 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGCGCCGT rigens_leucolaena_RM773 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_RM763 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_R463 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_R463 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_R463 AGCCCTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_C201205 AGCCCTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT	linearis ovalis RM854	AGCCCTTTTTTGGGGCCT	CGTGAAC	TTAGTGTTGGC		AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA		CCGT
maritima_M290606_6AGCCTTTTTGGGCTCRTGAACTCAGTGTTGGCATCTAAACAAACCCGGCACGGCA	maritima RM1038	AGCCCTTTTTTGGGGCCT	CGTGAAC	TTCAGTGTTGGC		AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA		CCGT
AGCCTTTTTGGGCTCGTGAAC TTAGTGTTGGCATCTAACAAACCCCGGCAGGCATGTGCCAAGGAAAACAAAACATAGGAAGGCTCGTAACGTGGCGGCCGTpectinata_M1044AGCCCTTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTAACGTGGCGGCCGTrigida_M280902AGCCCTTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACAGTGGCGGCCCGTrigida_RM840AGCCCTTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGCCCGTrigens_leucolaena_RM773AGCCCTTTTTGGGGCTCGTGAAC TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGGAAGG	maritima M290606 6	AGCCCTTTTTTGGGGCCT	CRTGAAC	TCAGTGTTGGC		AACCCCCGGCAC	GCATGTGCC	AAGGAAAAC	AAACATAGGA	AGGGCTCGTA		CCGT
Destinata_M120903AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTpectinata_RM1044AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTrigida_M280902AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigida_RM840AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_leucolaena_RM773AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_rigens_RM763AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_uniflora_RM920AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTrigens_uniflora_RM920AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTserrata_M250904_15AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGTserrata_RM898AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTATCGTGCCGTserrata_RM898AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGTtenuifolia_CAM1601AGCCCTTTTGGG-CTCGTGAAC - CTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTATCGTGCCGCTtenuifolia_CAM1601AGCCCTTTTTGGG-CTCGTGAAC - CTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTATCGTGCCCGTtenuifolia_CAM1601 <t< td=""><td>othonnites RM1306</td><td>ACCCCTTTTTCCCCCCT</td><td>CGTGAAC</td><td>TCACICITCCC</td><td></td><td>AACCCCCCCCACC</td><td>CCATCICC</td><td>AACCAAAAC</td><td>AAACATAGGA</td><td>ACCCCTCCTA</td><td></td><td>CCGT</td></t<>	othonnites RM1306	ACCCCTTTTTCCCCCCT	CGTGAAC	TCACICITCCC		AACCCCCCCCACC	CCATCICC	AACCAAAAC	AAACATAGGA	ACCCCTCCTA		CCGT
pectinata_minorspectinata_minorspectinata_minorsAGCCCTTTTGGGGCTCGTGAACTXAGTGTTGGCATCTAAACAAACCAGGGCATGTGCCAAGGAAAACAAAACAAAACAAAGGGCTCGTACGTGGCGGCCCGGTrigida_M280902AGCCCTTTTGGGGCTCGTGAACTXAGTGTTGGCATCTAAACAAACCACGGCACGGCATGTGCCAAGGAAAACAAAACAAAACAAAGGGCTCGTACCGTGGCGGCCCGGTrigida_M840AGCCCTTTTTGGGGCTCGTGAACTCAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGGCCCCGTrigens_leucolaena_RM773AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGCTCCGTGrigens_rigens_rigens_RM763AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGCTCCGTGrigens_uniflora_JC201205AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTrigens_uniflora_RM920AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTschnckiiAGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTschnckiiAGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGTserrata_M250904_15AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACAATAGGAAGGGCTCGTACCGTGGCGCTCCGTGserrata_RM898AGCCCTTTTGGGGCTCGTGAACTCAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACAATAGGAAGGGCTCGTACCGTGGCGCCCGTtenuifolia_CAM1601AGCCCCTTTTGGG-CTCGTGAACGTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACAATAGGAAGGGCTCGTATCGTGTCGTCCCGTtenuifolia_M2730AGCCCTTTTTGGGCCTCGTGAACGTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACAAT	pectinata M120903	ACCOUNTINGCOCCU				A A C C C C C C C A C C	CONTETEC				CCATCCCCTC	CCCT
protrint controlInterferencerigida_W280902AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCGCGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigida_RM840AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCA	pectinata RM1044	ACCCCTTTTTCCCCCCT	CGTGAAC	TIACICIICC TVACTCTTCCC		AACCCCCCCCACC	CCATCICC	AACCAAAAC	AAACATAGGA	ACCCCTCCTA	CAGTGGCGTC	CCGT
Inigitad_M000002AddCCTTTTTGGGGCTCGTGAACTCAGTGTTGGCATCTAAACAAACCCCGGCACGGCA	rigida M280902	ACCCCTTTTTCCCCCCT	CGTGAAC			AACCCCCCCCACC	CCATCICC	AACCAAAAC	AAACATAGGA	ACCCCTCCTA	CCCTCCCCTC	CCGT
righta_leucolaena_RM773AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_leucolaena_RM952_1AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_rigens_RM763AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTrigens_rigens_SR463AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTrigens_uniflora_JC201205AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGTrigens_uniflora_RM920AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTschenckiiAGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTserrata_M250904_15AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGTtenuifolia_CAM1601AGCCCTTTTGGG-CTCGTGAAC - TCAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTATCGTGCCCGTtenuifolia_M2730AGCCCTTTTGGG-CTCGTGAAC - GTAGTGTTTGCACAAAACAAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTATCGTGTCCCCTtenuifolia_M2730AGCCCTTTTGGGACCTCGTGAAC - TTAGTGTTGGCATCAAAACAAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTATCGTGTCCCCTsprov_M040906_33AGCCCTTTTGGGACCTCGTGAAC - GTAGTGTTGGCATCAAAACAAAACCCCGGCACGGCATGTGCCAAGGAAAACAATAAGAAAGA	rigida_M200902	ACCCCTTTTTCCCCCCT	CGTGAAC	TIACICIICOC		AACCCCCCCCACC	CCATCICC	AACCAAAAC	AAACATAGGA	ACCCCTCCTA		CCGT
rigens_leucolaena_RM952_1 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_RM763 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_SR463 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_JC201205 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_RM920 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT schenckii AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT serrata_M250904_15 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGT serrata_RM898 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGT tenuifolia_CAM1601 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACATAAGAAGGGCTCGTATCGTGTGCCCCGT tenuifolia_M2730 AGCCCCTTTTGGGCCTCGTGAAC - GTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCCAAGGAAAACATAAGAAGGCTCGTATCGTGCGCCCCGT sprov_M040906_33 AGCCCCTTTTTGGCGCTCGTGAAC - GTAGTGTTGGCATCTAAACAAACCCCGGCCACGGCATGTGCCCAAGGAAAAGAAAACATAAGAAGGCCTCGTACCGTGCCCCGT	rigens leucolaena RM773	ACCCCTTTTTCCCCCCT	CGTGAAC	TCACICITCCC		AACCCCCCCCACC	CCATCICC	AACCAAAAC	AAACATAGGA	ACCCCTCCTA		CCGT
rigens_rigens_RM763 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACGAGGGCTCGTACCGTGGCGTCCCGT rigens_rigens_SR463 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_JC201205 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_RM920 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT schenckii AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT serrata_M250904_15 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT serrata_RM898 AGCCCTTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGT tenuifolia_CAM1601 AGCCCCTTTTGGG-CTCGTGAACTCAGTGTTGGCATCCAAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACATAAGAAGGGCTCGTATCGTGTGCCCCGT tenuifolia_M2730 AGCCCCTTTTGGGCCTCGTGAACGTAGTGTTGGCATCCAAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACATAAGAAGGCCTCGTACCGTGCCCGT sprov M040006_33	rigens leucolaena PM952 1	ACCCTTTTTCCCCCCT	CGTGAAC	TIACICIICCC	ATCTANACA	AACCCCCCCCACC	CONTETEC		A A A CATACCA			CCCT
Ingens_rigens_sR463 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_JC201205 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCATGGCGTCCCGT rigens_uniflora_RM920 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT schenckii AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT serrata_M250904_15 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCGT serrata_RM898 AGCCCTTTTTGGGGCTCGTGAAC - TTAGTGTTGGCATCTAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAAACATAAGAAGGGCTCGTACCGTGGCGTCCCGT tenuifolia_CAM1601 AGCCCCTTTTGGG CTCGTGAAC - GTAGTGTTGGCATCCAAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACATAAGAAGGGCTCGTATCGTGTGCCCCGT tenuifolia_M2730 AGCCCCTTTTGGGCCTCGTGAAC - GTAGTGTTGGCATCCAAAACCAAACCCCGGCACGGCATGTGCCAAGGAAAACATAAGAAGGCCTCGTACCGTGCCCGT sppox M040906_33 AGCCCCTTTTTGGCGCTCCGTGAAC - GTAGTGTTGGCATCCAAAACCACCCGGCACGGCATGTGCCAAGGAAAAGAAAACATAAGAAGGCCTCGTACCGTGCCCCGT	rigens rigens PM763	AGCCCTTTTTGGGGGCT	CGTGAAC	TIAGIGIIGGC		AACCCCCGGCACC	CONTETECC	AAGGAAAACI	AAACATAGGA	AGGGCICGIA		CCGI
Ingens_inigens_stats Addicentificade - interentiged addicenter interenties addicenter interenties addicenter interenties addicenter interenties addicenter interenties addicenter interentificated addicenter interenties addicenter interentinterenties	rigong rigong SP462	AGCCCIIIIIGGGGCI	CGIGAAC		AICIAAACA	AACCCCCGGCACC	CCATGIGCC.	AAGGAAAACA	AAACAIAGGA			CCGI
rigens_uniflora_0c201205 AGCCCTTTTGGGGCTCGTGAACTTAGTGTTGGCATCTAAACAAACCCCGGCACGGCA	rigong uniflora IC201205	AGCCCIIIIIGGGGCI	CGIGAAC		AICIAAACA	AACCCCCGGCACC	CCATGIGCC.	AAGGAAAACA	AAACAIAGGA			CCGI
rigens_inificia_xM920 AGCCCTTTTGGGGCTCGTGAAC=THAGTGTGGCATCHAAACAAACCCCGGCACGGCATGTGCCAAGGAAAACAAACA	rigong uniflora BM920	AGCCCIIIIIGGGGCI	CGIGAAC		AICIAAACA	AACCCCCGGCACC	CCATGIGCC.	AAGGAAAACA	AAACAIAGGA			CCGI
serrata_M250904_15 AGCCCTTTTGGGGCTCGTGAACTTAGTGTGGCATCTAAACAAACCCCGGCACGGCA	schenckij	AGCCCTTTTTGGGGGCT	CGIGAAC	CCACTCTTCCC	ATCIAAACA	AACCCCCGGCACC	CCATGIGCC.	AAGGAAAACA	AAACAIAGGA	AGGGCICGIA		CCGI
serrata_M898 AGCCCTTTTGGGGCTCGTGAACTCAGTGTTGGCATCTWAACAAACCCCGGCACGGCATGTGCCAAGGAAAACATAGGAAGGGCTCGTACCGTGGCGCCCGT tenuifolia_CAM1601 AGCCCTTTTGGG-CTCGTGAACGTAGTGTTTGCATCAAAACACCCCGGCACGGCA	schenckii	AGCCCTTTCTGGG-CT	CGIGAACGI	TTACTCTTCCC	ATCAAAACA	AACCCCCGGCACC	CCATGIGCC.	AAGGAAAACA	AAICAIAAGA			CCGI
tenuifolia_CAM056 AGCCCTTTTGGGG-CTCGTGAACGTAGTGTTGGCATCAAAACCCCGGGCACGGCATGTGCCAAGGAAAAGAAACATAAGAAGGGCTCGTATCGTGTGCGTCCCGT tenuifolia_M2730 AGCCCTTTTGGG-CTCGTGAACGTAGTGTTGGCATCAAAACAAACCCCGGCACGGCA	serrata DM898	AGCCCTTTTTGGGGGCT	CGIGAAC			AACCCCCGGCACC	CATGIGUU	AAGGAAAACA	AAACATAGGA	ACCCCTCCTA		CCGI
tenuifolia_M2730 AGCCCCTTTTGGG-CTCGTGACGTAGTGTTGGCATCAAAACCCCCGGCACGGCA	tenuifolia CAM1601		CGIGAAC		-ATCIWAACA	AACCCCCGGCACC	CATGIGCC.	AAGGAAAACA	A A A CATAGGA	AGGGGCICGIA		CCGI
enality in a concerning a concerning a concerning and a concerning and a concerning	tenuifolia M2730		CGIGAAC	GIAGIGIIIGC	-ATCAAAACA	AACCCCCGGCACC	CATGIGUU		AAACAIAAGAA	ACCCCTCCTA		CCGI
	m_{12} m_{2} m_{2} m_{3} m_{12} m_{2} m_{3} m_{12}		CGTGAAC			AACCCCCGGCACC	CONTRECC	ACCAAAAG	A A A CATACCA			CCGI

[230	240	250	260	270	280	290	300	310	320	330]
Berkheya	TCGCGGTGTGCGCAYG	TTCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG	GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
Gorteria	TCGCGGTGTGCGCATG	TTCGTGTCTC	TTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	JTAGCAAAAT	GCGATACTTG	GTGT
Hirpicium	TCGCGGTGTGCGCATG	GACGTCTC	TTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
caespitosa RC448	TCGCGGTGTGCGCATG	TGCTTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
caespitosa RVC307	TCGCGGTGTGCGCATG	TGCTTGTCTC	TTTTGTAATC	ACAAACGAC	TCTCGGCAACG	GATATCTCGG	CTCACGCAT	GATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
ciliaris RM1230	TCCCCGTGTCCCCCATG	TGCTTGTCTC	TTTTTGTAATC	ACAAACGAC	TCTCGGCAACG	GATATCTCGG	CTCACGCATC	GATGAAGAAC	TAGCAGAAT	GCGATACTTG	GTGT
ciliaris RM1382	TCCCCGCTCTCCCCATC	TGCTTGTCTC	ͲͲͲͲϾͲϪϪͲϹ	ACAAACGAC	TCTCGGCAACG	GATATCTCGG	CTCACGCAT	GATGAAGAAC	TAGCAAAAT	GCGATACTTG	GTGT
heterochaeta RM1429 1	GTGCGGTGTGCGCATG	TGCGTGTCTC	ͲͲͲͲϪͲϪϪͲϹ	ACAAACGAC	TCTCGGCAACG(GATATCTCCC	CTCACGCATC	GATGAAGAAC	ЗТАССААААТ	GCGATACTTG	3TGT 3TGT
heterochaeta RM1451	TTGCCCTCTACCCATC	TGCGTGTCTC	ידידידידידידידידידידידידידידידידידידיד		retregeeaace(CATATOTOCC	CTCACGCATC	CATCAACAAC	ЗТАССААААТ	CCCATACTTC	2TCT
jurineifolia jur SR682	TCCCCCTCTCCCCATC	TGCGTGTCTC	ͲͲͲͲϹͲϪϴͲϹ		retregeeaace(CATATOTOCC	CTCACGCATC	CATCAACAAC	ЗТАССААААТ	CCCATACTTC	2TCT
jurineifolia jur PM1518	TCCCCCTCTCCCCATC	TCCCTCTCTC		ACANACCAC	TCTCCCCAACO	CATAICICOO	CTCACCCATC	CATCAACAAC	ЗТАССАЛАЛ	CCCATACIIC	2701 2707
jurineifolia ggab CAM1604	TCCCCCTCTCCCCATG	TGCGIGICIC		ACAAACGAC	TCTCCCCAACG	CATAICICGG	CTCACGCAIC	CATCAACAAC	2TAGCAAAA1	CCCATACIIG	3131 27/27
jurinoifolia gaab CAM2652	TCCCCCTCTCCCCATC	TGCGIGICIC		ACAAACGAC	TCTCGGCAACG	CATATCICGG	CICACGCAIC	CATCAACAAC	JIAGCAAAAI TTACCAAAAT	CCCATACIIG	3101 3000
krobajana aratotojdog PM969	TCCCCGCIGIGCCCCAIG			ACAAACGAC	ICICGGCAACG	CATAICICGG	CICACGCAIC	CATCAACAAC	JIAGCAAAAI TTACCAAAAT	CCCATACIIG	31G1 3707
krebsiana_arctotoides_kM000	TCGCGGIGIGCGCAIG				ICICGGCAACG	GAIAICICGG	CICACGCAIC		JIAGCAAAAI		
krebsiana_dretotototoes_kM6/6	TCGCGGIGIGCGCAIG			ACAAACGAC	ICICGGCAACG	GAIAICICGG	CICACGCAI(JIAGCAAAAI		
krebstalla_krebstalla_kM1114	TCGCGGIGIGCGCAIG					GAIAICICGG			JIAGCAAAAI		
krebsiana_krebisiana_RMI136	TCGCGGTGTGCGCATG					GATAICICGG	CICACGCAIC	GAIGAAGAAC	JIAGCAAAAI	GCGAIACIIG	JIGI
krebslana_serrulata_RM863	TCGCGGTGTGCGCATG	TGCGTGTCTC		ACAAACGAC	ICICGGCAACG	GATATCTCGG	CTCACGCATC	GATGAAGAAC	JTAGCAAAA1	GCGATACTTG	GIGI
krebsiana_serrulata_RM965	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTTGTAATC	ACAAACGAC	I'C'I'CGGCAACG	GATATCTCGG	CTCACGCATC	GATGAAGAAC	J'I'AGCAAAA'I	GCGATACTTG	GIGI.
leiopoda_M240901	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTTGTAATC	ACAAACGAC	I'C'I'CGGCAACG	GATATCTCGG	CTCACGCATC	GATGAAGAAC	J'I'AGCAAAA'I	GCGATACTTG	GIGI.
leiopoda_RMI309	TCGCGGTGTGCGCATG	TGCGTGTCTC	"I"I"I"IGTAATC	ACAAACGAC'	I'C'I'CGGCAACG	GATATCTCGG	CTCACGCATC	CGATGAAGAAC	G'I'AGCAAAA'I	'GCGATAC'I''I'GO	GTGT
lichtensteinii_CAM1916	TTGCGGTGTACGCATG	TGCKTGTCTC	"I"I"I"IATAATC	ACAAACGAC'	I'C'I'CGGCAACG(GATATCTCGG	CTCACGCATC	CGATGAAGAAC	J'I'AGCAAAA'I	'GCGATAC'I''I'GC	GIGI
lichtensteinii_RM1249	TTGCGGTGTACGCATG	TGCGTGTCTC	CTTTTTATAATC	CACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
linearis_linearis_RM1010	TCGCGGTGTGCGAATG	TGCGTGTCTC	CTTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
linearis_linearis_SH113	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	JTAGCAAAAT	GCGATACTTG	GTGT
linearis_ovalis_NDsn	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
linearis_ovalis_RM854	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
maritima_RM1038	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
maritima_M290606_6	TCGCGGTGTGCGCATG	TGCGTGTCTC	CTTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	JTAGCAAAAI	GCGATACTTG	GTGT
othonnites_RM1306	TCGCGGTGTGCGCATG	TGCGTGTCTC	CTTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	JTAGCAAAAI	GCGATACTTG	GTGT
pectinata_M120903	TCGCGGTGTGCGCATG	TGCGTGTCCC	TTTATTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
pectinata_RM1044	TCGCGGTGTATGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
rigida_M280902	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
rigida_RM840	TCGCGGTGTGCGCATG	TGCGTGTCTC	CTTTTGTAATC	ACAAACGAC	ICTCGGCAACG(GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
rigens_leucolaena_RM773	TTGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG	GATATCTCGG	CTCACGCATO	CGATGAAGAAC	GTAGCAAAAI	GCGATACTTG	GTGT
rigens_leucolaena_RM952_1	TTGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	TCTCGGCAACG	GATATCTCGG	CTCACGCATO	CGATGAAGAAC	JTAGCAAAAT	GCGATACTTG	GTGT
rigens rigens RM763	TTGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG	GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
rigens rigens SR463	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
rigens uniflora JC201205	TCGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	rctcggcaacg(GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTAGCAAA-T	GCGATACTTG	GTGT
rigens uniflora RM920	TTGCGGTGTGCGCATG	TGCGTGTCTC	TTTTGTAATC	ACAAACGAC	ICTCGGCAACG	GATATCTCGG	CTCACGCAT	CGATGAAGAAC	GTASCAAAAI	GSGATACTTG	GTGT
schenckii	TTGCGGTGTACGCATG	TGCGTCTC	TTTTTTTTTTTTT	ACAAACGAC	TCTCGGCAACG	GATATCTCGG	CTCACGCAT	GATGAAGAAC	GTAGCAAAAT	GCGATACTTG	GTGT
serrata M250904 15	TCCCCGTGTCCCCATG	TGCGTGTCTC	ͲͲͲͲϤͲϪϪͲϹ	ACAAACGAC	TCTCGGCAACG	GATATCTCGG	CTCACGCATC	GATGAAGAAC	TAGCAAAAT	GCGATACTTG	GTGT
serrata RM898	TCGCGGTGTGCGCATG	TGCGTGTCTC	ͲͲͲͲϤͲϪϪͲϹ	ACAAACGAC	TCTCGGCAACG	GATATCTCCC	CTCACGCATC	GATGAAGAAC	TAGCAAAAT	GCGATACTTC	GTGT
tenuifolia CAM1601	ТТССССТСТССССАТС	TGCGTGTCTC	ͲͲͲͲϤͲϪϪͲϹ	ACAAACGAC	TCTCGGCAACC	GATATOTOGO	CTCACGCATC	GAT-AAGAACO	TAGCAAAAT	CCGATACTTC	GTGT
tenuifolia M2730	TTGCCCTCTACCCATC	TGCGTGTCTC	ͲͲͲͲϹͲϪϷͲϹ	ACAAACGAC	TCTCGGCAACC(CATATOTOCC	CTCACGCATC	GATGAAGAAC	TTAGCAAAAT	CCCATACTTC	3TGT
m_{12} m_{2} m_{2} m_{2} m_{3} m_{12} m_{2} m_{3} m_{12}	TCCCCCTCTCCCCATC	TCCCTCTCTC	ʹͲͲͲͲϤͲϪϪͲϹ	ACAAACCAC	TCTCCCCAACG		CTCACCCATC	CATCAACAAC	2TTACCAAAAA		2TCT
25104_104020222	TCGCGGIGIGCGCAIG	TOCGIGICIC		ACAAACGAC	LCICGGCAACG	UNINICICUU	CICACGCAI	JOAT GAAGAAC(JINGCAAAAI		01.01

]	340	350	360	370	380	390	400	410	420	430	440]
Berkheya	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCC-	CACA
Gorteria	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCC	CACA
Hirpicium	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCC-	CACA
caespitosa_RC448	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
caespitosa_RVC307	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
ciliaris_RM1230	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
ciliaris_RM1382	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
heterochaeta_RM1429_1	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACT
heterochaeta_RM1451	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACT
jurineifolia_jur_SR682	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
jurineifolia jur RM1518	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
jurineifolia scab CAM1604	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
jurineifolia scab CAM2652	GAATTGCAGAATCCCG	TGAACCATCO	GAGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
krebsiana arctotoides RM868	GAATTGCAGAATCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
krebsiana arctotoides RM876	GAATTGCAGAATCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
krebsiana krebsiana RM1114	GAATTGCAGAATCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCT	CACA
krebsiana krebisiana RM1136	GAATTGCAGAATCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
krebsiana serrulata RM863	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
krebsiana serrulata RM965	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
leiopoda M240901	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
leiopoda RM1309	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
lichtensteinii CAM1916	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
lichtensteinii RM1249	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
linearis linearis RM1010	GAATTGCAGAATCCCCG	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	GCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
linearis linearis SH113	GAATTGCAGAATCCCC	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCCGAAACC	ATTCGGTCGA	GGGCACGTCT	CCCTGGGCGT		GTCGCCCCCT	CACA
linearis ovalis NDsn	GAATTCCAGAATCCCC	TGAACCATCO		ACCCA ACTTC	CCCCCCAAACC	ATTCCCTCCA	GGGCACGTCI	CCCTCCCCCT	CACCCATCCC	CTCCCCCCC	CACA
linearis ovalis RM854	GAATTCCAGAATCCCC	TGAACCATCO		ACCCA ACTTC	CCCCCCAAACC	ATTCCCTCCA	GGGCACGTCI	CCCTCCCCCT	CACCCATCCC	CTCCCCCCC	CACA
maritima RM1038	GAATTCCAGAATCCCC	TGAACCATCO		ACCCA ACTTC	CCCCCCAAACC	ATTCCCTCCA	GGGCACGTCI	CCCTCCCCCT	CACCCATCCC	CTCCCCCCC	CACA
maritima M290606 6	GAATTGCAGAATCCCC	TGAACCATCO	AGTTTTTGA	ACGCAAGTTG	CGCCCCGAAACC	ATTCGGTCGA	GGGCACGTCI	CCCTGGGCGT	CACGCATCGC	GTCGCCCCCT	CACA
othonnites RM1306	GAATTCCAGAATCCCC	TGAACCATCO		ACCCA ACTTC	CCCCCCAAACC	ATTCCCTCCA	GGGCACGTCI	CCCTCCCCCT	CACCCATCCC	CTCCCCCCC	CACA
pectinata M120903	GAATTGCAGAATCCCC	TGAACCATCC		ACCCAACTTC	CCCCCCAAACC	ATTCCCTCCA	CCCCACCICI	CCCTCCCCCT	CACCOLATECC		CACA
pectinata_M120905	GAATIGCAGAATCCCC	TGAACCAICO		ACGCAAGIIG	CCCCCCAAACC	ATTCGGTCGA	CCCCACGICI	CCCTCCCCCT	CACGCATCGC	GICGCCCCCT	CACA
rigida M280902	CANTTECAGAATCCCC	TGAACCATCC		ACCCA ACTTC	CCCCCCANCC	ATTCCCTCCA	CCCCACCICI	CCCTCCCCCT	CACCOLATECC		CACA
rigida RM840	GAATTCCAGAATCCCG	VGAACCATCO		ACCCA ACTTC	CCCCCCAAACC	ATTCCCTCCA	GGGCACGTCI	CCCTCCCCCT	CACCCATCCC	CTCCCCCCC	CACA
rigens leucolaena RM773	GAATIGCAGAATCCCC	TGAACCATCO	AGIIIIIGA ACTTTTCA	ACGCAAGIIG ACGCAAGTTG	CCCCCGAAACC	ATTCGGTCGA	GGGCACGICI	CCCTCCCCCT	CACGCATCGC	GICGCCCCT	CACA
rigong lougolaona PM952 1	CANTTCCACANTCCCC	TCAACCAICC		ACGCAAGIIG ACCCAACTTC	CCCCCCAAACC	ATTCGGICGA	CCCCACGICI	recercecer	CACGCAICGC		CACA
rigong rigong PM762	CAATIGCAGAAICCCG	TGAACCAICO	JAGIIIIIGA JACTTTTTCA	ACGCAAGIIG ACCCAACTTC	CGCCCGAAACC	ATTCGGICGA	CCCCACGICI	recercecer	CACGCAICGC		CACA
rigens rigens SP463	GAATIGCAGAATCCCC	TGAACCAICO		ACGCAAGIIG	CCCCCCAAACC	ATTCGGTCGA	CCCCACGICI	CCCTCCCCCT	CACGCATCGC	GICGCCCCCT	CACA
rigong uniflora IC201205	CAATIGCAGAAICCCG	TGAACCAICO	JAGIIIIIGA JACTTTTTCA	ACGCAAGIIG ACCCAACTTC	CGCCCGAAACC	ATTCGGICGA	CCCCACGICI	recercecer	CACGCAICGC		CACA
rigong uniflora BM020	CAATIGCAGAAICCCG	TGAACCAICO	JAGIIIIIGA JACTTTTTCA	ACGCAAGIIG ACDCAACTTC	CGCCCGAAACC	ATTCGGICGA	CCCCACGICI	recercecer	CACGCAICGC		CACA
achonakij	CAATIGCAGAAICCCG	TGAACCAIIC	JAGIIIIIGA JACTTTTTCA	ACRCAAGIIG	CGCCCGAAACC	ATTCGGICGA	CCCCACGICI	recercecer	CACGCAICGC		CACA
SCHERCKII	GAATIGCAGAATCCCG										
Serrata DM909		TGAACCAICO		ACGCAAGIIG ACCCAACTTC		ATTCGGICGA					CACA
Serrala_RM090	GAATIGCAGAATCCCG			ACGCAAGIIG		ATTCGGICGA		GCCIGGGCGT		GICGCCCCCT	CACA
tenuifolia_CAMIOUI	GAATIGCAGAATCCCG	I GAACCA I'CG	JAGIIIIIGA	ACGCAAGITG		ATTCGGTCGA		GCCIGGGCGT		GICGCCCCCT	
$\frac{1}{2} M = \frac{1}{2} M = \frac{1}$	GAATIGCAGAATCCCCG	IGAACCATCO				ATTCGGTCGA		GCCIGGGCGI		GICGCCCCCT	
Sbiron_W04020233	GAATIGCAGAATCCCCG	I GAACCATCO	BAGIII''''''GA	ACGCAAG11G	CGCCCGAAACC	AT LCGGTCGA	GGGCACGTC1	GCCIGGGCGI	CACGCATCGC	GICGCCCCL	CACA

[450	460	470	480	490	500	510	520	530	540	550]
Berkheya	ACACGTCCCTAACKGG	TACGYGTTGC	CTT-GGGGGCC	GATATTGGI	CTCCCGTGCCT	TAGGGTGTG	GTTGGCCTA	ACTAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
Gorteria	ACTCCTCCCTATTAGG	TACGTGTTGT	GTCGGGGCC	GGAAATTGGI	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	AACCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
Hirpicium	ACTCCTCCTTATTAGG	TACGTGTTGI	GTTGGGGCC	GGATATTGGI	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	AACCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
caespitosa_RC448	ACTCCTCCCTTTTGGG	AGCACGTTGI	GTC-GGGGGCC	GGATATTGGI	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	ATCAGAGTCC	YCTYGGCGGA	CGCACGGCTA	GTGG
caespitosa_RVC307	ACTCCTCCCTTTTGKG	AGCACGTTGI	GTC-GGGGGCC	GATATTGGI	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	AAWCAGAGTCC	YCTYGGCGGA	CGCACGGCTA	.GTGG
ciliaris RM1230	ACTCCTCCCTTTTGGG	AGAACGTTGI	GTGGGGGCC	GTATATTGGI	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTTGGCGGA	CGCATGGCTA	GTGG
ciliaris RM1382	ACTSCTCCCTTTTGGG	AGAACGTTGI	GTGGGGGCC	GTATATTGGI	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTTGGCGGA	CGCATGGCTA	GTGG
heterochaeta RM1429 1	AC-CCTTCCTGTTGGG	AACACGTTGI	GTGAGGGGGC	GATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTTGGTGGA	CGCACGGCTA	GTGG
heterochaeta_RM1451	AC-CCTTCCTGTTGGG	AACACGTTGI	GTGAGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTTGGTGGA	CGCACGGCTA	GTGG
jurineifolia_jur_SR682	ACTCCTCCCTGTTGGG	ATCACGTTGG	GTT-GGGGGCC	GATATTGGC	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG
jurineifolia jur RM1518	ACTCCTCCCTGTTGGG	ATCACGTTGG	GTT-GGGGGC	GATRTTGGC	CTCCCGTGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
jurineifolia scab CAM1604	ACTCCTCCCTGTTGGG	ATCACGTTGG	GTT-GGGGGC	GATATTGGC	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
jurineifolia scab CAM2652	ACTCCTCCCTGTTGGG	ATCACGTTGG	GTT-GGGGGC	GATATTGGC	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
krebsiana arctotoides RM868	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
krebsiana arctotoides RM876	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
	ACTCCTCCCTATTGGG	AAAACGTTGI	GTCGGGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
krebsiana_krebisiana_RM1136	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG
krebsiana_serrulata_RM863	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
krebsiana_serrulata_RM965	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG
leiopoda_M240901	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG
leiopoda_RM1309	ACTCCTCCCTGTTGGG	AAAAMGTTGI	GTCGGGGGGC	GATATTGGI	CTCCCATGCCT	TT-GGTGTG	GCTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG
lichtensteinii_CAM1916	AC-CCTCCYTGTTGGG	AACACGTTGI	GTCAGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
lichtensteinii_RM1249	AC-CCTCCTTGTTGGG	AACACGTTGI	GTCAGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
linearis_linearis_RM1010	ACTCCTCCCTGTTGGG	AAARCGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	ATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
linearis_linearis_SH113	ACTCCTCCCTGTTGGG	AAAACRTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCAWGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
linearis_ovalis_NDsn	ACTCCTCCCTRTTGGG	AAAACRTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
linearis_ovalis_RM854	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
maritima_RM1038	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTTGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GCTGGCCTA	ATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
maritima_M290606_6	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GCTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
othonnites_RM1306	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
pectinata_M120903	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTC-GGGGGCC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GATGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
pectinata_RM1044	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GCTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigida_M280902	ACTCCTCCCTGTTGGG	AAAATGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigida_RM840	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GCTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigens_leucolaena_RM773	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigens_leucolaena_RM952_1	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigens_rigens_RM763	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigens_rigens_SR463	ACTCCTCCCTATTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigens_uniflora_JC201205	ACTCCTCCCTATTGGG	AAAACGTTGI	GTCGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
rigens_uniflora_RM920	ACTCCTCCCTGKTGGR	AAAACGTTGI	GTCGGGGGGM	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGC-TAA	AATCTGAGTCC	CCTMGGTGGA	CGCACGGYTA	GTGG
schenckii	GC-CCTCCCTGTTGGG	AACACGTTGI	GTCAGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	ATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
serrata_M250904_15	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATTTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
serrata_RM898	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GCTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	GTGG
tenuifolia_CAM1601	ACTCCTCCCTGTTGGG	AACACGTTGI	GTCA-GGGGCC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGG	CGCACGGCTA	GTGG
tenuifolia_M2730	ACTCCTCCCTGTTGGG	AACACGTTGI	GTCA-GGGGCC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCAGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG
spnov_M040906_33	ACTCCTCCCTGTTGGG	AAAACGTTGI	GTCGGGGGGGC	GGATATTGGI	CTCCCATGCCI	TT-GGTGTG	GTTGGCCTA	AATCTGAGTCC	CCTCGGTGGA	CGCACGGCTA	.GTGG

]	560	570	580	590	600	610	620	630	640	650	660]
Berkheya	TGGTTGATAAGACCCT	CGTCTGTTGI	CGTGCTAAG	CTGTTTGGGA	AGTACTCGTAA	AAAGACCCCA	ACGCATTGTC	TTGTGACCAT	GCTTCGACCG	CGACCCCAGG	TCAG
Gorteria	TGGTTGACAAGACCCT	CGTCTGGTGI	CGTGCTAAG	CTATTTGGGA	AGTACTCAAGA	AAAGACCCCA	ACGCATTGTC	TTGYGATGAT	GCTTCGACCO	CGACCCCAGG	TCAG
Hirpicium	TGGTTGACAAGACCCT	CGTCTGGTGI	CGTGCTAAG	CTGTACGGGA	AGTACTCATGA	AACGACCCCA	ACGCATTGTC	TTCTGACAAT	GCTTCGACCO	CGACCCCAGG	TCAG
caespitosa_RC448	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTRTAAGGGA	AGTACTCTTGA	AAAGACCCCA	ACGCATTGTC	TTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
caespitosa_RVC307	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTRTAAGGGA	AGTACTCTTGA	AAAGACCCCA	ACGCATTGTC	CTTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
ciliaris_RM1230	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGYAAGGGA	AGTACTCTTAA	AAAGATCCCA	ACGCATTGTC	TTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
ciliaris_RM1382	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGYACTCTTAA	AAAGATCCCA	ACGCATTGTC	TTGTGACGAT	GCTTCGACAG	CGACCCCAGG	TCAG
heterochaeta_RM1429_1	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGAA	AGTACTCATTA	AATGACCCCA	ACGCATTGTC	TTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
heterochaeta_RM1451	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGAA	AGTACTCATTA	AATGACCCCA	ATGCATTGTC	CTTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
jurineifolia_jur_SR682	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATGA	AAAGACCCCA	ATGCATTGTC	CTCGYGACRAT	G???????????	???????????????????????????????????????	????
jurineifolia_jur_RM1518	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATGA	AAAGACCCCA	ATGCATTGTC	TCGCGACGAT	GTTTCGACCO	CGACCCCAGG	TCAG
jurineifolia_scab_CAM1604	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATGA	AAAGACCCCA	ATGCATTGTC	TCGCGACAAT	GTTTCGACCO	CGACCCCAGG	TCAG
jurineifolia_scab_CAM2652	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATGA	AAAGACCCCA	AYGCATTGTC	TCGYGACRAT	GTTTCGACCO	CGACCCCAGG	TCAG
krebsiana_arctotoides_RM868	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	CTTCTGACGAT	GCTTCGACCO	CGACCCCAG-	TCAG
krebsiana_arctotoides_RM876	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	CTTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
krebsiana_krebsiana_RM1114	TGGT-GACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATTA	AAAGACCCAA	ACGCGTTGTC	CTTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
krebsiana_krebisiana_RM1136	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	CTTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
krebsiana_serrulata_RM863	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
krebsiana_serrulata_RM965	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGCAATGGA	AGTGCTCATGA	AAAGAACCAA	ACGCGT????		???????????????????????????????????????		????
leiopoda_M240901	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
leiopoda_RM1309	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
lichtensteinii_CAM1916	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATTA	AAAGACCCCA	ATGCATTGTC	TTGTGACGAT	RCTTCGACCO	CGACCCCAGG	TCAG
lichtensteinii_RM1249	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATTA	AAAGACCCCA	ATGCATTGTC	TTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
linearis_linearis_RM1010	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
linearis_linearis_SH113	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
linearis_ovalis_NDsn	TGGTTGACAAGACCCT	CTTCTGGTGI	CRTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
linearis_ovalis_RM854	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
maritima_RM1038	TGGTTGACAAGACCCT	CTTCTGGTG1	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
maritima_M290606_6	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
othonnites_RM1306	TGGTTGACAAGACCCT	CTTCTGGTG1	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
pectinata_M120903	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCGGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
pectinata_RM1044	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigida_M280902	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigida_RM840	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigens_leucolaena_RM773	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigens_leucolaena_RM952_1	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigens_rigens_RM763	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigens_rigens_SR463	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
rigens_uniflora_JC201205	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTYGACCO	CGACCCCAGG	TCAG
rigens_uniflora_RM920	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTC-AC??	???????????????????????????????????????	????
schenckii	TGGTTGACAAGACCCT	CTTCCGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATTA	AAAGACCCCA	ACGCATTGTC	TTGTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
serrata M250904 15	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
serrata RM898	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG
tenuifolia CAM1601	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATTA	AAAGACCCTG	ACGCATTGTC	TCGTGACGAC	GCTTCGACCO	CGACCCCAGG	TCAG
tenuifolia M2730	TGGTTGACAAGACCCT	CTTCTGGTGI	CGTGCTAAG	CTGTAAGGGA	AGTACTCATTA	AAAGACCCTG	ATGCATTGTC	TCGTGACGAC	GCTTCGACCO	CGACCCCAGG	TCAG
spnov_M040906_33	TGGTTGACAAGACCCT	CTTCTGGTGT	CGTGCTAAA	CCGTAATGGA	AGTACTCATGA	AAAGACCCAA	ACGCGTTGTC	TTCTGACGAT	GCTTCGACCO	CGACCCCAGG	TCAG

	ITS <	> ETS									
[670	680	690	700	710	720	730	740	750	760	770]
Berkheya	GCGGGACTACCCGCTGA	GGTAGCAT	TCCTCTTCGA	TACAACCCG	TCCTGCATGGA	CATGCCAACR	CACGACGAGT	G-ATCGTTTT	AGAGAAGCGA	GAACGCTAAA	CGAG
Gorteria	GCGGGACTACCCGCTGAC	G??TAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CGAGCCAACG	CACGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACGCTAAA	CGAG
Hirpicium	GCGGGACTACCCGCTGA	GGTAGCAT	TCCTCTTCGA	TGCAACCCA	CCACGCATGGA	CATGCCAACA	CATGACGAGT	G-ATCGTTTTA	AGAGAAGCGA	GAACGCTAAA	CGAG
caespitosa_RC448	GCGGGACTACCCGCTGA	GGTAGCAT	TCCTCTTCGA	TGCAACCCG	CCATGCATGGA	CTGGCCATCG	CACGACGAGT	G-ATCGTTTTA	AGAGAAGCGA	GAACGCTRAA	CGAG
caespitosa_RVC307	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	TGCAACCCG	CCATGCATGGA	CTGGCCAACG	CACGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACGCTAAA	CGAG
ciliaris_RM1230	GCGGGACTACCCGCTGA	GGTAGCAT	TCCTCTTCGA	TGCAACCCG	ACATGCACGGA	CTTGCCAACG	CACGACGAGT	G-ATCGTTTTA	AGAGAAGCGA	GAAYGCYAAA	CGAG
ciliaris_RM1382	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	CGCAACCCA	GCATGCACGGA	CTTGCCAACG	CACGACGAGT	G-ATCGTTTTA	AGAGAAGCGA	GAACGCTAAAG	CGAG
heterochaeta_RM1429_1	\$\$\$\$\$?????????????????????????????????	GGTAGCAT?	TCCTCTTCGA	CGCAACCCG	TCACACATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACACTAAAG	CGAG
heterochaeta_RM1451	GCG???????????????????????????????????	GGTAGCAT	TCCTCTTCGA	CGCAACCCG	TCACACATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACACTAAAG	CGAG
jurineifolia_jur_SR682	???????????????????????????????????????	GGTAGCAT	TCCTCTTCGA	TGCAACCCG	CCATGCATGGA	CTTGCCAACA	CACGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CGAG
jurineifolia_jur_RM1518	G?????????????????????????????????????	GGTAGCAT	TCCTCTTCGA	TGCAACCCG	CCATGCATGGA	CTTGCCAACA	CACGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CGAG
jurineifolia_scab_CAM1604	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	TGCAACCCG	CCATGCATGGA	CTTGCCAACA	CACGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CGAG
jurineifolia_scab_CAM2652	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	TGCAACCCG	CCATGCATGGA	CTTGCCAACA	CACGACGAGG	TGATCGTTTT	AGAGAAGCGA	GAACGCTAAA	CGAG
krebsiana_arctotoides_RM868	GCGGGACTACCCGCTGAC	G??TAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACGCTAAA	CAAG
krebsiana_arctotoides_RM876	GCGGGACTACCCGCTGAC	G?GTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGSCAACA	CGCGACGAGT	G-ATCGTTTTA	AGAGAAGCGA	GAACGCTAAA	CAAG
krebsiana_krebsiana_RM1114	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	CGCaACCCG	CCACGCATGGA	CTAGCCaACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAAO	CAAG
krebsiana_krebisiana_RM1136	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAAO	CAAG
krebsiana_serrulata_RM863	GCTGGACTACC??????	?GTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAAO	CAAG
krebsiana_serrulata_RM965	??????????????????????????????????????	GGTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAAO	CAAG
leiopoda_M240901	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CAAG
leiopoda_RM1309	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACGCTAAA	CAGG
lichtensteinii_CAM1916	GCGGGACTA????????	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACACATGGA	CTAGCCAACA	CACGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACACTAAA	lgag
lichtensteinii_RM1249	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACACATGGA	CTAGCCAACA	CACGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACACTAAA	CGAG
linearis_linearis_RM1010	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CAAG
linearis_linearis_SH113	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CAAG
linearis_ovalis_NDsn	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CAAG
linearis_ovalis_RM854	GCGGGACTACCCGCTGAC	GGGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CAAG
maritima_RM1038	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT7	AGAGAAGCGA	GAACGCTAAA	CAAG
maritima_M290606_6	GCGG???????????????	GGTAGCAT?	TCCTCTTCGA	CGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT7	AGAGAAGCGA	GAACGCTAAA	CAAG
othonnites_RM1306	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT <i>I</i>	AGAGAAGCGA	GAACGCTAAA	CAAG
pectinata_M120903	GCGGGACTACCCGCTGAC	G?GTAGCAT	TCCTCTTCGA	CGCAACCCG	TCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACGCTAAA	CAAG
pectinata_RM1044	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT/	AGAGAAGCGA	GAACGCTAAA	CAAG
rigida_M280902	GCGGGACTACCCGCTGAC	GGTAGCAT	"TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT7	AGAGAAGCGA	GAACGC'I'AAAG	JAAG
rigida_RM840	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCAYGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT7	AGAGAAGCGA	GAACGCTAAAG	JAAG
rigens_leucolaena_RM/73	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTTT	AGAGAAGCGA	GAACGCTAATC	LAAG
rigens_leucolaena_RM952_l	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTTT	AGAGAAGCGA	GAACGCTAAT	LAAG
rigens_rigens_RM/63	GCGGGACTACCCGCTGAC	GGTAGCAT	TCCTCTTCGA	ACGCAACCCG	CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTTT	AGAGAAGCGA	GAACGCTAAT	JAAG
rigens_rigens_SR463	GCGGGACTACCCGCTGA	GTAGCAT	TCCTCTTCGA		CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT	AGAGAAGCGA	GAACGCTAAAG	JAAG
rigens_unifiora_JC201205	GCGGGACTACCCGCTGAC	GTAGCAT	TCCTCTTCGA		CCACCCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT	AGAGAAGCGA	GAACGCTAAAG	JAAG
rigens_unifiora_RM920		GGTAGCAT	TCCTCTTCGA		CCACGCATGGA	CTAGCCAACA	CGCGACGAGT	G-ATCGTTTT	AGAGAAGCGA	GAACGCTAAT	CAAG
Schenckii		JGGIAGCAI			CCACACA I GGA				AGAGAAGCGA	GAACACIAAA	JGAG
Serrala_M250904_15	GCGGGACIACCCGCIGA				CCACGCAIGGA				AGAGAAGCGA	GAACGCIAAA	CAAG
SCILALA_RM090		TAGCAT OCAT	10CICIICGA	ACGCAACCCG	CCACGCAIGGA	CIAGCCAACA	JUCGACGAGT	G-AICGIII'I'I C-ATCGITI'I'I	AGAGAAGCGA	GAACGCIAAA(LAAG
tenuifolia M2720	CCCCCA CTACCCCCIGA	3::::::::::	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;						AGAGAAGIGA	GAACACIAAA GAACACTAAAA	CGAG
$\frac{1}{2} M040906 33$		CCTACCAT	TCCICIICGA		CCACGCACGGA				AGAGAAGIGA	GAACACIAAAA GAACCCTAAAA	CANC
55110 * _10 + 0 > 0 0 _ 3 3	GCGGGACIACCCGCIGAC	JUGIAGCAI	ICCICIICGA	LUCAACUUG	CCACGCAIGGA	IC I AGUCAAUA	JUCGACGAGI	G AICGIIII	AUJOAAAGCGA	UNHCGC I AAA	SUUC

Beskbays OCCANADAGORDETT - ADACCOCINECCONTROLATING ADACADAGACCADORAL CONTROLATING ADACCADAGACACADAGA Briptism GCANADAGORT CATTOR ADACCADAGACADAGACADAGACADAGACADAGACACADAGCACATAGACACADAGCACATAGACACADAGCACATAGACACADAGCACATAGACACADAGCACATAGACACADAGCACATAGACACADAGCACATAGACACADAGCACATAGACCAADACCADAGCACATAGACACATAGACACADAGCACATAGACATAGACACADAGCACATAGACATAGACATAGACATAGAGACATAGACATAGAGCACATAGAGACATAGAGACATAGAGCACATAGAGAGAG	I	780	790	800	810	820	830	840	850	860	870	880]
Gortesia GOCAMAJAGGATINGT - AGARTCOCATOCOCATOGGTICAGTINGTAGACCAGOCAGACCATOGTIGA	Berkheya	GGCAAAAAAGGATCGTGT	-AAGACCC	CATGCCCACAT	CAGGTTCAA	TATCCAAGAGA	ACCAAGCANA	ACTCAGCAAG	CCACATCGTCA	ATG-TTI	TTACAACGACG	GAG-
Hitpicium GGCAMANAGGENETATET-ALAGACCOCATEGGENETCANTERCATEGATATCAAATCAACACAACTCAACCAACTCACACTCAAATCAAACTCAACCAACTCAACACTCAACCAACCAACTCAACTCAA	Gorteria	GGCAAAAAAGGATTGATT	-AGGATCC	CATGCCCACAT	CAGGTTCAG	TATCCAAGAGA	ACCAAGCAGA	ACTCAGCAAG	CCACATCGTCG	GAAG-TGA	TAACAAC-ACG	GAGA
osespitos_RC418 GRATHARANGGETERTT - TAGRECCENTEGENTCOGNTCOGNACCARGETARCTERALGEACACCENTEGENT-GENALGEARGEACACTAGETARCEALGEARGEACACTAGETARCEALGEARGEARGEARGEARGEARGEARGEARGEARGEARGEAR	Hirpicium	GGCAAAAAAGGATCATGT	-AAGACCC	CATGCCCACAT	TAGGTTCAA	TATCCAAGAA	CCAAGTGAA	ACTCAGCAAG	CCACATCATCA	AAG-TGI	TTACAATGACO	GAGA
exespliss_NV307 GACKTANAAGGYCATT-AMAGCCCATCOGCATCOGNICCGATACCAAGGYAATTCCAACAAGCAATCCACACTCOGATCOGATACCAAGCAACTCACACAAGCAATCCACACAGCAACTCACAGACAACCAAC	caespitosa_RC448	GACATAAAAGGATCATTT	-AAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCGAA	WCTCATCAAG	CCACATCGTCG	GAAG-TGI	TTACAACGACA	AGA
elliaris_RNI230 GACRTAAAAGANCATTTTRAGACCCCATOCCCAARCAGTCOTTCCAARGACAAGCGAAACTCACCAAGCGAAACTCGTCACAAGGCAAATCGTCAAGAAGCGAAATCGCCAACTGGCCAAATAGAAGCAAATGGCAATGGCCAATCGGCCAACTAGGTCCGTATCCCAAGACAAGGCGAAATCGCCAACTGGCCAACTAGGTCCGTATTCCAAGGACAGCGAAATCGCCAACTGGCCAACTAGGTCCGTATTCCAAGGACAGCGAAGCCAACGGCAACTCGCCAACTAGGTCCGTATTCCAAGGACAGCAAGGCAATCGGCCAACTGGCCAACTAGGTCCGTATTCCAAGGACAGCAAGCA	caespitosa_RVC307	GACATAAAAGGATCATTT	-AAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCTAA	TCTCAGCAAG	CCACATCGTCG	GAAG-TGA	TTACAACGAC	AGA
eliisia GACTTAAAAGARCTATTTUGARCCCATCOCCCARTCAGTTCCTTACCARGACAACCARCCARCTAGCTACTTCCTARGACAACCARCCARCTAGCTCCTTACCAAGACAAAC heterochata_NH1451 GACTTAAAAGARCTATT-AAGACCCATOCCCARTCAGTTCCTATTCCAAGACACCAAGCAAAACTCAGCAAGACTTTTACAAGACAAAA jurineifolia_jur_RH1518 GACTTAAAAGARCTATT-AAGACCCATOCCCAACTCAGTTCCTATTCCAAGACACCAAGCAAAACTCAGCAAGCA	ciliaris_RM1230	GACRTAAAAGGATCATTT	TRAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACAAGCGAA	ACTCAGCAAG	CCACATCGTCG	GAAGTGCTTT	ACACAACGAYA	AGA
heterochates_RH145_1 GACTTAAAAGATCATCT - AGACCCCACTCAGGTTCCTTATCCAAGACAAGCAAACCCAAGCAAATCCAAGCAAACCAAGCAAATCCAAGCAAACCAAGCAAATCCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAATCAAGCAAG	ciliaris_RM1382	GACGTAAAAGGATCATTT	TGAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACAAGCGAA	ACTCAGCAAG	CCACATCGTCG	SAAGTC-TTT	ACACAACGATA	AGA
hetesochaeta_RH141 GACATAAAAAGATCATCT-AAGACCCATGCCCATTGCGTTATCTAAGACACAAGCAAACCAAGCCAATGCAGATAGGATAG-TTTTTACAAGACAAG	heterochaeta RM1429 1	GACATAAAAAGATCATCT	-AAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCAAA	ACTCAGCAAG	CCACATCAACO	GAAG-TGI	TTACAACGAC	AGA
iurineifolia_jur_Bk632 GGCATAAAAGGATCANGT-ANGGACCCANTGCGCACATCAGGTTOCGTATCCAAGGACCAAGCGAAACTCAGGCAAGCCAAGC	heterochaeta_RM1451	GACATAAAAAGATCATCT	-AAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	CCAAGCAAA	ACTCAGCAAG	CCACATCAACO	GAAG-TGI	TTACAACGACA	AGA
jurineifolia_jur_Mul5i8 GGCATAAAAGGATCATGT - AGGCCCCATGCCCCACACGGATTCCGCAAGCCAGGCAAACTCAGCCAGC	jurineifolia_jur_SR682	GGCATAAAAGGATCATGT	-AAGACCC	TATGCCCACAT	CAGGTTCCG	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCATATCGTCG	GTAG-TGI	TTACAACRAC	AGA
jurineifolia_seb_CMM1604 GGGTTANAGGATCATGT - AGACCCTATGCGTACCAGTCCGATTCCGTATCCAAGCACACAGCGAAGCCAAGCAGCACTGCGGTAG-TGTTACCAACGACAGAG krebsiana_arctotoides_RM868 GGGTTANAGGATCATTT - AGACCCCATGCGGTTCGATTCCCAAGCACACGCGAAGCCAAGCGCAATGCGGTCGAT-G-TGTTACCAACGACAGAG krebsiana_arctotoides_RM868 GGGTTANAGGATCATTT - AGACCC - ATGCCCACTTAGGTTCCATTCCAAGGACACCAGGGAAGCTAGGCGACAGCCACTGCGGGTAG-TGTAGCACAGAGAGAG krebsiana_krebsiana_RM1114 GGGTTANAGGATCATTT - AGACCC - ATGCCCACTTAGGTTCCATTCCAAGGACACCAGGGAAGCTAGGCGACTGCGGGGATG-TGTAGCACAGAGAGAGA krebsiana_serrulata_RM853 GGCTTANAGGCC - ATGCCCACTTGGGTTCCATTCCAAGGACACAGGGAAGCTAGGCGACTGGGGGATG-TGTAGCACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	jurineifolia jur RM1518	GGCATAAAAGGATCATGT	-AAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCATATCGTC	STAG-TGI	TTACAACGAC	AGA
jurineifolia_cab_CAM2652 GGGATMANAGGATCATTT-AGAGCCCATTGGCTATCCGATAGCGACAGCGAAGCGA	jurineifolia scab CAM1604	GGCATAAAAGGATCATGT	-AAGACCC	TATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCATATCGTC	STAG-TGI	TTACAACAACA	AGA
Prebsiana_aretotoides_PM868 GACATAAAAAGATCATTT-AGACCC-ATEGCCACHTAGGTTCOATTACCAAGACAAACCAAGCGAAACTCAGCCAGTCGGATG-TGTACACAACCACAAGAA Prebsiana_krebsiana_kml114 GACATAAAAAGATCATTT-AGACCC-ATEGCCACHTAGGTTCOATTACCAAGACAAACCAAGCGAAACTCAGCAGACTAGCGAGCCGATG-TGTACACAACCACAAGAA Prebsiana_krebsiana_sml114 GACATAAAAAGATCATTT-AGACCC-ATEGCCACHTAGGTTCOATATCCAAGAGAAACTCAGCAAGCGAACTCAGCGAGCGATG-TGTACACAACGACAAGA Prebsiana_serrulata_NM85 GACATAAAAAGATCATTT-AGACCC-ATEGCCACHTAGGTTCOATATCCAAGGCAACTCAGCAAGCGAACTCAGCGAGCGATG-TGTACCAAGCGAACAAGA Prebsiana_serrulata_NM85 GACATAAAAAGATCATTT-AGACCC-ATEGCCACHTAGGTTCOATATCCAAGGGAAACTCAGCAAGGCGAACTGGCGGATG-TGTACACAAGGAACAAGA Prebsiana_serrulata_NM85 GACATAAAAAGATCATTT-AGACCC-ATEGCCCACHTAGGTTCCATATCCAAGGGAAACTCAGCGAAACTGGCGGATG-TGTACACAAGGAACAAGA Prebsiana_serrulata_NM85 GACATAAAAAGATCATTT-AGACCC-ATEGCCACATTGGTTCCATATCCAAGGGAAACTCAAGCGAAACTGGCGGATG-TGTTACCAAGGACAAGA Pichemeteinii_N12N191 GACATAAAAGATCATTT-AGACCC-ATEGCCAATTGCCAATTCCAAGGCAAACTCAACGAGAAGCCAATGGCGGATG-TETTACAAGGACGAAGA Pichemeteinii_N12N191 GACATAAAAGATCATTT-AGACCC-ATEGCCAATTGCCAATTCCAAGGCAAACTCAAGGGAAACTCAACGACAGGCAACTGGCGGATG-TETTACAAGGACGAAGA Pinearis_1inearis_N113 GACATAAAAGATCATTT-AGACCC-ATEGCCAATTGCAATATCCAAGGACAAGACAAGCGAACTGACGAAGCGAATGGCGATTG-TETACAAGGACGAAGA Pinearis_1inearis_N113 GACATAAAAGATCATTT-AGACCC-ATEGCCAATTCCAAGGTCCAATGCCAAGGGAAACTCAGCGAAGCGACATGGCGGATG-TETACAAGGACGAAGA Pinearis_1inearis_N113 <td>jurineifolia scab CAM2652</td> <td>GGCATAAAAGGATCATGT</td> <td>-AAGACCC</td> <td>YATGCCCACAT</td> <td>CAGGTTCCG</td> <td>TATCCAAGAC</td> <td>ACCAAGCGAA</td> <td>ACTCAGCAAG</td> <td>CCATATCGTC</td> <td>STAG-TGI</td> <td>TTACAACRAC</td> <td>AGA</td>	jurineifolia scab CAM2652	GGCATAAAAGGATCATGT	-AAGACCC	YATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCATATCGTC	STAG-TGI	TTACAACRAC	AGA
krebsian_arctotides_PM876GACATAAAAGATCATTY-AGACCC-ATGCCCACATTAGGTTCCATTACCAAGACAACCAAGCGAAACTCAGCGAACTGCCGAT-G-TGTACCACACCGACAAGA krebsian_krebia	krebsiana arctotoides RM868	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
Irrebiana_Jerebiana_RN114GACATAAAAGATCATTT-AAGACC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAGCCAACCCACACCACACGCCACATGGCGAT-G-TTTACACAAGCACAAGAKrebiana_serrulata_RN853GACATAAAAGATCATTT-AAGACC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAGCCAAGCCACATGGCGAT-G-TTTACACAACGACAAGAKrebiana_serrulata_RN854GACATAAAAGATCATTT-AAGACC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAGCCAAGCCAATGGCGAT-G-TTTACACAACGACAAGAJeiopoda_RN139GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAGCCAAGCGAAGCCAATGGCGAT-G-TTTACACAAGCACAAGAJeiopoda_RN139GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAGCCAAGCCAATGGCGAT-G-TTTTACAAGGACAAGAJeiohensteinii_CAN1916GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAGCCAAGCCAATGGCGAAGCAAGC	krebsiana arctotoides RM876	GACATAAAAAGATCATYT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
krebsiana_krebisiana_perulata_RM863GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGGCAAGCGAAACTCAGCAAGCGCAATCGCCGAT-G-TGTACAAAGGACAAGGAkrebsiana_serulata_RM863GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGGGAAACTCAGCAAGCGCACTGCCGAT-G-TGTACACAAGGACAAGGAleiopoda_M240901GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACACAGGAAACTCAGCAAGCCAATCGCCGAT-G-TGTACACAAGGACAAGGAleiopoda_M240901GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACACAGGAAACTCAGCAAGCCAATCGCCGAT-G-TGTACACAAGGACAGGAlichtensteinii_gAN1916GACATAAAAGATCATT-AAGACCCC-ATGCCCCACTTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCGAATCGCCGAAT-G-TGTACACAAGGACAAGAlinearis_linearis_NbsnGACATAAAAGATCATT-AAGACCC-ATGCCCCACTTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCGAATCGCCGAT-G-GTGTACACAAGGACAAGAlinearis_ovalis_NbsnGACATAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCGAATCGCCGAT-G-GTGTACACAAGGACAGAlinearis_ovalis_Nbs1GACATAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGAAACTCAGCAAGCCCAATCGCCGAT-G-GTGTACACAAGGAAGAlinearis_ovalis_Nbs4GACATAAAAGATCATT-AAGACCC-ATGCCCCACTTAGGTTCCATATCCAAGACACCAAGGAAACTCAGCAAGCCAATTGCCGAT-G-GTGTACACAAGGAAGAaritima_X290605_6GACATAAAAGATCATT-AAGACCC-ATGCCCCACTTAGGTTCCATATCCCAAGCAAACTGAGCAAACTGAGCAAATCGCCAATTGCCCAATTGACAACGACACGAAGCCCAAGCCCAATCGCCAATTGCCCACATTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCCAATGCCCAATTGCACGAAGArigida_X280902GACATAAAAGATCATT-AAGACCC-ATGCCCCACTTAGGTTCCATATCCCAAGCAACCTGAGCAAACTGAGCAAGCCCCAATGGCCAATTGCCCAATT-AAGACCC-ATGCCCCACTTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCCAATGGCCAATTGCCAAGAAGArigida_X8800GACATAAAAGATCATT-AAGACCC-ATGCCCCACTTAGGTTCCATATCCCAAGCAACCGAGCGAAACTCAGCAAGCCCAATGGCCAATTGCCAAGAACTAAGAACCAAGGAAACTCAGCAAGCCCAATGGCCAATTGCACAAGAAAGA	krebsiana krebsiana RM1114	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
Irrebsiana_serrulata_RM63GACATAAAAGATCATTT-AGGACCC-ATGCCCACTTAGGTTCCATATCCAAGGCAAACTAGCAAGCCAATGCCCAT-G-TGTACACAAGCAAAGAleiopoda_RM1309GACATAAAAGATCATTT-AAGGACCC-ATGCCCACATTAGGTTCCATATCCAAGGCAAACTAGCAAGCCCAATGCCCAT-G-TGTACACAAGCAAAGAleiopoda_RM1309GACATAAAAGATCATTT-AAGGACCC-ATGCCCACATTAGGTTCCATATCCAAGGCAAACTCAGCAAGCCAACTGGCCAAT-G-TGTACACAAGGAAGAlichtensteinii_GM1916GACATAAAAAGATCATT-AAGGACCCATGCCCACTCAGGTTCCATATCCAAGGCAACTCAGGAAACTCAGCAAGCCAACTGGCAAA-G-TGTTTACAAGGACACAAGAlichtensteinii_GM1249GACATAAAAGGTCATT-AAGGACCCATGCCCCACTCAGGTTCCATATCCAAGGCAACTCAGCAAACTCAGCAAGCCAACTGGCAAA-G-TGTTTACAACGACAAGAlinearis_linearis_SH131GACATAAAAGGTCATT-AAGGACCCATGCCCCACTTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCAACTGGCCAAT-G-GTTTACAACGACAAGAlinearis_ovalis_RM854GACATAAAAGGTCATT-AAGGACC-ATGCCCCACTTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGCCAACTGGCCAATGCCCAATGCACAAGAlinearis_ovalis_RM854GACATAAAAGGTCATT-AAGGACC-ATGCCCACATTAGGTTCCATATGCAAGCACCAAGGGAAACTCAGCAAGCCAACTGGCCAATGCCCAATGCACAAGAgectinata_M1200GGACATAAAAGGTCATTT-AAGGACC-ATGCCCACATTAGGTTCCATATGCAAGGAAACTCAGGAAGCCAACTGGCCAATGGCCAATGCCCAATGCACAGAgectinata_M1200GGACATAAAAGGTCATTT-AAGGACC-ATGCCCACATTAGGTTCCATATGCAAGGAAACTCAGGAAACTCAGCAAGCCACTGGCCAAT-G-TGTACAACAGGAAGAgectinata_M1200GGACATAAAAGGTCATTT-AGGACCC-ATGCCCACATTAGGTTCCATATCCAAGGACACCAAGGGAAACTCAGCAAGCCACTGGCCAAT-G-TGTACAACAGACAAGAgectinata_M1200GGACATAAAAGGTCATTT-AGGACCC-ATGCCCACATTAGGTTCCATATCCAAGGAAACTCAGCAAGCCACTGGCCAAT-G-TGTACAACAGGAAAGAgectinata_M1200GGACATAAAAGGTCATTT-AGGACCC-ATGCCCACATTAGGTTCCATATCCAAGGAAACTCAGCAAGCCACATGGCCAATTGCACGAACGA	krebsiana krebisiana RM1136	GACATAAAAAGATCATYT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
krebsiana_serrulata_NM955GGATRAAAAGATCATT - AAGACCC-ATGCCCAATTAGGTTCCATATCCAAGACACCAAGCGAAACTYAGCACACCACGCCGATG-TGTACACAACGACAGAG GGATRAAAAGATCATT - AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCACTGCCGATG-TGTACACAACGACAAGA GGATRAAAAGATCATT - AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCAATGGCCGATG-TGTACACAAGGACAAGA linearis_linearis_M101GGATRAAAAGATCATT - AAGACCCATGCCCACTCAGGTTCCATATCCAAGACACCAAGGGAAACTCACAGGCCGACTGGCGAAG-TGTACACAAGGACAAGA GGATRAAAAGATCATT - AAGACCCCATGCCCACTTAGGTTCCATATCCAAGACACCAAGGGAAACTCACAAGCCCACTGGCGAAG-TGTTACACAGGACAAGA linearis_linearis_N11GGATRAAAAGATCATT - AAGACCCCATGCCCACTTAGGTTCCATATCCAAGCACCAAGGGAAACTCACAGACCACACGCCACTGCCGCATG-TGTACACAAGGACAAGA GGATRAAAAGATCATT - AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAGACCACACGCCGCGATG-TGTACACAAGGACAAGA linearis_ovalis_NDBNGGATRAAAAGATCATT - AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAACGCACATGCCGCGATG-TGTACACAAGGACAAGA gGACATAAAAGATCATT - AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAAGCCACATGCCGCGATG-TGTACACAACGACAAGA gGACATAAAAGATCATT - AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAAGCCACATGCCGCATG-TGTACACAACGACAAGA gGACATAAAAGATCATT - AAGACCC-ATGCCCACATTGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAAGCCACATGCCGCATG-TGTACACAACGACAAGA gGACATAAAAGATCATT - AAGACCC-ATGCCCACATTGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAAGCCACATGCCGAATG-TGTACACAACGACAAGA gGACATAAAAGAGTCATT - AAGACCC-ATGCCCACATTGGTTCCATATCCAAGCACCAAGCGAAACTCAGCAAGCA	krebsiana serrulata RM863	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
leiopoda_R01901GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACACACACACA	krebsiana serrulata RM965	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTYAGCAAG	CCACATCGCCC	ATG-TGI	ACACAACGACA	AGA
leiopod_RM1309GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACGCAAGCGAAACTCAGCAACCGACGCGCACTCGCGATG-TGTACACAACGACAAGAlichtensteinii_CAM1916GACATAAAAGATCATT-AAGACCCCATGCGCCACTCAGGTTCCGTATCCAAGGCACCAACGGAAACTCAGCAACGACAAGAlinearis_linearis_RM1010GACATAAAAGATCATT-AAGACCCCATGCGCACTCAGGTTCCGTATCCAAGGCACACGACGGAACTCAGCGAACGACACGCGACATCGGCGATG-TGTACACAAGGACAGAlinearis_ovalis_NDsnGACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGCACACGAGGAACTCAGCAAGCCCACGCGGCGATG-TGTACACAACGGACAGAlinearis_ovalis_RM54GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGCACACGGAACTCAGCAAGCCCACGCGGATG-TGTACACAACGGACAGAlinearis_ovalis_RM554GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGCACACGAGGGAACTCAGCAAGCCACATCGCGATG-TGTACACAACGGACAGAmaritima_M29060_6GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACAAGGGAAACTCAGCAACGCCAATCGCGAATG-TGTACACAACGGACAGApectinat_M1038GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACAGCGAACTCAGCAACCCACGCGGATG-TGTACACAACGGAAGApectinat_M1044GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACAAGGAAACTCAGCAACACGCCACATCGCCGATG-TGTACACAACGGAAGGrigida_RM840GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACAAGGAAACTCAGCAACACGCCACATCGCCGATG-TGTACACAACGGAAGGrigens_leucolaena_RM753GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACAGCGAACTCAGCAACACGCCACTCGCGGATG-TGTACACAACGACAGGrigens_ligens_SK763GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACACGCAACTCAGCCAACTCGCGACAT-G-TGTACACAACGACAGGrigens_ligens_RM763GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACACGCAACTCAGCCAACTCGCGCACT-G-TGTACACAACGGAAGGrigens_ligens_SK763GACATAAAAGATCATT-AAGACCC-ATGCCCACATTGGTTCCATATCCAAGGACACACGAGG	leiopoda M240901	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCC	ATG-TGI	ACACAACGACA	AGA
lichtensteinii_CMN1916GACATAANAAGATCATCT-AAGACCCOATGCCOACATCAGGTTCCTATCCAAGACACACAGCGAAACTCAACAGCCAATGGACGAA-GGTTTTCAAGACGACAAAAlichtensteinii_RN1249GACATAANAAGATCATT-AAGACCCATGCCCACATCAGGTTCGTATCCAAGACACCAAGCGAAACTCAACAGCCAATGGACGAA-G-TGTTTACAAGGACAAAAlinearis_linearis_SH13GACATAANAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCAATGGCGAT-G-TGTACACAAGGACAAAGlinearis_ovalis_NDsnGACATAANAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCAATGGCGAT-G-TGTACACAAGGACAAAGlinearis_ovalis_NDsnGACATAANAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGCAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAAGGACAAGAmaritima_N1038GACATAANAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGCAAACTCAGCAAGCCACATGGCCGAT-G-TGTACACAACGACAAGGmaritima_N290606_6GACATAANAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGGCAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAAGGothonites_M1306GACATAANAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAAGGpectinata_M1044GACATAANAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAAGArigida_M280902GACATAANAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAAGGrigens_leucolaens_RM773GACATAANAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAAGrigens_rigens_RM763GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGGGAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAGGrigens_rigens_RM763GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGGGAAACTCAGCAAGCCAATGGCCGAT-G-TGTACACAACGACAGGrigens_rigens_RM763GACATAAAAGATCATTT-AAG	leiopoda RM1309	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCC	ATG-TGI	ACACAACGACA	AGA
lichensteinii_RM1249GACATAAAAAGATCATCT-AAGACCCCATGCCCAACATCAGGTTCTGTATCCAAGACACAACACACAC	lichtensteinii CAM1916	GACATAAAAAGATCATCT	-AAGACCC	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	CCAAGCGAA	ACTCAACAAG	CCACATCGAC	GAAG-TGI	TTACAACGACF	RAAA
linearis_linearis_RM1010GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACGCAAGCCAAGCCGAACTCGCCGAT-G-TGTACACAACGACAGAGlinearis_linearis_svalis_NDsnGACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGCGGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAlinearis_ovalis_RM854GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGCGGAAACTCAGCAAGCCCAATGCGCGAT-G-TGTACACAACGACAAGAmaritima_M1038GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCACTGCGCGAT-G-TGTACACAACGACAAGAothonnites_RM1306GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCACTGCGCGAT-G-TGTACACAACGACAAGAothonnites_RM1306GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCAATGCGCGAT-G-TGTACACAACGACAAGAopectinata_RM1044GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCCACATGCGCGAT-G-TGTACACAACGACAAGArigida_M280902GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCCACATGCGCGAT-G-TGTACACAACGACAAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACACGCCACATGCGCGAT-G-TGTACACAACGACAAGArigens_leucolaena_RM773GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACACGCACATGCCGCAT-G-TGTACACAACGACAAGArigens_rigens_RM63GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACACGCACATGCCGCGAT-G-TGTACACAACGACAAGArigens_rigens_RM63GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACACGCCACATGCCGCGAT-G-TGTACACAACGACAAGArigens_rigens_RM63GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACACGCGCGAT-G-TGTACACAACGACAAGArigens_rigens_RM6		GACATAAAAAGATCATCT	-AAGACCC	CATGCCCACAT	CAGGTTCTG	TATCCAAGAC	CCAAGCGAA	ACTCAACAAG	CCACATCGACO	GAAG-TGI	TTACAACGACA	AAA
linearis_linearis_SH113GACATAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCACTGCCGAT-G-TGTACACAACGACAAGAlinearis_ovalis_MDsnGACATAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCGAT-G-TGTACACAACGACAAGAmaritima_RM1038GACATAAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAmaritima_RM1038GACATAAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAothonnites_RM1306GACATAAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACTCGCCGAT-G-TGTACACAACGACAAGApectinata_M129003GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigida_M280902GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigens_leucolaena_RM773GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigens_rigens_RM63GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigens_rigens_RM73GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAAGCAACCCACGCCGAT-G-TGTACACAACGACAAGArigens_rigens_RM952_1GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGGGAAACTCAAGCACACACGCGAACTCAGCAAGCCAATCGCGAAT-G-TGTACACAACGACAAGArigens_rigens_RM953GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTGGCTCATATCCAAGACACAAGGGAAACTCAAGCAACCACACGCGAAT-G-TGTACACAACGACAAGArigens_uniflora_RM920G	linearis_linearis_RM1010	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
linearis_ovalis_NDsnGACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAAGACAAG	linearis linearis SH113	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
linearis_ovalis_RM854GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAGCGAAACTCAGCAACACCCACC	linearis_ovalis_NDsn	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
maritim_RM1038GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCACTCGCCGATG-TGTACACAACGACAAGAmaritim_M290606_6GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACCCACTCGCCGATG-TGTACACAACGACAAGApetinata_M120903GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCCACTCGCCCAATGCGCAACGApetinata_M1044GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCCACTCGCCGATG-TGTACACAACGACAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCACATCGCCGATG-TGTACACAACGACAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCACATCGCCGATG-TGTACACAACGACAGArigens_leucolaena_RM773GACATAAAAAGATCATT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACTCAGCAACTCAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACTCAGCAACTCAGCAACGCAACTCAGCAACGAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACTCAGCAACTCAGCAACTCAGCAACGCAACTCAGCAACGAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACTCAGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACGCAACTCAGCAACCAAGCAACACAAGArigens_uniflora_RM920GACATAAAAAGATCATTT-AAGACCC-ATGCCCA	linearis_ovalis_RM854	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
maritima_M290606_6GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCACTGCCGGATG-TGTACACAACGACAAGAothonnites_RM1306GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCGCATG-TGTACACAACGACAAGApectinata_RM1041GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCGCATG-TGTACACAACGACAAGArigida_M280902GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCGCGATG-TGTACACAACGACAAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCACATGCGCGATG-TGTACACAACGAACAAGArigens_leucolaena_RM773GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCGCGATG-TGTACACAACGAACAAGArigens_leucolaena_RM952_1GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCCGATG-TGTACACAACGAACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCCGATG-TGTACACAACGAACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAACCCACGCCGATG-TGTACACAACGACAAGArigens_uniflora_UC201205GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAACCCACATGCCGCATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGACGCACTCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCAACTGCCGAATG-TGTTACACAACGACAAGAserrata_M898GACATAA	maritima_RM1038	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
othonnites_RM1306GACATAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGApectinata_M120903GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGApectinata_RM1044GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_leucolaena_RM773GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_leucolaena_RM952_1GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAsernata_M250904_15GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAsernata_M250904_15GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAsernata_M898GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTTACACAACGACAAGAtenuifolia_CM1601GACATAAAAGATCATTT-AAGACCCCATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTTACACAACGACAAGAtenuifolia_M2730GACATAAAAGATCATTT-AAGACCCCATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCCGAAG-TGTTACACAACGACAAGAtenuifolia_M2730 <td>maritima M290606 6</td> <td>GACATAAAAAGATCATTT</td> <td>-AAGACCC</td> <td>-ATGCCCACAT</td> <td>TAGGTTCCA</td> <td>TATCCAAGAC</td> <td>ACCAAGCGAA</td> <td>ACTCAGCAAG</td> <td>CCACATCGCCG</td> <td>GATG-TGI</td> <td>ACACAACGACA</td> <td>AGA</td>	maritima M290606 6	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
pectinata_1120903GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCATCGCCAAT-G-TGTACACAACGACAAGApectinata_M1044GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-GTGTACACACACGACAAGArigida_M280902GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCAATCGCCGAT-G-TGTACACAACGACAAGArigens_leucolaena_RM773GACATAAAAAGATCATGT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigens_leucolaena_RM952_1GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAsernata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAsernata_M898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAsernata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCACATCGCGAT-G-TGTACACAACGACAAGAsernata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAsernata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCACATCGCCGAT-G-TGTACACAACGACAAGAtenuifolia_CXM1601GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACAAGCGAAACTCAGCAAGCCACATGCCGAT-G-TGTTTACAACGACAAGAsernata_RM898GACATAAAAGATCATTT-AAGACCCC	othonnites RM1306	GACATAAAAAGATCATCT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
pectinata_RM1044GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGCACCCAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigida_M280902GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGCGAAACTCAGCAAGCA	pectinata M120903	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCA	ATG-TGI	ACACAACGACA	AGA
rigida_M280902GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGCGAAACTCAGCAAGCCCACATCGCCGATG-TGTACACAACGACAAGArigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGCGAAACTCAGCAAGCCCACATCGCCGAAG-TGTACACAACGACAAGArigens_leucolaena_RM952_1GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGCAAACTCAGCAAGCCCAATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCAATCGCCGATG-TGTACACAACGACAAGArigens_rigens_SR463GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCCAATCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAAGCCACATCGCCGATG-TGTACACAACGACAAGAsenuifolia_CAM1601GACATAAAAAGATCATTT-AAGACCCCATGCCCACATGGCTCCATATCCAAGACACCAAGCGAAACTCAGCAAAGCCACATGCCCAATGCCCAACGACAAGAsenuifolia_M2730GACATAAAAGATCATTT-AAGACCCCATGCCCACATCGCCACATCGCAGACCAAGCCAAGCCAAGCCAAAGCCACATGCCCAACTGCCAACTCACACAGCACAAGAsenuifolia_M2730GACATAAAAGATCATTT-AAGACCCCATGCCCACATCGCCACATCGCAAGCCAAGC	pectinata RM1044	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
rigida_RM840GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACAAGCCAAGC	rigida M280902	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
rigens_leucolaena_RM773GACATAAAAAGATCATGT-AAGACCC-ATGACCAAATTAGGTTCAATATCCAAGACCAAGCGAAACTCAGCAAGCCACATCGCCGAA-TG-TATACACAACAACAACAAGArigens_leucolaena_RM952_1GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_SR463GACATAAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAGGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAACACACGACCACATCGCCGATG-TGTACACAACGACAAGAserrata_M898GACATAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACAACAAGCGAAACTCAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCACATGCCCGATG-TGTTACAAAGGATCATTT-AAGACCCCATGCCCACATCGCGGTCCATATCCAAGACACCAAGCGAAACTCAGCCACATGCCCGATG-TGTACACAACGACAAGAspnov_M040906_33GACATAAAAAGATCATTT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCCACATTGCCCGATG-TGTTACAACGACCAAGA	rigida RM840	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
rigens_leucolaena_RM952_1GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_SR463GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserenckiiGACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAAG-TGTTACAACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACAACAAGGACACAAGspnov_M040906_33GACATAAAAAGATCATTT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACAACAGACACAAG	rigens leucolaena RM773	GACATAAAAAGATCATGT	-AAGACCC	-ATGACCAAAT	TAGGTTCAA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	SAA-TG-TAT	ACACAACAACA	AGA
rigens_rigens_RM763GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_rigens_SR463GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_RM920GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAschenckiiGACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACGAAAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACAACAACGACAAGAspnov_M040906_33GACATAAAAAGATCATTT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACAACAGACACAAGA	rigens leucolaena RM952 1	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
rigens_rigens_SR463GACATAAAAGGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_JC201205GACATAAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGArigens_uniflora_RM920GACATAAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAschenckiiGACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTTACAACAACGACAAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_RM898GACATAAAAGATCATTT-AAGACCCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACACAAGGACAGAGspnov_M040906_33GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACACAACGACAAGA	rigens rigens RM763	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	ATG-TGI	ACACAACGACA	AGA
rigens_uniflora_JC201205GACATAAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAC-G-TGTACACAACGACAAGArigens_uniflora_RM920GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAschenckiiGACATAAAAGGATCATTT-AAGACCC-ATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACACAAGGACAGAGspnov_M040906_33GACATAAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTACACAACGACAAGA	rigens rigens SR463	GACATAAAAGGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
rigens_uniflora_RM920GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAschenckiiGACATAAAAGATCATTT-AAGACCCCATGCCCACATCAGGTTCCGTATCCAAGACCACCAAGCGAAACTCAACAAGCCACATCGACGACAG-TGTTTACAACGACGAAAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAAACGACAAGAtenuifolia_CAM1601GACATAAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAAGGACGACAAGAtenuifolia_M2730GACATAAAAGGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAACGACAAGAspnov_M040906_33GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACACAACGACAAGA	rigens uniflora JC201205	GACATAAAAAGATCATCT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGAC	GATG-TGI	ACACAACGACA	AGA
schenckiiGACATTAAAGGATCATCT-AAGACCACATGCCCACATCAGGTTCCGTATCCAAGACCACCAAGCGAAACTCAACAAGCCACATCGACGACAG-TGTTTACAACGACGAAAserrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACCACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAACGACGAGAtenuifolia_M2730GACATAAAAGGATCATTT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAACGACAAGAspnov_M040906_33GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACACAACGACAAGA	rigens uniflora RM920	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
serrata_M250904_15GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAserrata_RM898GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACAACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGAtenuifolia_CAM1601GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAAGGACGACAAGAtenuifolia_M2730GACATAAAAGGATCATTT-AAGACCCCATGCCCACATTCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAACGACAAGAspnov_M040906_33GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAAACGACAAGA	schenckii	GACATTAAAGGATCATCT	-AAGACCA	CATGCCCACAT	CAGGTTCCG	TATCCAAGAC	ACCAAGCGAA	ACTCAACAAG	CCACATCGAC	GAAG-TGI	TTACAACGACG	JAAA
serrata_RM898 GACATAAAAAGATCATTT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGA tenuifolia_CAM1601 GACATAAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCRAGACACCAAGCGAAACTCAGCAAGGCCACATTGCCGAAG-TGTTTACAAGGACGAGAAGA tenuifolia_M2730 GACATAAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGGAAG-TGTTTACAACGACAAGA spnov_M040906_33 GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAAACGACAAGA	serrata M250904 15	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCG	GATG-TGI	ACACAACGACA	AGA
tenuifolia_CAM1601 GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCRAGACACCCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAAGGACGAGA tenuifolia_M2730 GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAACGACAAGA spnov_M040906_33 GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAAG-TGTTACAACGACAAGA	serrata_RM898	GACATAAAAAGATCATTT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATCGCCC	GATG-TGT	ACACAACGACA	AGA
tenuifolia_M2730 GACATAAAAGGATCATTT-AAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCCAAGCGAAACTCAGCAAGCCACATTGCCGAAG-TGTTTACAACGACAAGA spnov_M040906_33 GACATAAAAAGATCATCT-AAGACCCC-ATGCCCACATTAGGTTCCATATCCAAGACACCCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAACGACAAGA		GACATAAAAGGATCATTT	-AAGACCC	CATGCCCACAT	CAGGTTCCA	TATCCRAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATTGCCC	GAAG-TGT	TTACAAGGAC	GAGA
spnov_M040906_33 GACATAAAAAAGATCATCT-AAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGATG-TGTACACAAAGGACAAGA	tenuifolia_M2730	GACATAAAAGGATCATTT	-AAGACCC	CATGCCCACAT	CAGGTTCCA	TATCCAAGAC	ACCAAGCGAA	ACTCAGCAAG	CCACATTGCCG	GAAG-TGT	TTACAACGACA	AGA
	spnov_M040906_33	GACATAAAAAGATCATCT	-AAGACCC	-ATGCCCACAT	TAGGTTCCA	TATCCAAGAC	CCAAGCGAA	ACTCAGCAAG	CCACATCGCCO	GATG-TGI	ACACAACGACA	AAGA

]	890	900	910	920	930	940	950	960	970	980	990]
Berkheya	TGGATTACAGAGACCAG	CTTCCTGGTI	CGTCACACA	CCACAAGTGT	GATGCACGACG	AAACTGGCTT	CGATCGGTC	CAYGCAATGCC	TTCGATTAGO	TATGCAACAC	AGGA
Gorteria	TGGATTACAAAGACCA	CTTCCTAGTC	CCGTCACACA	CCACAATTGT	GATGCATGGCG	AAAACGGCTT	CGATCGGTC	CAAACAATGCC	TTCGATTAGO	TACGCAACAC	AGGA
Hirpicium	TGGATTACAGAGAACT	CTTTCTGGTC	CGTCACACA	CCACAAGTGC	GATGCATGACG	AAAACAGCTT	ATATCGATC	CATACAATGCC	TTTGTTTAGG	TACGCAACAC	AGGA
caespitosa_RC448	TGGATTACAGAGAACG	CTTACTGGTC	CCGTCATGCA	CCACATGTGC	GATGCGTGACG	GAAACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAS	TACGCAACAC	AGGA
caespitosa_RVC307	TGGATTACAGAGACCG	CTTACTGGTC	CCGTCATGCA	CCACATGTGC	GATGCGTGACG	GATACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGGA
ciliaris_RM1230	TGGATTACAGAGAACG	CTTACTGGTC	CGTCATGCA	CCACATGTGC	GATGCGTGACT	GAAACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGGA
ciliaris_RM1382	TGGATTACAGAGAACG	CTTACTGGTC	CGTCATGCA	CCAAATGTGC	GATGCGTGAAG	GAAACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGGA
heterochaeta_RM1429_1	TGGCTTACAGAGACCA	CTTACTGGTC	CGTCATGCA	CCACA-GTGC	GATGCGTGACA	AAAACAGATT	CAATCGGTC	CATACAATGCC	TTTGATTAGO	AACGCAACAC	AGGA
heterochaeta_RM1451	TGGCTTACAGAGACCA	CTTACTGGTC	CGTCATGCA	CCACA-GTGC	GATGCGTGACA	AAAACAGATT	CAATCGGTC	CATACAATGCC	TTTGATTAGO	AACGCAACAC	AGGA
jurineifolia_jur_SR682	TGGATTACAGAGACCAG	CTAGCTGGTC	CGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGAA
jurineifolia jur RM1518	TGGATTACAGAGACCAG	CTTGCTGGTC	CCGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGAA
jurineifolia scab CAM1604	TGGATTACAGAGACCA	CTTGCTGGTC	CGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAACARATT	CARTCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGAA
jurineifolia scab CAM2652	TGGATTACAGAGACCA	CTTGCTGGTC	CGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAACAGATT	CAATCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGAA
krebsiana arctotoides RM868	TGGATTACTAAGACCA	CTTACCGGT	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
krebsiana arctotoides RM876	TGGATTACTAAGACCA	CTTACCGGKC	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
krebsiana krebsiana RM1114	TGGATTACTAAGAACAG	CTTACCGGT	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
krebsiana krebisiana RM1136	TGGATTACTAAGACCA	CTTACCGGTC	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
krebsiana serrulata RM863	TGGATTACTAAGACCA	CTTACCGGTC	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	ATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
krebsiana serrulata RM965	TGGATTACTAAGACCA	CTTACCGGTC	CATCATGCA	CCACTTGTGY	GATGCATGACG	GATACATATT	CATTCGGTC	TATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
leiopoda M240901	TGGATTACTAAGACCA	CTTACCGGTC	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	TATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
leiopoda RM1309	TGGATTACTGAGACCA	CTTACCGGTC	CATCATGCA	GCACATGTGC	GATGCATGACG	GAAACATATT	CATTCGGTC	TATACAATGCC	TTCGATTAGO	TACGCAACAC	AGYA
lichtensteinii CAM1916	TGGCTTACAGAGACCA	CTTACTGGTC	CGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAACAGATT	CAATCGGTC	TATACAATGCC	TTTGATTAGO	TACGCAACAC	AGGA
lichtensteinii RM1249	TGGCTTACAGAGACCA	CTTACTGGTC	CGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAACAGATT	CAATCGGTC	TATACAATGCC	TTTGATTAGO	TACGCAACAC	AGGA
linearis linearis RM1010	TGGATTACTAAGACCA	CTTACCGGTC	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	TATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
linearis linearis SH113	TGGATTACTAAGACCA		CATCATCCA	CCACTTGTGC	GATGCATGACG	Затасататт	CATTCGGTC	TATACAATGCC	ТТССАТТАСС	TACGCAACAC	AGTA
linearis ovalis NDsn	TGGATTACTAAGACCA	CTTACCOOIC	CATCATCCA	CCACTICICC	CATCCATCACC	ЗАТАСАТАТ ЗАТАСАТАТТ	CATTCGGTC	CATACAAIGCC	TTCCATTACC	TACCCAACAC	AGTA
linearis ovalis RM854	TGGATTACTAAGACCA	CTTACCOOKC	CATCATCCA	CCACTICICC	CATCCATCACC	ЗАТАСАТАТ ЗАТАСАТАТТ	CATTCGGTC	CATACAAIGCC	TTCCATTACC	TACCCAACAC	AGTA
maritima RM1038	TGGATTACTGAGACCA		CATCATCCA	CCACTICICC	CATCCATCACC	ЗАТАСАТАТ ЗАТАСАТАТТ	CATTCGGTC	CATACAAIGCC	TTCCATTACC	TACCCAACAC	AGTA
maritima M290606 6	TGGATTACTGAGACCA	CTTACCGGTC	CATCATGCA	CCACTTGTGC	GATGCATGACG	Затасататт	CATTCGGTC	TATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA
othonnites RM1306	TGGATTACTAAGACCA		CATCATCCA	CCACTICICC	CATCCATCACC	ЗАТАСАТАТ ЗАТАСАТАТТ	CATTCGGTC	CATACAAIGCC	TTCCATTACC	TACCCAACAC	AGTA
pectinata M120903	TGGATTACAGAGACCAG	CTTACCOULC	CWCCATCCA	CCACIICICC	CATCAATCACC	CATACATATI	CALICOGIC	ZATACAAIGCC	TTCAATTACC	TACUCAACAC	
pectinata_M120905	TGGATTACTGAGACCA	CTTACCGGIC	CATCATCCA	CCACICIGIGC	GATGAAIGACG CATCCATCACC	CATACACALL CATACATATT	CAGICGGIC	ZATACAAIGCC	TTCCATIAGC	TACICAACAC	
rigida M280902	TCCATTACTACACCAC	CTTACCOOIC	CATCATCCA	CCACTICICC	CATCCATCACC	CATACATATI	CATTCOULC	ZATACAAIGCC	TTCCATTACC	TACCCAACAC	
rigida RM840	TGGATTACTGAGACCA		CATCATCCA	CCACTICICC	CATCCATCACC	ЗАТАСАТАТ ЗАТАСАТАТТ	CATTCGGTC	CATACAAIGCC	TTCCATTACC	TACCCAACAC	AGTA
rigens leucolaena RM773	TGGATTACTAAGACCA	CTTACCGGIC	CATCAIGCA	CCACIIGIGC	GAIGCAIGACG CATCCATCACC	GATACATATI Catacatati	CATTCGGIC	CATACAAIGCC	TTCGATTAGC	TACGCAACAC	AGIA
rigong lougoloona PM952 1	TCOTTACTACACCA		CAICAIGCA		GAIGCAIGACG	CATACAIAII CATACATATT			TICGATIAGC	TACGCAACAC	
rigong rigong PM762					GAIGCAIGACG	GATACATATI CATACATATI	CATICGGIC	-AIACAAIGCC	TICGAIIAGO	TACGCAACAC	AGIA
rigong rigong SP462					GAIGCAIGACG	GATACATATI CATACATATI		-AIACAAIGCC	TICGAIIAGO	TACGCAACAC	AGIA
rigens_rigens_SR403					GAIGCAIGACG	GAIACAIAII CATACATATI				TACACAACAC	AGIA
rigens_uniflers_DM020					GAIGCAIGACG	GAIACAIAII CATACATATI				TACGCAACAC	AGIA
rigens_uniliora_RM920					GAIGCAIGACG	GAIACAIAII CAAACATTT				TACGCAACAC	AGIA
SCHERICKII					GAIGCGIGACG	GAAACAGAII	CAAICGGIC				AGGA
serrala_M250904_15			CATCATGCA	CCACTTGTGC	GAIGCATGACG	GATACATATT	CATTCGGTC(CATACAATGCC	IICGATTAGO		AGTA
serrala_KM898			CATCATGCA	CCACT TGTGC	GAIGCATGACG	GATACATATT	CATTCGGTC(CATACAATGCC	IICRATTAGO		AGTA
cenulioila_CAM1601		CITACTGGT(CGTCTTGCA	CCACAAGTGC	GATGCGTGACG	GAAAAAGA'I'I	CAATCAGI-(LATACAATGCC	CITGATTAGO		AGGA
tenuitolia_M2/30	1GGATTACGGAGACCA		CGTCATGCA	CCACAAGTGC	GATGCGTGACG	GAAAAAGA'T'T	CAATCTGT-(CATACAATGCC	CTCGATTAGO	TACGCAACAC	AGGA
spnov_M040906_33	TGGAT TACTAAGACCA	CITACCGGTC	CATCATGCA	CCACTTGTGC	GATGCATGACG	GATACATATT	CATTCGGTC	CATACAATGCC	TTCGATTAGO	TACGCAACAC	AGTA

I	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100]
Berkheya	AACCCGCAATACGAGC	AAGAC-AAAA	CAAGCCTTGC	TACATAAATG	AAGAGGTAAG	TACGCGTAGA	AGTTGCTTCG	CTAGAAGACAI	CCAACCACC	CGTAACAAAC	CAAA
Gorteria	AACCCCCAATACGAGC	AAGAC-AAAA	CAAGTCTTGC	CACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	CAAA
Hirpicium	AACCCACAATATGAGC	AAGACAAA	CAAGCCTTGC	TGCATAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	CAAA
caespitosa_RC448	AACCCACAATACGAGC	AAGTCTAAAA	CAAGACTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	CAAA
caespitosa RVC307	AACCCACAATACGAGC	AAGTCTAAAA	CAAGACTTGC	TACGTAAATG	AAGAGGTAAG	CACGCGTGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	CAAA
ciliaris RM1230	AACCCACAATACGAGC	AAGTCTAAAA	GAAGACTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	'AAA
ciliaris RM1382	AACCCACAATACGAGC	AAGTCTAAAA	GAAGACTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	'AAA
heterochaeta RM1429 1	AACCCACAAAACGAGC	AAGTCTACAA	CAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	'AAA
heterochaeta RM1451	AACCCACAAAACGAGC	AAGTCTACAA	CAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	'AAA
jurineifolia jur SR682	AACCCACAATACGAGC	AAGTCTAAAA	CAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	'AAA
jurineifolia jur RM1518	AACCCACAATACGAGC	AAGTCTAAAA	CAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	"AAA
jurineifolia scab CAM1604	AACCCACAATACGAGC	AAGTCTAAAA	CAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	7AAA
jurineifolia scab CAM2652	AACCCACAATACGAGC	AAGTCTAAAA	CAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	7AAA
krebsiana arctotoides RM868	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	7AAA
krebsiana arctotoides RM876	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	7AAA
krebsiana krebsiana RM1114	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	7AAA
krebsiana krebisiana RM1136	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	7AAA
krebsiana serrulata RM863	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	ТАССТАААТС	AAGAGGTAAG	CACGCATGGA		CTAGAAGACAT	CCAACCACC	CGTAACAAAC	מממי
krebsiana serrulata RM965	AACCCACAATACGAGC		TAAGCCTTGC	ТАССТАААТС	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCC	СТАСААСАСАТ	CCAACCACC	CGTAACAAAC	מממי
leiopoda M240901	AACCCACAATACGAGC		TAAGCCTTGC	ТАССТАААТС	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCC	СТАСААСАСАТ	CCAACCACC	CGTAACAAAC	מממי
leiopoda RM1309	AACCCGCAATACGAGC		TAAGCCTTGC	ТАССТАААТС	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCC	СТАСААСАСАТ	CCAACCACC	CGTAACAAAC	מממי
lichtensteinii CAM1916	AACCCACAATACGAGC	AAGTCTACAA		ТАССТАААТС	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCC	СТАСААСАСАТ	CCAACCACC	CGTAACAAAC	מממי
lichtensteinii RM1249	AACCCACAATACGAGC	AAGTCTACAA		ТАССТАААТС	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCC	СТАСААСАСАТ	CCAACCACC	CGTAACAAAC	מממי
linearis linearis RM1010	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACCCATCCA	4GTTGCTTCC	CTAGAAGACAT	CCAACCACC	CGTAACAAAC	'AAA
linearig linearig SH113	AACCCACAATACGAGC				AAGAGGTAAG	CACCCATCCA		CTAGAAGAC22	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	222222222222	>>>>>
linearis ovalis NDsn	AACCCACAATACGAGC	аасастааат	TAAGCCTTGC TAAGCCTTGC		AAGAGGTAAG	CACCCATCCA		CTACAACACA			 מממי
linearis ovalis RM854	AACCCACAATACGAGC	аасастааат	TAAGCCTTGC TAAGCCTTGC		AAGAGGTAAG	CACCCATCCA		CTACAACACAT	CCAACCACC	CGTAACAAAC	מממי
maritima PM1038	AACCCATATACGAGC	ΑΛΟΛΟΨΛΛΛΛ	TAAGCCTTCC		AAGAGGTAAG	CACCCATCCA		CTACAACACAT	CCAACCACC	CCTAACAAAC	אאמי
maritima M290606 6	AACCCACAATACGAGC	AACACTAAAA	TAAGCCTTGC		AAGAGGTAAG	CACCCATCCA		CTACAACACAT	CCAACCACC	CGTAACAAAC	מממי
othoppites PM1306	AACCCACAATACGAGC	ΑΑCΑСΙΑΑΑΑ λλαλάτλλη	TAAGCCIIGC TAAGCCTTGC	TACGIAAAIG	AAGAGGIAAG	CACGCATGGA	AGTIGCTICG AGTTGCTTCC	CTAGAAGACAI	CCAACCACC	CGTAACAAACC	אחה. זאאי
postinata M120902	AACCCACAAIACGAGC	ΑΑCΑСΙΑΑΑΙ λπαλάτλλη			AAGAGGIAAG	CACGCAIGGA		CIAGAAGACAI	CCAACCACC	CGIAACAAACC	אחת. זאאי
pectinata_MI20905	AACCCICAAIACGAGC	AICACIAAAI AACACTAAAA			AAGAGGIAAG	CACGCAIGGA		CIAGAAGACAI	CCAACCACC	CGIAACAAACC	- AAA 7 A A A
rigida M280002	AACCCACAAIACGAGC	ΑΑСΑСΙΑΑΑΑ	TAAGCCIIGC		AAGAGGIAAG	CACGCAIGGA		CIAGAAGACAI	CCAACCACC	CGIAACAAACC	- AAA 7 A A A
rigida_M280902	AACCCACAAIACGAGC	ΑΑСΑСΙΑΑΑΙ			AAGAGGIAAG	CACGCAIGGA	AGIIGCIICO ACTTCCTTCA	CTAGAAGACAI	CCAACCACC	CGIAACAAACC	- AAA 7 A A A
rigong lougoloona PM772	AACCCACAAIACGAGC	ΑΑСΑСΙΑΑΑΑ	TAAGCCIIGC		AAGAGGIAAG	CACGCAIGGA			CCAACCACC	CGIAACAAACC	- AAA 7 A A A
rigens_leucolaena_RM/75	AACCCACAAIACGAGC	AACACIAAAI				CACGCAIGGA					- MAA 7 7 7 7
rigens_reucoraena_RM952_r		ΑΑϹΑϹΙΑΑΑΙ									
rigens_rigens_RM/03		ΑΑϹΑϹΙΑΑΑΙ									
rigens_rigens_SR463	AACCCACAATACGAGC	AAGACIAAAI									
rigens_uniflews_DM020	AACCCACAATACGAGC										
rigens_uniliora_RM920	AACCCACAATACGAGC										
SCHERCK11	AACCCACAATACGAGC	AAGTCTACAA		TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CTAGAAGACAT		CGTAAYAAACO	
serrata_M250904_15	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGT TGC TTCC	CTAGAAGACAT	CCAACCACC	CGTAACAAACO	
serrata_KM898	AACCCACAATACGAGC	AACACTAAAA	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	ICTAGAAGACA'I	CCAACCACC	CGTAACAAAC(
tenuitolia_CAM1601	AACCCACAATACGAGC	AAGTCTATAA	CAAGCC'I''I'GC	TACGTAAA'IG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CAAGAAGACAT	CCAACCACC	CGTAACAAAC(CAAA
tenuitolia_M2730	AACCCACAATACGAGC	AAGTCTATAA	CAAGCC'I''TGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTCG	CAAGAAGACAT	CCAACCACC	CGTAACAAAC	LAAA
spnov_M040906_33	AACCCACAATACGAGC	AACACTAAAT	TAAGCCTTGC	TACGTAAATG	AAGAGGTAAG	CACGCATGGA	AGTTGCTTCG	CT'AGAAGACAT	CCAACCACC	CGTAACAAAC	LAAA

[1110	1120	1130	1140	1150	1160	1170	1180	1190	1200	1210]
Berkheya	CACCACTCATGCACCT	TTACGGAAAA	.CACTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCGCCTAGC	ACAAACGG	-CAAGCAAGCAA	.CCAAAAGCCA	AAGCAATCCCA	AGAA
Gorteria	CACCACTCATGCACCT	TTACGGTAAA	CACTCCCCGA	AACCACCCGA	CTAGTAGCCA	CCCGCATGGT	ACAA-TGA	CCAAGCAAGCAA	CCAAAAGCCA	AGGCAATCCCA	AAA
Hirpicium	CACCACTCATGCACCT	TTACGGTAAA	.CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAAAG-	CCAAGCAAGCAA	CCAAAAGCCA	AAGTAATCCCA	AAA
caespitosa_RC448	CACCACTCATGCACCT	TTACGGTAAA	CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAAGG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
caespitosa_RVC307	CACCACTCATGCACCT	TTACGGTAAA	CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAAGG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
ciliaris_RM1230	CACCACTCATGCACCT	TTACGGTAgA	CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAAGG-	-CAAGCAAGCAA	CCaAAAGCCA	AAGCAATCCCA	AAA
ciliaris RM1382	CACCACTCATGCACCT	TTACGGTAAA	.CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
heterochaeta RM1429 1	CACCACTCATGCACCT	TTACGGTAAA	.CATTCCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACTTAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
heterochaeta RM1451	CACCACTCATGCACCT	TTACGGTAAA	.CATTCCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACTTAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
jurineifolia jur SR682	CACCACTCATGCACCT	TTACGGTAAA	.CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACRTAGC	ACAAAAGG	CCAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
jurineifolia jur RM1518	CACCACTCATGCACCT	TTACGGTAAA	CATTTCCCAA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAAAGG	CCAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
jurineifolia scab CAM1604	CACCACTCATGCACCT	TTACGGTAAA	CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACGTAGC	ACAAAAGG	CCAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
jurineifolia scab CAM2652	CACCACTCATGCACCT	TTACGGTAAA	CATTTCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACRTAGC	ACAAAAGG	CCAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
krebsiana arctotoides RM868	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
krebsiana arctotoides RM876	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
krebsiana krebsiana RM1114	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAa	CCAAAAGCCA	AAGCAATCCCA	AAA
krebsiana krebisiana RM1136	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
krebsiana serrulata RM863	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
krebsiana serrulata RM965	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
leiopoda M240901	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
leiopoda RM1309	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAaTCCCA	AAA
lichtensteinii CAM1916	CACCACTCATGCACCT	TTACGGTAAA	CATTCCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACTTRRC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
lichtensteinii RM1249	CACCACTCATGCACCT	TTACGGTAAA	CATTCCCCGA	AACCACCCGA	CTAGTAGCCA	CCCACTTAAC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	AAA
linearis linearis RM1010	CACCACTCATGCACCT	TTACGGTAAA	САТТТТСССА	AACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	
linearis linearis SH113	222222222222222222222222222222222222222	222222222222	22222222222	222222222222	222222222222	22222222222	222222222	22222222222222	22222222222	2222222222222	
linearis ovalis NDsn	Сассастсатссасст	••••••••••• ттассстааа		AACCACCCCA	CTACTACCCA	CCCACATACC			CCAAAACCCA	A A C C A A T C C C A	
linearis ovalis RM854	CACCACTCATCCACCT	TTACCCTAAA		AACCACCCCA	CTACTACCCA	CCCACATAGC	ACAAATG-		CCAAAAGCCA	AAGCAATCCCA	2222
maritima RM1038	CACCACTCATGCACCT	TTACCCTAAA		AACCACCCCA	CTACTACCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	222
maritima M290606 6	CACCACTCATGCACCT	TTACCCTAAA		AACCACCCCA	CTACTACCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	222
othonnites RM1306	CACCACTCATGCACCT	TTACCCTAAA		AACCACCCCA	CTACTACCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCA	222
pectinata M120903	CACCACTCATCCACCT	TTACCCTAAA		AACCACCCCA	CTACTACCCA	CCCACATAGC	ACGAATG-	-CAAGCAAGCAA	CCANARCCCA	AAGCAATCCCA	777
pectinata_M120905	CACCACTCATGCACCT	TTACGGIAAA		AACCACCCGA	CTAGIAGCCA	CCCACATAGC	ACGAAIG		CCANAAGCCA	AAGCAAICCCA	
rigida M280902	CACCACTCATGCACCT	TTACGGIAAA		AACCACCCGA	CTAGIAGCCA	CCCACATAGC	ACAAAIG		CCANAAGCCA	AAGCAAICCCA	
rigida PM840	CACCACTCATGCACCT	TTACGGIAAA		AACCACCCGA	CTAGIAGCCA	CCCACATAGC	ACAAAIG		CCANAAGCCA	22222222222222	
rigens leucolaena RM773	CACCACTCATGCACCT	TTACCCTAAA		AACCACCCCA	CTACTACCCA	CCCACATAGC	ALAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	A A C C A A T C C C A	
rigong lougolaona PM952 1	CACCACTCATGCACCT	TIACGGIAAA		AACCACCCGA	CIAGIAGECA	CCCACAIAGC	AAAAAIG		CCAAAAGCCA	222222222222	
rigong rigong PM762	CACCACICAIGCACCI	TIACGGIAAA		AACCACCCGA	CIAGIAGCCA	CCCACAIAGC	AAAAAIG-		CCAAAA:::::		:::
rigong rigong SP462	CACCACICAIGCACCI	TIACGGIAAA		AACCACCCGA	CIAGIAGCCA	CCCACAIAGC	AAAAAIG-		CCALLETT		111
rigong uniflora IC201205	CACCACICAIGCACCI	TIACGGIAAA		AACCACCCGA	CIAGIAGCCA	CCCACAIAGC	ACAAAIG-			AAGCIAICCCA	
rigens_uniflers_DM020				AACCACCCGA			ACAAAIG-			AAGCAAICCCA	
rigens_unriora_RM920				AACCACCCGA						AAGCAAICCCA	
SCHERCKII				AACCACCCGA						AAGCAAICCCA	
Serrard_M200904_15				AACCACCCGA			ACAAAIG-			1111111111111111 A A COA A TOO COA	555 777
SELIALA_KMOYO			CALL TTCCGA	AACCACCCGA			ACAAATG-			AAGCAATCCCA	
tenuitolla_CAMIbUI	CACCACTCATGCACCT		CATTTCCCGA	AACCACCCGA		CCCACATAGC	ACAAATG-			GAGCGATCCCA	
$\frac{1}{2} M = \frac{1}{2} M = \frac{1}$	CACCACTCATGCACCT	I I ACGGTAAA	CATTTCCCGA	AACCACCCGA	CIAGTAGCCA	CCCACATAGC	ACAAATG-			GAGCAATCCCA	
spnov_M040906_33	CACCACTCATGCACCT	TTACGGTAAA	CATTTTCCGA	LAACCACCCGA	CTAGTAGCCA	CCCACATAGC	ACAAATG-	-CAAGCAAGCAA	CCAAAAGCCA	AAGCAATCCCCA	AAA

[1220	1230	1240	1250	1260	1270	1280	1290	1300	1310	1320]
Berkheya	ATGCACCGAACGATGC	GAGAAACAAT	-AAGCTACGA	AACCAA-CAI	G-ATTGCCTC	ATCAAGACGC	ICGTTTCATT	ATTTTCT-TC	CACACAACGCA	TCGCTAGCC-A	1GGC
Gorteria	ATGAACCGCACGATGC	GAGAAACACA	AAAGCTACCG	AACCAA-CAT	GATTTGCTCA	TAAAAAACGC'	FCGCTTCATG	GATATTCT-AT	GCACAACGCA	TCGCTAGCC-G	GGC
Hirpicium	ATGCACCGAACGATGC	GAGAAACAAT	TAAGCTACGA	AACCGA-CA-	ATTGCTTC	GTCAAAACGC'	CGCATTATG	GTTTTCT-AC	GCACAACGCA	TCGCTAGCC-G	GGC
caespitosa_RC448	ATGCACCGAACGATGC	GAGAAAGAG1	TAAAGCTACGA	AACCAA-CAT	G-ATCGCCTC	ATCAAAACGC	FCGCTTCATG	GATTTCTA-AC	A??????????????	???????????????????????????????????????	????
caespitosa_RVC307	ATGCACCGAACGATGC	GAGAAAYAAT	TAAAGCTACGA	AACCGA-CAT	G-ATCGCCTC	ATCAAAACGC	rcgcttgatg	ATTTTCT-AG	ACACGACGCA	TCGCTAGCC-A	AGGC
ciliaris RM1230	ATGCACCGAACGATGC	GAGAAACCAT	TAAAGCTACGA	AACCGTTCGC	GAATCGCCTC	ATCAAAACGC	CGCTTCATG	ATTTTCTTAG	ACACCACGCA	TCGCTAGCC-G	AGC
ciliaris RM1382	ATGCACCGAACGATGC	GAGAAACAAT	TAAAGCTACGA	AACCRTTCAC	GAATCGCCTC	ATCAAAACGC'	CGCTTCATG	ATTTTCTTAG	ACACCACGCA	TCGCTAGCC-C	AGC
heterochaeta RM1429 1	ATGCACCGAACGACGC	GAGAAACAAT	TAAGCTACGA	AACCGA-CAC	G-ATCGCCTC	ATCAAAACGC'	CGCTTCATG	ATTTTCT-AC	ACACAACGCA	TCGCTAGACTE	RGGC
heterochaeta RM1451	ATGCACCGAACGACGC	GAGAAACAAT	TAAGCTACGA	AACCGA-CAC	G-ATCGCCTC	ATCAAAACGC'	CGCTTCATG	ATTTTCT-AC	ACACAACGCA	TCGCTAGACTA	AGGC
jurineifolia jur SR682	ATGCACCGAACGATGC	GAGAAACAAT	TAAAGCTACGA	AACCAA-CAT	G-ATCGCCTC	ATTAAAACGC'	CGCTTCATG	ATTTTCT-AC	GCACAACGTA	TCGCTAGCC-C	IGGC
jurineifolia jur RM1518	ATGCACCGAACGATGC	GAGAAACAAT	TAAAGCAACGA	AACCAA-CAT	G-ATCGCCTC		r CGCTTCATC		GCACAACGTA	ACGCTAGCC-C	ACCC
jurineifolia scab CAM1604	ATGCACCGAACGATGC	GAGAAACAAT	TAAAGCTACGA	AACCAA-CAT	G-ATCGCCTC		rcgcttcatc	ΊΔΤΤΤΤΟΤ ΠΟ ΊΔΤΤΤΤΤΟΤ-ΔΟ	GCACAACGTA	TCGCTAGCC-C	
jurineifolia scab CAM2652	ATGCACCGAACGATGC	GAGAAACAAT	TAAAGCTACGA	AACCAA-CAT	G-ATCGCCTC		rcgcttcatc	ΊΔΤΤΤΤΟΤ ΠΟ ΊΔΤΤΤΤΤΟΤ-ΔΟ	GCACAACGTA	TCGCTAGCC-C	
krebsiana arctotoides RM868	ATGTACCGAGCGATGC	GAGAAACAGI	TAAAGCTACGA		G-ATCGCCTC	ATACAAACGC	rcgcttcatt	NITITICI NC	ACACAACGCA	TCGCTAGCA-A	
krebsiana_arctotoides_RM876	ATCTACCGARCGATCC	GAGAAACACI	TAAAGCTACGA	AACCAA-CAC	C-ATCCCCTC	ATACAAACCC	PCCCTTCATT	ATTICCA AC	ACACAACGCA	TCCCTACCA-A	
krebsiana krebsiana RM1114	ATGTACCGAACGATGC	GAGAAACACI	TAAAGCTACGA	AACCAA-CAC	C-ATCGCCTC	ATACAAACCC	PCCCTTCATT	ATTICCA AC	CCACAACGCA	TCCCTACCA-A	
krebsiana_krebisiana_RM1136	ATGTACCGAACGATGC	CACAAACACI	TAAAGCTACCA	AACCAA CAC	C-ATCCCCTC	ATACAAACGC	rcccrrcarr		ACACAACCCA	TCCCTACCA -	
krebsiana cerrulata PM863	ATGTACCGACCGATGC	CACAAACACI	TAAAGCTACCA	AACCAA CAC		ATACAAACOC	recentrenti	NTTTCCA AC	ACACAACCCA	TCCCTACCA -	
krobajana gorrulata PM065	ATGIACCGAGCGAIGC	CACAAACAGI	TAAAGCIACGA	AACCAA-CAG		ATACAAAIGC	LCGCIICAII Facarranta	ATTICCA-AC	ACACAACGCA	TCGCIAGCA-A	
loiopoda M240901	ATGIACCGAACGAIGC	CACAAACAGI	TAAAGCIACGA	AACCAA-CAG		ATACAAACGC	LCGCIICAII Facarranta	ATTICCA-AC	ACACAACGCA	TCGCIAGCA-A	
leiopoda_M240901		GAGAAACAGI		AACCAA-CAG		ATACAAACGC	racarran	ATTICCA-AC	ACACAACGCA	1CGCIAGCA-A	1990
lightongtoinii CIM1016	a IGCACCGAACGAIGC	GAGAAACAGI		AACCAA-CAC							1 1 1 1 1 1
lightongtoinii DM1240	AIGAACCGAACGAIGC	GAGAAACAA	LAAAGCIACGA	AACCGA-CAC							IGGC
linearia linearia DM1010	AIGAACCGAACGAIGC	GAGAAACAA		AACCGA-CAC							LGGC
linearis_linearis_RMI010	AIGIACCGAACGAIGC	GAGAAACAG	TAAAGCTACGA	AACCAA-CAC	G-AICGCCIC	AIACAAACGC	ICGCIICAII	ATTICCA-AC	ACACAACGCA	ICGCIAGCA-A	IGGC
linearis_linearis_SHI13	2222222222222222222	???????????		?????????????		???????????????????????????????????????		·?????????????????????????????????????		???????????????????????????????????????	????
linearis_ovalis_NDsn	ATGTACCGAACGATGC	GAGAAACAGI	L'AAAGC'I'ACGA	AACCAA-CAC	CG-ATCGCCTC	ATACTAACGC	PCGCTTCATT	AITTOCCA-AC	ACACAACGCA	TCGCTAGCA-A	'GGC
linearis_ovalis_RM854	ATGTACCGAACGATGC	GAGAAACAG'I	L'AAAGC'I'ACGA	AACCAA-CAG	G-ATCGCCTC	A'I'ACAAACGC'	rcgcttrcatt	'A'I"I"I'CCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
maritima_RM1038	ATGCACCGAACGATGC	GAGAAACAGA	AAAAGCTACGA	AACCAA-CAC	CG-ATCGCCTC	ATACAAACGC'	ICGCTTCATT	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	'GGC
maritima_M290606_6	ATGCACCGAACGATGC	GAGAAACAGA	AAAAGCTACGA	AACCAA-CAC	CG-ATCGCCTC	ATACAAACGC'	ICGCTTCATI	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
othonnites_RM1306	ATGTACCGAACGATGC	GAGAAACAGI	FAAAGCTACGA	AACCAA-CAG	G-ATCGCCTC	ATACAAACAC	FCGCTTCATT	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
pectinata_M120903	ATGTACCGAACGATGC	GAGAAACAGI	TAAAGCTACGA	AACCAA-CAC	CG-ATCGCCTC	ATACAAACGC	rcgcttcatt	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
pectinata_RM1044	ATGCACCGAACGATGC	GAGAAACAGI	TAAAGCTACGA	AACCAA-CAC	CG-ATCGCCTC	ATACAAACGC	rcgcttcatt	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
rigida_M280902	ATGTACCGAACGATGC	GAGAAACAGI	TAAAGCTACGA	AACCAA-CCO	G-ATCGCCTC	ATACAAACGC	rcgcttcatt	ATTTCCA-AC	CACACAACGCA	TC??????????	????
rigida_RM840	???????????????????????????????????????	\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$\$\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	????????????	·	·	\$\$\$\$\$\$\$\$\$\$	'???
rigens_leucolaena_RM773	ATGTACCGAACGATGC	GAGAAACAGI	TAAAGCTACGA	AACCAA-CAG	G-ATCGCCTC	ATACAAACGC	rcgcttcatt	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	AGGC
rigens_leucolaena_RM952_1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	??????????????????????????????????????	????????????	???????????????????????????????????????			???????????????????????????????????????	????
rigens_rigens_RM763	??????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	· · · · · · · · · · · · · · · · · · ·	?????????????	???????????????????????????????????????			???????????????????????????????????????	????
rigens_rigens_SR463	ATGTACCGAACGATGC	GAGAAACAGI	TAAGGCTACGA	AACCAA-CAC	CG-ATCGCCTC	ATACAAACGC	FCGCTTCATG	GATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	4GGC
rigens_uniflora_JC201205	ATGTACCGAACGATGC	GAGAAACAGI	TAAAGCTACGA	AACCAA-CAG	G-ATCGCCTC	ATACAAACGC	FCGCTTCATT	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
rigens_uniflora_RM920	ATGTACCGAACGATGC	GAGAAACAGI	TAAAGCTACGA	AACCAA-CAG	G-ATCGCCTC	ATACAAACGC'	FCGCTTCATT	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	1GGC
schenckii	ATGAACCGAACGATGC	GAGAAACAAT	TAAAGCTACGA	AACCGA-CAC	CG-ATCGCCTC	ATCAAAACGC'	FCGCTTCATG	GATTTTTCT-AC	CACACAACGCA	TCGCAAGACAA	1GGC
serrata_M250904_15	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	???????????????	????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	·???
serrata_RM898	ATGCACCGAACGATGC	GAGAAACAGA	AAAAGCTACGA	AACCAA-CAC	G-ATCGCCTC	ATACAAACGC	FCGCTTCATT	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	AGGC
tenuifolia_CAM1601	ATGCACCGAACGATGC	GAGAAACAAT	TAAGCTACG?	???????????????????????????????????????	·?????????????????????????????????????	?????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	????
tenuifolia_M2730	ATGCACCGAACGATGC	GAGAAACAAC	TAAGCTACGA	AACCGA-CAC	G-ATCGCCTC	ATCAAAACGC'	CGCTTCATG	GTTTTCC-AC	CACACAACGCA	TCACAAGCC-A	AGGC
spnov M040906 33	ATGTACCGAACGATGC	GAGAAACAGT	TAAAGCTACGA	AACCAA-CAG	G-ATCGCCTC	ATACAAACAC'	rcgcttcatt	ATTTCCA-AC	CACACAACGCA	TCGCTAGCA-A	AGGC

[1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430
Berkheya	TTGTGCCAACACGTCG	TGTTTAGAAA	AAAA-TCAAC	TTGCCACCCT	CCGTGGTGTT	GCGAAGCGAC	AATACCACAT	CCTCGA????	????????????	????????????????	????
Gorteria	TTGTGCCAACACGTCA	TGCATCGAAA	TCAAATCAGC	TTGCCACCCT	CCGTGGTGTT	GCGAAGCAAC	ATCACCACAT	CCTCGAGTAT	GCACCGTTCA	CAAAAT-GCC1	[???
Hirpicium	TTGTGCCAACACGTCA	TGGTTCAAAA	ACAAATCAGC	TTGCTACCCT	CRTGGAAAT	GCGAAGCTAC.	ATTWCCACAT	CCTCGGATAC	ACACCGTTGA	CGACAACCT	TGC
caespitosa_RC448	??????????????????????????????????????	???????????????????????????????????????	????????????	??????????????????????????????????????	???????????????	??????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????	???????????????????????????????????????	????
caespitosa_RVC307	TAGTGCCAACACGTCA	TGCTTCGAAA	ACAAATCAGC	TTGCCACCCT	CATGGTGTT	GCGAAGCGAC	ATCACCAGAT	CCTCGG????	???????????????	???????????????????????????????????????	????
ciliaris RM1230	TTGTGCGAACACGTCA	TGCTTCGAAA	ACAAATCAGC	TTGCCACCCT	CATGGTGTT	GCGAAGCGAC	ATCACCAGAT	CCTCGGGTAC	GCACCGTTCA	CTACGTCGCCT	TGT
ciliaris RM1382	TTGKGCGAACACGTCA	TGCTTCGAAA	ACAAATCAGC	TTGCCACCCT	CATGGTGTT	GCGAAGCGAC	ATCACCAGAT	CCTCGGGTAC	GCACCGTTCA	CTACGTCGCCT	TGT
heterochaeta RM1429 1	TTGCAAACACGTCA	TGCATCGAAA	ACAAATCAGC	TTGCCACCCT	CATGGTGTT	GCGAAGCGAC	AACACCACAT	CATTGGC	ACACCGTTAA	CTACGTCGCCT	ITGA
heterochaeta RM1451	TTGCAAACACGTCA	TGCATCGAAA	ACAAATCAGC	TTGCCACCCT	CATGGTGTT	GCGAAGCGAC	AACACCACAT	CATTGGC	ACACCGTTAA	CTACGTCGCCT	TGT
jurineifolia jur SR682	TAGTGCCAACACGTCA	TGCGTCGAAA	ACTAATCAGC	TTGCCACCCT	CAATGGTGTT	GCGAAGCGAC	ATCACCACAT	CCTCGGGTAC	GCACCGTTCA	CTACGTCGCCT	ſTG?
jurineifolia jur RM1518	TAGTGCCAACACGTCA	TGCTTCGAAA	AATAATCAGC	TTGCCACCCT	AATGGTGTT	GCGAAGCGAC	ATCACCACAT	CCTCGGGTAC	GCACCGTTCA	TTAC 222222	2222
jurineifolia scab CAM1604	TAGTGCCAACACGTCA	TGCGTCGAAA	ACTAATCAGC	TTGCCACCCT	AATGGTGTT	GCGAAGCGAC	ATCACCACAT	CCTCGGGTAC	GCACCGTTCA	CTACGTCGCCT	TGT
jurineifolia scab CAM2652	TAGTGCCAACACGTCA	TGCGTCGAAA	ACTAATCAGC	TTGCCACCCT	AATGGTGTT	GCGAAGCGAC	ATCACCACAT	CCTCGG-TAC	GCAC???????	???????????????????????????????????????	2222
krebsiana arctotoides RM868	TAGTGCCAACACGTCG	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT	CACTGATGTT	GCGAAGCGAC	AACACCAGAT	CATCGG	TCACCGTTCA	CTACGTCGCCT	TGT
krebsiana arctotoides RM876	TAGTGCCAACACGTCG	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT	CACTGATGTT	GCGAAGCGAC	AACACCAGAT	CATCGG	TCACCGTTCA	CTACGTCGCCT	TGT
krebsiana krebsiana RM1114	TAGTGCCAACACGTCG	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT	CACTGATGTT	GCGAAGCGAC	AACACCAGAT	CATCGG	TCACCGTTCA	CTACGTCGCCT	TGT
krebsiana krebisiana RM1136	TAGTGCCAACACGTCG	TGGTTTGAAA	AC??????????	22222222222	2222222222	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	22222222222	???????????????????????????????????????	2222
krebsiana serrulata RM863	TAGTGCCAACAYGTCG	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT		CGAAGCGAC	AACACCAGAT		тсассаттса	· · · · · · · · · · · · · · · · · · · ·	rtat
krebsiana serrulata RM965	TAGTGCCAACACGTCR	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT		CGAAGCGAC	AACACCAGAT	CATCGG	TCACCGTTCA	TACGTCGCCT	rtgt
leiopoda M240901	TAGTGCCAACACGTCG	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT		CGAAGCGAC	AACACCAGAT	CATCGG	TCACCGTTCA	TACGTCGCCT	rtgt
leiopoda RM1309	222222222222222222222222	22222222222	222222222222	22222222222	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	22222222222	222222222222	22222222222	222222222222	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2222
lichtensteinii CAM1916		TGCATCGAAA	AGTAATCAGC	 гтассатсст		CGAAGCGAC		CATCGG3333	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	··· >>>>
lichtensteinii RM1249		TGCATCGAAA	AGTAATCAGC	TTGCCATCCT		CGAAGCGAC	AACACCACAT	CATCGTA			··· >>>>
linearis linearis RM1010	TAGTGCCAACACGTCG	TGCTTTGAAA	ACAAATCAGC	TTGCCATCCT		CGAAGCGAC	AACACCAGAT	CATCGG	TCACCGTTCA	TTACGTCGCCT	··· rTGT
linearig linearig SH113	222222222222222222222222	22222222222	222222222222	22222222222	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	22222222222	222222222222	22222222222	222222222222	2222222222222	2222
linearis ovalis NDsn	TACTCCCAACACCTCC	 TCCTTTCAAA	acaaatcacc	·····			AACACCAGAT		 TCACCCTTCA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	••• ГТСТ
linearis ovalis RM854	TACTCCCAACACGTCC	TCCTTTCAAA	ACAAATCAGC.	TTGCCATCCT		CCAACCCAC	AACACCAGAT	CATCGG	TCACCOTICA		. IGI PTCT
maritima RM1038	TACTCCCAACACGTCC	TCOTTTCAAA	ACAAATCAGC.	TTGCCATCCT		CCAACCCAC	AACACCAGAT	CATCGG	TCACCOTICA		. IGI PTCT
maritima M290606 6	TACTCCCAACACGTCC	TCCTTTCAAA	ACAAATCAGC.	TTGCCATCCT		CCAACCCAC	AACACCAGAT	CATCGG	TCACCOTICA		. IGI PTCT
othonnites RM1306	TACTCCCAACACGTCC	TCCTTTCAAA	ACAAATCAGC.	TTGCCATCCT		CCAACCCAC	AACACCAGAT	CATCAG	TCACCOTICA		. IGI PTCT
pectinata M120903	TACTCCCAACACCTCC	TCCTTTCAAA		TTCCCATCCT			ACACCACAT		TCACCCTTCA		
pectinata RM1044	TACTCCCAACACCTCC	TCCTTTAAAA	ACAAATCAGC.	TTGCCATCCT		CCAACCCAC	AACACCAGAT	CATCGG	TCACCOTICA		rt
rigida M280902	22222222222222222222222	22222222222	222222222222	222222222222	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	22222222222	22222222222	22222222222	222222222222	2222222222222	2222
rigida RM840	······································	· · · · · · · · · · · · · · · · · · ·	22222222222	· · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····	·····		··· >>>>
rigens leucolaena RM773	TACTCCCAACACCTCC	•••••• тсстттсааа	acaaatcacc	·····			AACACCAGAT		 TCACCCTTCA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	••• ГТСТ
rigens leucolaena PM952 1	222222222222222222222222222222222222222	22222222222	222222222222	222222222222	222222222222	222222222222	222222222222	222222222222	2222222222222	222222222222222	2222
rigens rigens PM763		· · · · · · · · · · · · · · · · · · ·		·····		·····			·····		··· >>>>
rigens rigens SP463		 TCC22222222		·····		·····			·····		··· >>>>
rigong uniflora IC201205										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	::: רכידיים
rigong uniflora BM020		TCCTTTCAAA	ACAAAICAGC.	TIGCCAICCI	ACIGAIGII	JCGAAGCGAC	ACACCAGAI	CATCGG	TCACCGIICA		.1;; rm/rm
achonakij		TCCATCCAAA	ACAAAICAGC.	TIGCCAICCI		CGAAGCGAC	ACACCAGAI	CAICGG	ACCOUTAN		
SCHERCKII		IGCAICGAAA	ACCAAICAGC.	IIGCCACCCI	CAIGGIGII	JCGAAGCGAC	AACACCACAI	CAICGGGIAC	AAACCGWIAA		.161
Serrala_M250904_15			77777777777						222222222222		
SELIALA_KMOYO	TAGIGCCAACACGTCG	IGCI I IGAAA	ACTITITI	r r f f f f f f f f f f f		rrrrrrr????	*********	*********	111111111111	**********	
tenuitolla_CAMIOUI			····			//////////////////////////////////////	//////////////////////////////////////			//////////////////////////////////////	
$Lenullolla_M2/30$	I IGIGCCAACACGICA	IGCATCGAAA	ACAAATCAGC	I I GCCACCCT(CATGGTGAT	JUGAAGUGAU	AICACCACAT	CATCGGGTAC	GCACCGTTCA	TACGTCGCC	.CGT
spnov_MU4U9U6_33	TAGTGCCAACACGTCG	TGGTTTGAAA	ACAAATCAGC	TTGCCATCCT	CACTGATGTT	JCGAAGCGAC.	AACACCAGAT	CATCAG	TCACCGTTCAC	TACGTCGCC1	. TGT

•	

1440]

Berkheya	???????????????????????????????????????
Gorteria	???????????????????????????????????????
Hirpicium	CCATCAGCTGG
caespitosa_RC448	???????????????????????????????????????
caespitosa_RVC307	???????????????????????????????????????
ciliaris_RM1230	CCATCAGCTGG
ciliaris_RM1382	CCATCAGCTGG
heterochaeta_RM1429_1	CCATCAGCTGG
heterochaeta_RM1451	CCATCAGCTGG
jurineifolia_jur_SR682	???????????????????????????????????????
jurineifolia_jur_RM1518	???????????????????????????????????????
jurineifolia_scab_CAM1604	CCATCAGCTGG
jurineifolia_scab_CAM2652	???????????????????????????????????????
krebsiana_arctotoides_RM868	CCATCAGCTGG
krebsiana_arctotoides_RM876	CCATCAGCTGG
krebsiana_krebsiana_RM1114	CCATCAGCTGG
krebsiana_krebisiana_RM1136	???????????????????????????????????????
krebsiana_serrulata_RM863	CCATCAGCTGG
krebsiana_serrulata_RM965	CCATCAGCTGG
leiopoda_M240901	CCATCAGCTGG
leiopoda_RM1309	???????????????????????????????????????
lichtensteinii_CAM1916	???????????????????????????????????????
lichtensteinii_RM1249	???????????????????????????????????????
linearis_linearis_RM1010	CCATCAGCTGG
linearis_linearis_SH113	???????????????????????????????????????
linearis_ovalis_NDsn	CCATCAGCTGG
linearis_ovalis_RM854	CCATCAGCTGG
maritima_RM1038	CC??????????
maritima_M290606_6	CCATCAGCTGG
othonnites_RM1306	CCATCAGCTG?
pectinata_M120903	???????????????????????????????????????
pectinata_RM1044	CCATCAGCTGG
rigida_M280902	???????????????????????????????????????
rigida_RM840	???????????????????????????????????????
rigens_leucolaena_RM773	CCATCAGCTGG
rigens_leucolaena_RM952_1	???????????????????????????????????????
rigens_rigens_RM763	???????????????????????????????????????
rigens_rigens_SR463	???????????????????????????????????????
rigens_uniflora_JC201205	???????????????????????????????????????
rigens_uniflora_RM920	CCATCAGCTGG
schenckii	AAATCAGCTGT
serrata_M250904_15	???????????????????????????????????????
serrata_RM898	???????????????????????????????????????
tenuifolia_CAM1601	???????????????????????????????????????
tenuifolia_M2730	CCATCAGCTGG
spnov_M040906_33	CCATCAGCTGG

]	10	20	30	40	50	60	70	80	90	100	110]
Berkheya	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCCT-	CTTTTTTT-ATT	AGGTTGTAATGT	A
Gorteria	ATTCTTAGATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	'TAGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	AGCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
Hirpicium	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTT-ATT	GGGTTGTAATGT	A
caespitosa_RVC448	????????ATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	AATGTA
caespitosa_RVC307	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTTA	TTTTTTTTTTATT	GGGTTGTAATGT	AATGTA
ciliaris_RM1230	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
ciliaris_RM1382	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	AATGTA
heterochaeta RM1429	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
heterochaeta_RM1451	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	TGGCTCGACATCG	TTTGTTCTA	TTCTACTAGA	ACCCTTC	TTTTTTTT-ATT	GGGTTGTAATGT	'A
jurineifolia_jur_SR682	??????????????????????????????????????	?ATTTTATAT	AGGAATGAAGGT	GCTCCT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTT-ATT	GGGTTGTAATGT	'A
jurineifoliajur_RM1518	??????????????????????????????????????	?ATTTTATAT	AGGAATGAAGGT	GCTCCT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
jurineifolia scab CAM1604	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
jurineifolia_scab_CAM2652	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
krebsiana_arctotoides_RM868	???????????????????????????????????????	CATTTTATAT	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTT-ATT	GGGTTGTAATGT	'A
krebsiana_arctotoides_RM876	???????????????????????????????????????	CATTTTATAT	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTATT	GGGTTGTAATGT	'A
krebsiana_krebisiana_RM1114	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCA	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTATT	GGGTTGTAATGT	'A
krebsiana_krebsiana_RM1136	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTATT	GGGTTGTAATGT	'A
krebsiana_serrulata_RM863	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTATT	GGGTTGTAATGT	A
krebsiana_serrulata_RM965	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CC	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTATT	GGGTTGTAATGT	A
leiopoda_M240901	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTATT	GGGTTGTAATGT	A
leiopoda_RM1309	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	'TGGCTCGACGTCA'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTATT	GGGTTGTAATGT	A
lichtenstenii_CAM1916	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	'A
lichtensteinii_RM1249	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CC	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTTTTT	GGGTTGTAATGT	A
linearis_linearis_RM1010	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTTTTT	GGGTTGTAATGT	A
linearis_linearis_SH113	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
linearis_ovalis_NDsn	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CC	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
linearis_ovalis_RM854	???????????????????????????????????????	CATTTTATATA	AGGAATGAAGCT	GCC-CT	'TGGCTCGACGNCG'	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTCTTTTATT	GGGTTGTAATGT	A
maritima_RM1038	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCA	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTTTTT	GGGTTGTAATGT	A
maritima_M290606_6	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
othonnites_RM1306	??????????CCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCA	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
pectinata_M120903	?????????TCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCA	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
pectinata_RM1044	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTTTTT	GGGTTGTAATGT	A
rigida_M280902	???CTTACATCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
rigida_RM840	<pre></pre>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????	??????	???????????????????????????????????????	??????????	???????????????????????????????????????	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$???????????????????????????????????????	???????????????????????????????????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
rigens_leucolaena_RM773	<pre></pre>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????	??????	????TCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
rigens_leucolaena_RM952_1	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	'TGGCTCGACGTCA'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	TTTTTTTTTTATT	GGGTTGTAATGT	'A
rigens_rigens_RM763	<pre></pre>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????	??????	???????????????????????????????????????	??????????	???????????????????????????????????????	?????TT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
rigens_rigens_SR463	?????TTCTCCAC	CATTTTATATA	AGGAATGAAGCT	'GCA-CA'	TGGCTCGACGTCA	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
rigens_uniflora_JC201205	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGCCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTTTTT	GGGTTGTAATGT	A
rigens_uniflora_RM920	????????CTCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTTTATT	GGGTTGTAATGT	A
schenckii	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	'TGGCTCGACGTCG'	TTTGTTCTA	TTCTACTAGA	ACCCTT-	CTTTTTTTTATT	GGGTTGTAATGT	'A
serrata_M250904_15	ATTCTTACATCCAC	CATTTTATAT	AGGAATGGAAGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTCTTTTATT	GGGTTGTAATGT	A
serrata_RM898	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	TTTTTTTT-ATT	GGGTTGTAATGT	A
tenuifolia_CAM1601	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	CTTTTTTTATT	GGGTTGTAATGT	A
tenuifolia_M2730	ATTCTTACATCCAC	CATTTTATAT	AGGAATGAAGGT	GCT-CT	TGGCTCGACGTCG	TTTGTTCTA	FTCTACTAGA	ACCCTT-	CTTTTTTTATT	GGGTTGTAATGT	'A
spnov_M040906_33	ATTCTTACATCCAC	CATTTTATATA	AGGAATGAAGCT	GCT-CT	TGGCTCGACGTCA	TTTGTTCTA	ITCTACTAGA	ACCCTT-	TTTTTTTTTTATT	GGGTTGTAATGT	A

Berkheya Gorteria Hirpicium caespitosa RVC448 caespitosa RVC307 ciliaris RM1230 ciliaris RM1382 heterochaeta RM1429 heterochaeta RM1451 jurineifolia_jur_SR682 jurineifoliajur_RM1518 jurineifolia_scab_CAM1604 jurineifolia scab CAM2652 krebsiana arctotoides RM868 krebsiana arctotoides RM876 krebsiana krebisiana RM1114 krebsiana krebsiana RM1136 krebsiana serrulata RM863 krebsiana serrulata RM965 leiopoda M240901 leiopoda RM1309 lichtenstenii CAM1916 lichtensteinii_RM1249 linearis linearis RM1010 linearis linearis SH113 linearis_ovalis_NDsn linearis ovalis RM854 maritima_RM1038 maritima M290606 6 othonnites RM1306 pectinata M120903 pectinata RM1044 rigida_M280902 rigida RM840 rigens leucolaena RM773 rigens leucolaena RM952 1 rigens_rigens_RM763 rigens rigens SR463 rigens_uniflora_JC201205 rigens uniflora RM920 schenckii serrata M250904 15 serrata RM898 tenuifolia_CAM1601 tenuifolia M2730 spnov M040906 33

120

130

140

150

160

170

180

190

200

210

2201

AATAGTTCAKGAKGGAGCYCGAGTAGAAAGTATTGATTAATTTCYCAGGGGGCAACGATCTAGGGTTAATGCCAATCAATAAATTGGAACAACTTCGTAAGTATATCTTCG

[

330]

Berkneya	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTAAACTCAAAATAATTTTTTTT
Gorteria	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTTGTTGGAACCGCGAAAACTTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
Hirpicium	ATATAGAAATCGAAAGGATCCGAGTCCGAGCAAATTTTCAACTCAAAAAAATTTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
caespitosa_RVC448	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAA
caespitosa_RVC307	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
ciliaris_RM1230	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
ciliaris_RM1382	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAA
heterochaeta_RM1429	ATATAGAAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAATTTGTTGGAACCGCTAAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
heterochaeta_RM1451	ATATAGAAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAATTTGTTGGAACCGCTAAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
jurineifolia_jur_SR682	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAA
jurineifoliajur_RM1518	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAA
jurineifolia_scab_CAM1604	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAA
jurineifolia_scab_CAM2652	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAAA
krebsiana_arctotoides_RM868	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
krebsiana_arctotoides_RM876	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
krebsiana_krebisiana_RM1114	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
krebsiana_krebsiana_RM1136	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
krebsiana_serrulata_RM863	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
krebsiana_serrulata_RM965	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
leiopoda_M240901	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
leiopoda_RM1309	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
lichtenstenii CAM1916	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
lichtensteinii RM1249	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
linearis linearis RM1010	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
linearis linearis SH113	ATATAGAAATCGAAAGGATCCGATCCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACGGTGTATCGCGTATGAATCAACCGTCG
linearis ovalis NDsn	ATATAGAAATCGAAAGGATCCGATCCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACGGTGTATCGCGTATGAATCAACCGTCG
linearis ovalis RM854	ATATAGAAATCGAAAGGATCCGATCCGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACGGTGTATCGCGTATGAATCAACCGTCG
maritima RM1038	ATATAGAAATCGAAAGGATCCGAGTCGAGCAAAATTTTCAACTCGAAAAAAATTTGTTGGAACGCTAAAAACTTTTTCGATCCACGGTGTATCGCGTATGAATCAACCGTCG
maritima M290606 6	ATATAGAAATCGAAAGGATCCGAGTCGAGCAAAATTTTCAACTCGAAAAAAATTTGTTGGAACGCTAAAAACTTTTTCGATCCACGGTGTATCGCGTATGAATCAACCGTCG
othonnites RM1306	ATATAGAAAACGAAAGGATCCGAGTCGAGCAAAATTTTCAACTCAAAAAAATTTGTTGGAACGCGCTAAAAACTTTTTCGACCCACAGTGTATCGACGGTATGAATCAACCGTCG
pectinata M120903	ATATAGAAATCGAAAGGATCCGAGTCGAGCAAAATTTTCAACTCAAAAAAAA
pectinata RM1044	
rigida M280902	
rigida RM840	22222222222222222222222222222222222222
rigens leucolaena RM773	
rigens leucolaena RM952 1	
rigens_rigens_PM763	
rigens rigens SP463	
rigens uniflora JC201205	
rigong uniflora PM020	
rigens_unritora_kM920	
SCHEHICKII	A LA LAGAAA LOGAA LOGA LOGA LOGA CAAA LI LICAACI CAAAAAAA LI LU LIGGAACOACI LAAAACI LI LI LOGAL COACAGTGI A LOGACOACI CAAGTGI A LOGACOACI A LAGAACAA LI LU LIGGAACOACI A LAGAACAACI LI LI LOGACOACI CAACAGTGI A LOGACOACI A LAGAACAACI LI LI LI LOGACOACI A LAGAACAACI LI LI LOGACOACI A LAGAACAACI LI LI LI LOGACOACI A LAGAACAACI LI LI LOGACOACI A LAGAACAACI LI LI LI LOGACOACI A LAGAACAACI LI LI LOGACOACI A LAGAACAACI LI LI LI LI LI LI LIGACOACI A LI LI LI LI LOGACOACI A LI
serrala_M250904_15	A LA LAGAAA L GAAAGGA L CGACAGA L GAGAAAAATTI CAACTAAAAAAAATTI GTI GGACCGACTAAAACTI TI TI CGAT CCACAGTGI ATCGCGTA LGACCAACGCGTCG
serrata_KM898	A 1A IAGAAA I CGAAAGGATCCGATTCGAGCAAATTTTTCAACTGAAAAAAATTTTTTGGGACCGGCIAAAACTTTTTTCGATCCACAGTGIATCGCGTATGAACCAACCGTCG
tenuirolia_CAMI6UI	atatasaaatugaaagatuugaatugaatugaatugaaataaaaatitugtuggaacgaaaaatitugtuggaatgaataaaatu
tenuitolia_M2730	ATATAGAAATCGAAAGGATCCGATTCGAGCAAATTTGCAACTCAAAAAAATTTTGTTGGAACCGCTAAAACTTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG
spnov_M040906_33	ATATAGAAATUGAAAGGATUUGATIUGAGCAAATTTTCAACTCAAAAAAATTTGTTGGAACCGCTAAAACTTTTTCGATCCACAGTGTATCGCGTATGAATCAACCGTCG

[

Derricherer	
Berkneya	GIAIGATTCTTTGATAGAAAGAAATCCAAAAAGGGTATGTTGCTACCATTTTGAAAAGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTAAAAAAAGATA
Gorteria	GIAIGATTCTTTGATAGAAAGAAATCCAAAAAGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTAAAAAAAGATA
Hirpicium	GTATGATTCTTTGATAGAAAGAAATCACAAAAAGGGGTATGTTGCTACCATTTTGAAAAAATTAAGAAGCACCGAAGTAATGTCTAAAACCAATGATTTAAAAACAAAGATA
caespitosa_RVC448	GTATGATTCTTTGATAGAAAGAAATCACAAAAAGGGTATGTTGCTACCATTTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
caespitosa_RVC307	GTATGATTCTTTGATAGAAAGGAAATCACAAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAAACCCAATGATTTAAAAACAAAGATA
ciliaris_RM1230	GTATGATTCTTTGATAGAAATAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
ciliaris_RM1382	GTATGATTCTTTGATAGAAATAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
heterochaeta_RM1429	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
heterochaeta_RM1451	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
jurineifolia_jur_SR682	GTATGATTCTTTGATAGAAAGAAATCACAAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
jurineifoliajur_RM1518	GTATGATTCTTTGATAGAAAGAAATCACAAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
jurineifolia_scab_CAM1604	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
jurineifolia_scab_CAM2652	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
krebsiana_arctotoides_RM868	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
krebsiana_arctotoides_RM876	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
krebsiana_krebisiana_RM1114	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
krebsiana_krebsiana_RM1136	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
krebsiana_serrulata_RM863	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
krebsiana_serrulata_RM965	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
leiopoda_M240901	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
leiopoda_RM1309	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
lichtenstenii_CAM1916	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
lichtensteinii_RM1249	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
linearis linearis RM1010	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
linearis linearis SH113	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
linearis ovalis NDsn	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
linearis ovalis RM854	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
maritima RM1038	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
maritima M290606 6	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAACAAAGATA
othonnites RM1306	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAAACAAAGATA
pectinata M120903	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCAATGATTTAAAAACAAAGATA
pectinata RM1044	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCCAATGATTTAAAAACAAAGATA
rigida M280902	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCCAATGATTTAAAAACAAAGATA
rigida RM840	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAACCCCAATGATTTAAAAACAAAGATA
rigens leucolaena RM773	GTATGATTCTTTCATAGAAAGAAATCACAAAAGCGCTATCTTCCTACCATTTTCGAAAGCACCACCGAAGTAATGTCTAAAACCAATGATTTAAAAACAAAGATA
rigens leucolaena RM952 1	
rigens rigens RM763	GTATGATTETTTGATAGA A AGA A TEGATA A A GGGGTATGTTGCTACCATTTTGA A GGATTA AGA SCA COA AGTA A TGTCTA A A COA AGATTA A A COA AGATA
rigens rigens SP463	GTATGATTCTTTCATAGIAAGAAALGAAAAGGGTATGTTCCTTCCTTACCATTTTCATAGGATTAAGAACGACGACGAAGAAGAAGAATGTTTAAACGATTAAAGAATA
rigong uniflora IC201205	GIAIGATUCTICUTICUTICUTACUTACUTACUTACUTACUTICUTACUTICUTACUTITUCAAUGUCTUAAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUA
rigens_uniflexa_DM020	
rigens_unritora_RM920	
Schenckii	
Serrata DM909	GIAIGATICITIGATAGAAAGAAATACAAAAGGGIAIGTIGCIACCATTIGGAAGGATTAAGAAGCCCCGAAGTAAIGTCIAAACCCCAATGATTTAAAACAAAGATA
serrala_RM898	GIAIGAIICIII GAIAGAAAGAAAICAAAAGGGGTAIGTIGCTACCAITTIGAAAGGAITAAGAAGCACCGAAGTAATGTCTAAAACCAATGATTTAAAAACAAAGATA
LenulIOIIa_CAMI6UI	GIAIGAIICIIIGAIAGAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAAACCAATGATTTAAAAACAAAGGAT
tenuiiolia_M2/30	GTATGATTCTTTGATAGAAAGAAATCACAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCACCGAAGTAATGTCTAAAACCAATGATTTAAAAACAAAGATA
spnov_M040906_33	gtatgattutttigatagaaagaaatuaCAAAAGGGGTATGTTGCTACCATTTTGAAAGGATTAAGAAGCAUCGAAGTAATGTUTAAAACCAATGATTTAAAACAAAGATA

440]

Berkheya AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAAGGGGAGGGGGTTAAAGA	CCACTCAAT
Gorteria AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACAGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAT
Hirpicium AAGGATCCCAGAACAAGGAAACACCACTTCGATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAAGGGGGGGTTAAAGA	CCACTCAAT
caespitosa_RVC448 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGTTAAAGA	CCACTCAAA
caespitosa_RVC307 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGTTAAAGA	CCACTCAAA
ciliaris_RM1230 AAGGATCCCAGAACAAGGAAACAACGACTCCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGTTAAAGA	CCACTCAAA
ciliaris_RM1382 AAGGATCCCAGAACAAGGAAACAACGACTCCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGTTAAAGA	CCACTCAAA
heterochaeta_RM1429 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
heterochaeta_RM1451 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
jurineifolia_jur_SR682 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
jurineifoliajur_RM1518 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
jurineifolia_scab_CAM1604 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
jurineifolia_scab_CAM2652 AAGGATCCCAGAACAAGGAAACAACGACACCTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
krebsiana_arctotoides_RM868 AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
krebsiana_arctotoides_RM876 AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
krebsiana_krebisiana_RM1114 AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
krebsiana_krebsiana_RM1136 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
krebsiana_serrulata_RM863 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
krebsiana_serrulata_RM965 AAGGATCCCAGAACAAGGAAACACGACTCCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
leiopoda_M240901 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATTTGAATAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
leiopoda_RM1309 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
lichtenstenii_CAM1916 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
lichtensteinii_RM1249 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
linearis_linearis_RM1010 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
linearis_linearis_SH113 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
linearis_ovalis_NDsn AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
linearis_ovalis_RM854 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
maritima_RM1038 AAGGATCCCAGAACAAGGAAACAACGACTCCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
maritima_M290606_6 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
othonnites_RM1306 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
pectinata_M120903 AAGGATCCCAGAACAAGGAAACAACGACTCCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
pectinata_RM1044 AAGGATCCCAGAACAAGGAAACAACGACTCCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigida_M280902 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigida_RM840 AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAAGGGGGGGG	CCACTCAAA
rigens_leucolaena_RM773 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigens_leucolaena_RM952_1 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigens_rigens_RM763 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigens_rigens_SR463 AAGGATCCCAGAACAAGGAAACAACGACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigens_uniflora_JC201205 AAGGATCCCAGAACAAGGAAACAACGACACCACTTCAATTGTCTCCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
rigens_uniflora_RM920 AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
schenckii AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAACGGGGGGGTTAAAGA	CCACTCAAA
serrata_M250904_15 AAGGATCCCAGAACAAGGAAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
serrata_RM898 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
tenuifolia_CAM1601 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
tenuifolia_M2730 AAGGATCCCAGAACAAGGAAACACGACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA
spnov_M040906_33 AAGGATCCCAGAACAAGGAAACACCACTTCAATTGTCTCACGGATCTGAATAAAGAATCCAAATAGATTTTAAACGAGACAAAAGGGGGGGG	CCACTCAAA

[560	570	580	590	600	610	620	630	640	650	660]
Berkheva	ААААААА	G	ATTTTTCTT	TAATATT	ATTTTAAGAATTAJ	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	FAAA
Gorteria	ААААААА	TATCTTAAAG	ATTTCTT	FAATAT	-AATTGAGAATTAJ	TGAACATGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
Hirpicium	АААААААА	TCTTAAAG	GTTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	raaa
caespitosa RVC448	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTGTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	raaa
caespitosa RVC307	ААААААТААААА	TATCTTAAAG	ATTTTTGTT	FAATAT	-AATTGAGAATTAJ	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	raaa
ciliaris RM1230	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCCT	FAATAT	-AATTGAGAATTAJ	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
ciliaris RM1382	ΑΑΑΑΑΑΑΑΑ-ΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCCT	FAATAT	-AATTGAGAATTAJ	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
heterochaeta RM1429	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	raaa
heterochaeta RM1451	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
jurineifolia jur SR682	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTCI	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
jurineifoliajur RM1518	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTCI	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
jurineifolia scab CAM1604	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTCI	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
jurineifolia scab CAM2652	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTCI	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
krebsiana arctotoides RM868	ΑΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
krebsiana arctotoides RM876	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
krebsiana krebsiana RM1136	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
krebsiana serrulata RM863	ΑΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
krebsiana serrulata RM965	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
leiopoda_M240901	ΑΑΑΑΑΑΑΑΑΑ-ΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
leiopoda_RM1309	ΑΑΑΑΑΑΑΑΑΑ-ΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
lichtenstenii_CAM1916	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
lichtensteinii_RM1249	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
linearis linearis RM1010	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
linearis_linearis_SH113	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
linearis_ovalis_NDsn	ΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
linearis_ovalis_RM854	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
maritima_RM1038	ΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
maritima_M290606_6	ΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
othonnites RM1306	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	FAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
pectinata_M120903	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
pectinata_RM1044	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
- rigida_M280902	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	[??????????????????????????????????????	??????????	???????????????	???????????????????????????????????????	???????????????????????????????????????	????
rigida_RM840	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
rigens_leucolaena_RM773	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
rigens_leucolaena_RM952_1	ΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
rigens_rigens_RM763	ΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
rigens_rigens_SR463	ΑΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
rigens_uniflora_JC201205	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
rigens_uniflora_RM920	АААААААТААААА	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
schenckii	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
serrata_M250904_15	ΑΑΑΑΑΑΑΤΑΑΑΑΑ	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
serrata_RM898	ААААААААААТААААА	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	TAAA
tenuifolia_CAM1601	ААААААТААААА	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	AAA
tenuifolia_M2730	ААААААТААААА	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	.'AAA
spnov_M040906_33	ААААААТААААА	TATCTTAAAG	ATTTTTCTT	TAATAT	-AATTGAGAATTAT	TTGAACTTGAG	TTATGAGTA	CAAATGATTTT	TTCTTTTTCA	GGAAGGAAGCT	'AAA

I	670	680	690	700	710	720	730	740	750	760	770]
Berkheya	TAAAAATGACTATGAG:	TTAAATT-	ATAGGC	FAATTTCTT	TTA(CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	ATTATTAGAAT	TTTA
Gorteria	TAAAAATGATTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTA(CGGATTCCTTT	ACTATTTAA	TTTATTATA	ATTTTATCCAT	A	
Hirpicium	TAAAAAG	TTAAATT-	ATAGGC	FAATTTCTT	TTA0	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTACTCCAT	A	
caespitosa_RVC448	AAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
caespitosa RVC307	AAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTA	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
ciliaris RM1230	AAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTA	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
ciliaris_RM1382	AAAAAATGACTATGAG	TTAAATTT	TAAATTATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
heterochaeta_RM1429	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
heterochaeta_RM1451	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	TAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
jurineifolia_jur_SR682	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATCTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAATAGA	ATTTTACCCAT	A	
jurineifoliajur_RM1518	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATCTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAATAGA	ATTTTACCCAT	A	
jurineifolia_scab_CAM1604	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATCTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAATAGA	ATTTTACCCAT	A	
jurineifolia_scab_CAM2652	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATCTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAATAGA	ATTTTACCCAT	A	
krebsiana_arctotoides_RM868	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
krebsiana_arctotoides_RM876	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
krebsiana_krebisiana_RM1114	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
krebsiana_krebsiana_RM1136	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
krebsiana_serrulata_RM863	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
krebsiana_serrulata_RM965	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	TAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
leiopoda_M240901	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
leiopoda_RM1309	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
lichtenstenii_CAM1916	TAAAAAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
lichtensteinii_RM1249	TAAAAAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
linearis_linearis_RM1010	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	TAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
linearis_linearis_SH113	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	TAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
linearis_ovalis_NDsn	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
linearis_ovalis_RM854	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
maritima_RM1038	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
maritima_M290606_6	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
othonnites_RM1306	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
pectinata_M120903	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
pectinata_RM1044	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigida_M280902	\$\$ \$ \$?????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	????
rigida_RM840	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigens_leucolaena_RM773	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigens_leucolaena_RM952_1	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigens_rigens_RM763	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigens_rigens_SR463	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigens_uniflora_JC201205	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
rigens_uniflora_RM920	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
schenckii	TAAAAAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
serrata_M250904_15	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
serrata_RM898	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
tenuifolia_CAM1601	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
tenuifolia_M2730	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	
spnov_M040906_33	TAAAAATGACTATGAG	TTAAATT-	ATAGGC	FAATTTCTT	TTTTATTTTAC	CGGATTCCTTT	ACTATTTAT	TAGAA	-TTTTATCCAT	A	

[780	790	800	810	820	830	840	850	rpS16 860	< > 	psbA-trn 870	.H 880
Portherro			ppppagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		አ ር አ አ አ ለ ር ጥጥር ር	and		1 mmAmmmmm		rama c	1	TCCC
Cortoria			TTTTCTCGAG(AGAAAACIIC	CIAIACGGIIC			CAICIACA.		AAAICCACI	2222
Gorceria					AGAAAACIIC(TAGGGGGGGGG-		CAICIACA.		ייייייייייייייייייייייייייייייייייייי	r r r r Taga
And					AGAAAACIIC(TGCC
caespitosa_RVC446					AGAAAACIIC(TGCC
caespilosa_RVC307												TGCC
ciliaris_RMI230	GACAAAACII				AGAAAACIIC				CATCIACA.			TGCC
beteweeheete DM1420	GACAAAACII				AGAAAACIIC		TAGGGGGGGG-					TGCC
heterochaeta_RM1429	GACAAAACII				AGAAAACIIC		TAGGGGGGGG-				AAAICCACI	IGCC
neterochaeta_RM1451	GACAAAACII				AGAAAACIIC		TAGGGGGGGG-					
Jurineirolia_Jur_SR682	GACAAAACTT	CAAATCATT			AGAAAACTTC	CTATACGGTT(TAGGGGGGGG-	-11011111	CATCTACA		AAATCCACI	TGCC
jurineifoliajur_RMI518	GACAAAAC'I''I	CAAATCATT	I"I"I"I"C'I"I'GAGO		AGAAAAC'I''I'C(CTATACGGTTC	TAGGGGGGG-	1-1-C-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	CATCTACA.	I'C'I'AC	AAATCCACI	TGCC
jurineifolia_scab_CAM1604	GACAAAAC'I''I	CAAATCATT	I"I"I"I"C'I"I'GAGO		AGAAAAC'I''I'C(CTATACGGTTC	TAGGGGGGG-	1-1-C-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	CATCTACA.	I'C'I'AC	AAATCCACI	TGCC
Jurineifolia_scab_CAM2652	GACAAAAC'I''I	CAAATCATT	I"I"I"I"C'I"I'GAGO		AGAAAAC'I''I'C(CTATACGGTTC	TAGGGGGGG-	1"1"C"1"1"1"1"	CATCTACA	L.C.L.AC	AAATCCACI	TGCC
krebsiana_arctotoides_RM868	GACAAAAC'I"I	'CAAATCATT	I"I"I"TCTTGAGC	CGTACGAGG	AGAAAAC'I"I'C(CTATACGGTTC	"TAGGGGGGG?		222222222	22222	???TCCACI	rgcc
krebsiana_arctotoides_RM876	GACAAAAC'I"I	'CAAATCATT	I"I"I"TCTTGAGC	CGTACGAGG	AGAAAAC'I"I'C(CTATACGGTTC	"I'A??????????????		222222222	???AC	'AAATCCAC'I	rgcc
krebsiana_krebisiana_RMI114	GACAAAAC'I"I	'CAAATCATT	I"I"I"TCTTGAGC	CGTACGAGG	AGAAAAC'I"I'C(CTATACGGTTC	"TAGGGGGGG-	- – 'I"I'C'I"I"I"I"I	CATCTACA.	I'C'I'AC	'AAATCCAC'I	rgcc
krebsiana_krebsiana_RMI136	GACAAAAC'I"I	'CAAATCATT	I"I"I"TCTTGAGC	CGTACGAGG	AGAAAAC'I"I'C(CTATACGGTTC	TAGGGGGGG?		555555555	???AC	'AAATCCACI	rgcc
krebsiana_serrulata_RM863	GACAAAACTI	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	CTATACGGTTO	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CTAC	AAATCCACI	IGCC
krebsiana_serrulata_RM965	GACAAAACTI	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	CTATACGGTTO	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CL35	AAATCCACI	IGCC
leiopoda_M240901	GACAAAACTI	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	CTATACGGTTO	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CTAC	AAATCCACI	IGCC
leiopoda_RM1309	GACAAAACTI	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	CTATACGGTTO	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CTAC	AAATCCACI	IGCC
lichtenstenii_CAM1916	GACAAAACTI	'CAAATCATT'	TTTTCTTGAGO	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTT	TAGGGGGGG-		CATCTACA	FCT??		????
lichtensteinii_RM1249	GACAAAACTI	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	C??????????	·?????????????????????????????????????	·?????????????	?????????	???AC	AAATCCACI	IGCC
linearis_linearis_RM1010	GACAAAACTI	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	CTATACGGTTO	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CTAC	AAATCCACI	IGCC
linearis_linearis_SH113	GACAAAACTT	CAAATCATT	TTTTCTTGAGO	CCGTACGAGG	AGAAAACTTCO	CTATACGGTTC	TAGGGGGGG-		CATCTACA	CTAC	AAATCCACI	FGCC
linearis_ovalis_NDsn	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTTC	TAGGGGGGG-		CATCTACA	FCTAC	AAATCCACI	IGCC
linearis_ovalis_RM854	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTTC	TAGGGGGGG-		CATCTACA	FCTAC	AAATCCACI	IGCC
maritima_RM1038	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTTC	TAGGGGGGG-		CATCTAC?	???AC	AAATCCACI	IGCC
maritima_M290606_6	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTTC	TAGGGGGGG-		CATCTACA	FCTAC	AAATCCACI	IGCC
othonnites_RM1306	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTAC????	??????????????????????????????????????	\$\$\$\$\$\$\$\$\$\$	·		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	?????	\$\$\$\$\$\$\$\$\$C1	IGCC
pectinata_M120903	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTT	TAGGGGGGG-		CATCTACA	CTAC	AAATCCACT	IGCC
pectinata_RM1044	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTTC	TA???????????????		3333333333	???AC	AAATCCACT	IGCC
rigida_M280902	??????????????????????????????????????	??????????	???????????????????????????????????????	?????????????	????????????	???????????	??????????????????????????????????????	???????????????????????????????????????	?????????	???AC	AAATCCACT	IGCC
rigida_RM840	GACAAAACTT	CAAATCATT	TTTTCTTGAGC	CCGTACGAGGA	AGAAAACTTC	CTATACGGTTC	TAGGGGGGG-	-TTCTTTTT	CATCTACA	FCTAC	AAATCCACT	IGCC
rigens_leucolaena_RM773	GACAAAACTT	CAAATCATT	TTTTCTTGAGC	CCGTACGAGGA	AGAAAACTTC	CTATACGGTTC	TAGGGGGGG-	-TTCTTTTT	CATCTACA	FCTAC	AAATCCACT	IGCC
rigens_leucolaena_RM952_1	GACAAAACTI	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	FCTAC	AAATCCAC	IGCC
rigens_rigens_RM763	GACAAAACTI	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	FCTAC	AAATCCAC	IGCC
rigens_rigens_SR463	GACAAAACTI	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	FCTAC	AAATCCAC	IGCC
rigens_uniflora_JC201205	GACAAAACTI	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTCO	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTA??	???AC	AAATCCAC	IGCC
rigens_uniflora_RM920	GACAAAACTI	CAAATCATT	TTTTCTTGAG	CCGTACGAGG	AGAAAACTTC	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CTAC	AAATCCAC	IGCC
schenckii	GACAAAACTI	CAAATCATT	TTTTCTTGAG	CCGTACGAGG	AGAAAACTTC	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CTAC	AAATCCAC	IGCC
serrata_M250904_15	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTT	TAGGGGGGGG	G-TTCTTTTT	CATCTACA	CTAC	AAATCCAC?	IGCC
serrata_RM898	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CT?C	AAATCCAC?	IGCC
tenuifolia_CAM1601	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CT??	?AATCCAC?	IGCC
tenuifolia_M2730	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTT	TAGGGGGGG-	-TTCTTTTT	CATCTACA	CT??	222222222	??CC
spnov_M040906_33	GACAAAACTT	CAAATCATT	TTTTCTTGAG	CCGTACGAGGA	AGAAAACTTC	CTATACGGTTC	TAGGGGGGG-	-TTCTTTT-	CATCTACA	ГСТАС	AAATCCACT	IGCC
]	890	900	910	920	930	940	950	960	970	980	990]	
-----------------------------	--------------------------	-------------	---	----------	----------------------------	---------------	-----------	----------	-------------	-------------	------	
Berkheya	TTGATCCACTGGGCTA	CATCCGCCC	CTCTACTATTAT-		CTAGTATTAC	GCTAGTATT	ACTATATTT		T	TCCATTAACAT	GAAA	
Gorteria	?TGATCCACTTGGCTA	CATCCGCCC	CTTTACTATTAT-		CTAGTATTAT	CTAGTATT	ACTATATTT	GTAA	TACTATATTTT	TCCATTAACAA	GAAA	
Hirpicium	TTGATCCACTTGGCTA	CATCCGCCC	CTCTACTATTAT-		CTAGTATTAT	CTAGTATT	ACTATATTT		T	TCCATTAACAT	JAAA	
caespitosa RVC448	TTGATCCACTTGGCTA	CATCCGCCC	CTCTACTATTAT-									
caespitosa RVC307	TTGATCCACTTGGCTA	CATCCGCCC	CTCTACTATTAT-									
ciliaris RM1230	TTGATCCACTTGGCTA	CATCCGCCC	TCTACTATTAT-									
ciliaris RM1382	TTGATCCACTTGGCTA	CATCCGCCC	TCTACTATTAT-									
heterochaeta RM1429	TTGATCCACTTGGCTA	CATCCGCCC	TCTACTATTAT-		CTAGTATTA	-TAGTATT	ACTATATTT	TTACA				
heterochaeta RM1451	??????????TTGGCTA	CATCCGCCC	TCTACTATTAT-		CTAGTATTA	-TAGTATT	ACTATATTT	TTACA				
jurineifolia jur SR682	TTGATCCACTTGGCTA	CATCCGCCC	TCTACTATTAT-		CTAGTATTA	-TAGTATT	ACTATATTT	TTACA				
jurineifoliajur RM1518	TTGATCCACTTGGCTA	CATCCGCCC	ЧТСТАСТАТТАТ-		CTAGTATTAZ	-TAGTATT	ACTATATT	TTACA				
jurineifolia scab CAM1604	TTGATCCACTTGGCTA	CATCCGCCC	TCTACTATTAT-		CTAGTCTTA	-TAGTATT	ACTATATTT	TTACA				
jurineifolia scab CAM2652	TTGATCCACTTGGCTA	CATCCGCCC	ЧТСТАСТАТТАТ-		CTAGTATTAZ	-TAGTATT	-CTATATTT	TTACA				
krebsiana arctotoides RM868	TTGATCCACTTGGCTA	CATCCGCCC	TCTACTATTAT-		CTAGTATTA	-TAGTATT	ACTATATTT	TTACA				
krebsiana arctotoides RM876	TTGATCCACTTGGCTA	CATCCGCCC	ЧТСТАСТАТТАТ-		CTAGTATTAZ	-TAGTATT	ACTATATTT	TTACA				
krebsiana krebisiana RM1114	TTGATCCACTTGGCTA	CATCCGCCC	ЧТСТАСТАТТАТ-		CTAGTATTAZ	-TAGTATT	ACTATATTT	TTACA				
krebsiana krebsiana RM1136	TTCATCCACTTCCCCTA	CATCCGCCC	отстастаттат-			-TAGTATT		TTACA				
krebsiana serrulata RM863	TTCATCCACTTCCCTA	CATCCGCCC	ототаотаттат-					TTACA				
krebsiana serrulata RM965	TTCATCCACTTCCCTA	CATCCCCCC	ототаотаттат-									
lejopoda M240901	TTCATCCACTTCCCTA	CATCCCCCC	ОПСІАСІАІ ІАІ ОТСТАСТАТТАІ	romaoman	UTACIALIA TTATCTACTATTA							
leiopoda_M210901	TTCATCCACTTCCCTA	CATCCCCCC	ототаотаттат-									
lichtenstenii CAM1916	222222222222222222222222	22222222222	222220 222220 777 777 777 777 777									
lichtensteinii PM1249		CATCCCCCC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
linearia linearia RM1010	TTCATCCACTTCCCTA	CATCCGCCCC										
linearia linearia Sulla	TTCATCCACTIGGCIA	CATCCGCCCC						TTACA				
linearig ovalig NDgn	TTCATCCACTTCCCTA	CATCCGCCCC										
linearig ovalig PM954		CATCCGCCCC						TTACA				
maritima PM1029	TIGAICCACIIGGCIA	CATCCGCCCC						TTACA				
maritima M290606 6	TTCATCCACTTCCCTA	CATCCGCCCC										
othonnites PM1306	TTCATCCACTTCCCTA	CATCCGCCCC										
postinata M120002								TIACA				
pectinata_MI20903								TIACA				
peculiala_RMI044								TIACA				
rigida_M280902								TIACA				
rigena lougoloono DM772								TIACA				
rigens_leucolaena_RM/75								IIACA				
rigens_ieucoiaena_RM952_i								I IACA				
rigens_rigens_RM/63								I IACA				
rigens_rigens_SR463		CATCOGCOCO			CTAGTATTAA	A-TAGTATT		I"TACA				
rigens_unifiora_JC201205		CATCOGCOCO			CTAGTATTAA	A-TAGTATT		I"TACA				
rigens_unifiora_RM920	TIGATCCACTIGGCTA	CATCCGCCCC	CTCTACTATTAT-		CTAGTATTAA	A-TAGTATT	ACTATATT.	I"I'ACA				
SCHENCK11	TIGATCCACTIGGCTA	CATCCGCCCC			CTAGTATTAA	A-1'AG1'A'1"1	ACTATATT.	I"I'ACA				
serrata_M250904_15	TTGATCCACTTGGCTA	CATCCGCCC	CTCTACTATTAT-		CTAGTAP	A-TAGTATT	ACTATATTT	TTACA				
serrata_RM898	TTGATCCACTTGGCTA	CATCCGCCC	UTCTACTATTAT-		CTAGTATTA	A-TAGTATT	ACTATATT	I''I'ACA				
tenuitolia_CAM1601	'I'I'GATCCACTTGGCTA	CATCCGCCC	CTCTACTATTAT-		ATAGTATTA	A-TAGTATT	ACTATATTT	I'I'ACA				
tenuitolia_M2730	TTGATCCACTTGGCTA	CATCCGCCC	CTCTACTATTAT-		ATAGTATTA	A-TAGTATT	ACTATATTT	I'I'ACA				
spnov_M040906_33	TTGATCCACTTGGCTA	CATCCGCCCC	CTCTACTATTAT-		CTAGTATTAA	A-TAGTATT	ACTATATTT	TTACA				

[1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100]
Berkheya	AAAAAGATTCTAI	TTTTTCTTTC	TTTTTTCTGA	AATTAAAGT	AATAA	ATAAGCAAAAT	TATCATTTC	AATCTAAAAT	AGATTGAAAT	TGAATTGTAAA	ГАА
Gorteria	AAAAAAAAAGATCATAT	TTTTTCTTTC	TTATTTCTGA	AATAAAAGTA	AATAA	ATAAGCAAAAT	TATCATTT	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
Hirpicium	AAATATTCTAT	TTTTTCTTTC	TTATTTCTGA	AATTAAAGTA	ATAATAATA	AAATAAGCAAAAT	TATCATTTC	AATCTATTTT	AGATTGAAAT	TGAATTATAAA	ГАА
caespitosa_RVC448											
caespitosa_RVC307											
ciliaris_RM1230											
ciliaris_RM1382											
heterochaeta_RM1429				TTAAAAAGTA	AATAA	ATAAGCAAAAT	TATCATTT	TATCTATCTT	AGATTGAAAT	TGAATTGGAAA	ГАА
heterochaeta_RM1451				TTAAAAAGTA	AATAA	ATAAGAAAAA	TATCATTT	TATCTATCTT	AGATTGAAAT	TGAATTGGAAA	ГАА
jurineifolia_jur_SR682		TTAAAT	ТААААТТААА	TTAAAAATTA	AATTA	ATAAGCAAAAT	TCTCATTT	TATCCATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
jurineifoliajur_RM1518		TTAAAT	ТААААТТААА	TTAAAATTA	AATAA	ATAAGCAAAAT	TCTCATTTI	TATCCATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
jurineifolia_scab_CAM1604		TTAAAT	ТААААТААА	TTAAAATTA	AATTA	ATAAGCAAAAT	TCTCATTTI	TATCCATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
jurineifolia_scab_CAM2652		T	ТАААТТАААА	TTAAAAATTA	AATTA	ATAAGCAAAA	TCTCATTTI	TATCCATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
krebsiana_arctotoides_RM868				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
krebsiana_arctotoides_RM876				TTAAAAAGTA	AATAA	ATAAGCAAAA	TCTAATTTT	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
krebsiana_krebisiana_RM1114				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
krebsiana_krebsiana_RM1136				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATAATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
krebsiana_serrulata_RM863				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
krebsiana_serrulata_RM965				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATAATTT	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
leiopoda_M240901		TAGTATTAC	TATATTTTTA	TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
leiopoda_RM1309				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
lichtenstenii_CAM1916				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
lichtensteinii_RM1249				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
linearis_linearis_RM1010				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
linearis_linearis_SH113			TTTTAA	TTAAAAAGTA	AATAA	ATAAGCAAAA	TATAATTT	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
linearis_ovalis_NDsn				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGACAT	TGAATTGGAAA	ГАА
linearis_ovalis_RM854				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
maritima_RM1038				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
maritima_M290606_6				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
othonnites_RM1306				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
pectinata_M120903				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
pectinata_RM1044				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigida_M280902				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATAATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigida_RM840				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigens_leucolaena_RM773				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigens_leucolaena_RM952_1				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigens_rigens_RM763				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigens_rigens_SR463				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigens_uniflora_JC201205				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATAATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
rigens_uniflora_RM920				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATAATTT	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
schenckii				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
serrata_M250904_15				TTAAAAAGTA	AATAA	ATAAGCAAAAT	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
serrata_RM898				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
tenuifolia_CAM1601			TTAA	ATAAATAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
tenuifolia_M2730			TTAA	ATAAATAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА
spnov_M040906_33				TTAAAAAGTA	AATAA	ATAAGCAAAA	TATCATTTI	TATCTATTTT	AGATTGAAAT	TGAATTGGAAA	ГАА

[1110	1120	1130	1140	1150	1160	1170	1180	1190	1200	1210]
Berkheya	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAA		CC:	-ATAA	TATTCTA	ATTAGAATA	TCAAT	-TAATACAAAGA	TAA
Gorteria	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAA		CC	TATAA	TATTCTA	A			
Hirpicium	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAA		CC	-ATAA	TATTCTA	ATTAGAATA	TCAAT	-TAATACAAAGA	TAA
caespitosa_RVC448											
caespitosa_RVC307											
ciliaris_RM1230											
ciliaris_RM1382											
heterochaeta_RM1429	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
heterochaeta_RM1451	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
jurineifolia_jur_SR682	AACTTCATAAAAGATT	GGGAAAAGG-	TATATAAATAT	'AAA	CC	-ATAATAA	TATTCTA	ATTAGAATA	TCAAT	-TAATACAAAGA	GAA
jurineifoliajur_RM1518	AACTTCATAAAAGATT	GGGAAAAGG-	TATATAAATAT	'AAA	CC	-ATAATAA	TAATATTCTA	ATTAGAATA	TCAAT	-TAATACAAAGA	GAA
jurineifolia_scab_CAM1604	AACTTCATAAAAGATT	GGGAAAAGG-	TATATAAATAT	'AAA	CC	-ATAATAA	TAATATTCTA	ATTAGAATA	TCAAT	-TAATACAAAGA	GAA
jurineifolia_scab_CAM2652	AACTTCATAAAAGATT	GGGAAAAGG-	TATATAAATAT	'AAA	CC	-ATAATAA	TAATATTCTA	ATTAGAATA	TCAAT	-TAATACAAAGA	GAA
krebsiana_arctotoides_RM868	AACTTCATAAAAGATT	GGGAAAAGGA	ТАТАТАААТАТ	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
krebsiana_arctotoides_RM876	AACTTCATAAAAGATT	GGGAAAAGGA	ТАТАТАААТАТ	'AAA	TATAAACC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
krebsiana_krebisiana_RM1114	AACTTCATAAAAGATT	GGGAAAAGGA	ТАТАТАААТАТ	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
krebsiana_krebsiana_RM1136	AACTTCATAAAAGATT	GGGAAAAGGA	ТАТАТАААТАТ	'AAA	TATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
krebsiana_serrulata_RM863	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
krebsiana_serrulata_RM965	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
leiopoda_M240901	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
leiopoda_RM1309	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'A	-TAAATATAAACC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
lichtenstenii_CAM1916	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
lichtensteinii_RM1249	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
linearis_linearis_RM1010	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-ATAATAA	TAATATTCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
linearis_linearis_SH113	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
linearis_ovalis_NDsn	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
linearis_ovalis_RM854	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
maritima_RM1038	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
maritima_M290606_6	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
othonnites_RM1306	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
pectinata M120903	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC:	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
pectinata RM1044	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT		ATAAATATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigida M280902	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigida RM840	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC:	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigens_leucolaena_RM773	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigens leucolaena RM952 1	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigens rigens RM763	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC:	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigens rigens SR463	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC:	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigens uniflora JC201205	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-TATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
rigens uniflora RM920	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	TATAAACC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
schenckii	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC:	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
serrata M250904 15	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC	T-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
serrata RM898	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAA	CC:	 T-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
tenuifolia CAM1601	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAT	ATATAAACC	TATAATAT	-AATATTCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
tenuifolia M2730	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	'AAT	ATATAAACC	TATAATAT	-AATATTCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA
spnov_M040906_33	AACTTCATAAAAGATT	GGGAAAAGGA	TATATAAATAT	AAA	CC	-ATAATAT	TCTA	ATTAGAATA	TCAATATCAA	TTAATACAAAGA	GAA

]	1220	1230	1240	1250	1260	1270	1280	1290	1300	1310	1320
Berkheya	ACCACGCTAATCGAAC	CAAA	СТАТАААА	AGCCCTTGTT	ATTTTTAAAG	AACTATGTA	AAGCAAATA-		GTACTAAAT	АААААААА-	GGAGC
Gorteria	ATCGAACO	CAAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGTCAAATA-		GTACTAAAT	АААААААА-	GGAGC
Hirpicium	AACACGCTAATTGAAC	CAAA	CTATAAAA	AGCCCTTCTT	ATTTTTAAAGA	AACTATGTA	AGGAAAAGA-		GTACTAAAT	АААААААА-	GGAGC
caespitosa_RVC448			AA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	АААААААА-	GGAGC
caespitosa_RVC307			AA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	АААААААА-	GGAGC
ciliaris RM1230			AA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	аааааааа-	GGAGC
ciliaris RM1382			AA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	аааааааа-	GGA??
heterochaeta RM1429	AACACGCTAATCGAAC	CAAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA		АААААА	GGAGC
heterochaeta RM1451	AACACGCTAATCGAAC	CAAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	аааааааа-	GGAGC
jurineifolia jur SR682	AACACGCTAATCGAAC	CAAA	CTATAAAG	AGCCCTTGCT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	ааааааааа	GGAGC
jurineifoliajur RM1518	AACACGCTAATCGAAC		CTATAAAG	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	مممممممم	GGAGC
jurineifolia scab CAM1604	AACACGCTAATCGAAC		CTATAAAG	AGCCCTTGCT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	ΑΑΑΑΑΑΑΑ	GGAGC
jurineifolia scab CAM2652	AACACGCTAATCGAAC		CTATAAAG	AGCCCTTGCT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	ΑΑΑΑΑΑΑΑ	GGAGC
krebsiana arctotoides RM868	AACACGCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAG	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	- 4444444	GGAGC
krebsiana arctotoides RM876	AACACGCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAG	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAA	GGAGC
krebsiana krebisiana RM1114	AACACGCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAG	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT		GGAGC
krebsiana krebsiana RM1136	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAA	GGAGC
krebsiana serrulata RM863	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT		GGAGC
krebsiana serrulata RM965	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAA	GGAGC
leiopoda M240901	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ΑΤΤΤΤΤΙΔΙΟ	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT		GGAGC
leiopoda RM1309	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAAAA-	GGAGC
lichtenstenii CAM1916	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAAAA-	GGAGC
lichtensteinii RM1249	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAAAA-	GGAGC
linearis linearis RM1010	AACACGCTAATCGAAC		CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	ΑΑΑΑΑΑΑΑ-	GGAGC
linearis linearis SH113	AACACCCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT		GGAGC
linearis ovalis NDsn	AACACGCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ATTTTTAAAGA	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT		GGAGC
linearis ovalis RM854	AACACGCTAATCGAAC	"AAA	CTATAAAA	AGCCCTTGTT	ΑΤΤΤΤΤΙΔΙΟ	AACTATGTA	AGGCAAATAG	TATA	GTACTAAAT	AAAAAAAA-	GGAGC
maritima RM1038	AACACGCTAATCGAAC	"A A A		AGCCCTTGTT	ΔͲͲͲͲͲΔΔΔΩ	AACTATGTA	AGGCAAATAG	TATA			GGAGC
maritima M290606 6	AACACGCTAATCGAAC	"A A A		AGCCCTTGTT	ΔΤΤΤΤΤΤΔΔΙΟΛ	AACTATGTA	AGGCAAATAG	TATA			GGAGC
othonnites RM1306	AACACGCTAATCGAAC	"A A A		AGCCCTTGTT	ΔΤΤΤΤΤΤΔΔΙΟΛ	AACTATGTA	AGGCAAATAG	TATA			GGAGC
pectinata M120903	AACACCCTAATCCAAC	אממי ממסר––––-					ACCCADATAC	TATA			CGACC
pectinata RM1044	AACACGCTAATCGAAC	 מממי		AGCCCTTGTT	ΔͲͲͲͲͲΔΔΔΩ	A A CTATCIA	ACCCADATAC				GGAGC
rigida M280902	AACACGCTAATCGAAC	"A A A		AGCCCTTGTT	ΔΤΤΤΤΤΤΔΔΙΟΛ	AACTATGTA	AGGCAAATAG	TATA			GGAGC
rigida RM840	AACACGCTAATCGAAC	"A A A		AGCCCTTGTT	ΔΤΤΤΤΤΤΔΔΙΟΛ	AACTATGTA	AGGCAAATAG	TATA			GGAGC
rigens leucolaena RM773	AACACGCTAATCGAAC	"A A A		AGCCCTTGTT	ΔΤΤΤΤΤΤΔΔΙΟΛ	AACTATGTA	AGGCAAATAG	TATA			GGAGC
rigens leucolaena RM952 1	AACACCCTAATCCAAC	אממי ממסר––––-					ACCCADATAC	TATA			CGACC
rigens rigens RM763	AACACGCTAATCGAAC	 מממי		AGCCCTTGTT	ΔͲͲͲͲͲΔΔΔΩ	A A CTATCIA	ACCCADATAC	TATA TATATACTA	тастастааат		GGAGC
rigens rigens SP463	AACACGCTAATCGAAC	אאא. זא א א		AGCCCTIGII	៱᠋᠋᠋᠋᠋ᠷᠷᠷᢋᠿ ᡕᡎᡎᡎᡎᡎᡎ᠕᠕᠒ᠿ	AACTAIGIA	AGGCAAAIAG				GGAGC
rigens uniflora JC201205	AACACGCTAATCGAAC	אאא. זא א א		AGCCCTIGII	៱᠋᠋᠋᠋᠋ᠷᠷᠷᢋᠿ ᡕᡎᡎᡎᡎᡎᡎ᠕᠕᠒ᠿ	AACTAIGIA	AGGCAAAIAG				GGAGC
rigens uniflora PM920	AACACGCTAATCGAAC	אאא. זא א א		AGCCCTIGII	៱᠋᠋᠋᠋᠋ᠷᠷᠷᢋᠿ ᡕᡎᡎᡎᡎᡎᡎ᠕᠕᠒ᠿ	AACTAIGIA	AGGCAAAIAG			 ^ ^ ^ ^ ^ ^ ^	GGAGC
schenckij	AACACGCTAATCGAAC	אאא. זא א א		AGCCCTIGII	៱᠋᠋᠋᠋᠋ᠷᠷᠷᢋᠿ ᡕᡎᡎᡎᡎᡎᡎ᠕᠕᠒ᠿ	AACTAIGIA	AGGCAAAIAG				GGAGC
gorrata M250004 15	AACACGCTAATCGAAC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		AGCCCTIGII		AACIAIGIA	AGGCAAAIAG			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CCACC
serrata PM909	AACACGCTAATCGAAC	AAACIAIAA	Ο ΤΑΙΑΑΑΑ	AGCCCIIGII	ΑΙΙΙΙΙΑΑΑΘΑ λ π π π π π π π Λ Λ Ο Λ	AACIAIGIA	AGGCAAAIAG	1A1A			CCACC
tenuifolia CAM1601	AACACGCTAATCGAAC			AGCCCIIGII	~	VANCTAIGIA	AGGCAAAIAG			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GGAGC
tenuifolia M2720	A CACCCTA ATCONACC				⌒ェェェェェエ ᡘᠩᡊᠥ ᡕᡎᡎᡎᡎᡎᡕ᠋ᡕ᠉ᢩᠬ	VANCTAIGIA	ACCCARAIAG			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CGAGC
$\frac{1}{2} M040906 22$	AACACGCTAATCGAAC			AGCCCIIGII	ΑΙΙΙΙΙΑΑΑΘΕ Αφφφφφτηλικα	VAUCTAIGIA	AGGCAAAIAG			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GGAGC
25110A THO #0200 22	AACACGCIAAICGAACU		CIAIAAAA	VACCCTIGII	ATTITI ANAGR	MACIAIGIA	AGGCAAAIAG	IAIA	GIACIAAAI	лляяннян-	JUADO

[1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430]
Berkheya	AATAGCTTCCCTCTTG	TTTTATC	AAGAGGG	-CGTTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
Gorteria	AATA-ACGCCCTCTTG-	ATAAAA	C-AAGATGG	SAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	[CGTATACAA]	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATG?	???
Hirpicium	AATA-ACGCCCTCTTG-	ATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
caespitosa_RVC448	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
caespitosa_RVC307	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
ciliaris_RM1230	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
ciliaris_RM1382	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????	???????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	???
heterochaeta_RM1429	AATA-ACGCCCTCTTGA	АТАТААТААА	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
heterochaeta_RM1451	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
jurineifolia_jur_SR682	AATAGCTTCCCTCTTG	ITTTATCATAT	C-AAGAGGG	G-CGTTATTGC	TCCTTTTTTAC	GTTCAAGAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
jurineifoliajur_RM1518	AATAGCTCCCCTCTTG	TTTTATCATAT	C-AAGAGGG	-CGTTATTGC	TCCTTTTTTAC	GTTCAAGAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
jurineifolia_scab_CAM1604	AATAGCTTCCCTCTTG	ITTTATCATAT	C-AAGAGGG	-CGTTATTGC	TCCTTTTTTAC	GTTCAAGAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
jurineifolia_scab_CAM2652	AATAGCTTCCCTCTTG	ITTTATCATAT	C-AAGAGGG	-CGTTATTGC	TCCTTTTTTAC	GTTCAAGAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
krebsiana_arctotoides_RM868	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATGCAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
krebsiana_arctotoides_RM876	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
krebsiana_krebisiana_RM1114	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
krebsiana_krebsiana_RM1136	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
krebsiana_serrulata_RM863	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
krebsiana_serrulata_RM965	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
leiopoda_M240901	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
leiopoda_RM1309	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
lichtenstenii_CAM1916	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
lichtensteinii_RM1249	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
linearis_linearis_RM1010	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
linearis_linearis_SH113	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
linearis_ovalis_NDsn	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
linearis_ovalis_RM854	AATA-ACGCCCTCTTGA	ATATGATAAAA	CCAAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
maritima_RM1038	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
maritima_M290606_6	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
othonnites_RM1306	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
pectinata_M120903	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	AAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
pectinata_RM1044	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigida_M280902	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigida_RM840	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigens_leucolaena_RM773	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigens_leucolaena_RM952_1	AATA-ACGCCCTCTTGA	ATATGATAAAC	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigens_rigens_RM763	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigens_rigens_SR463	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigens_uniflora_JC201205	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
rigens_uniflora_RM920	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	rcgtatacaa'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
schenckii	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	rcgtatacaa'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
serrata_M250904_15	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
serrata_RM898	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
tenuifolia_CAM1601	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC
tenuifolia_M2730	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	CGTATACAA'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	MGC
spnov_M040906_33	AATA-ACGCCCTCTTGA	ATATGATAAAA	C-AAGAGGG	GAAGCTATTGC	TCCTTTTTTAC	GTTCAAAAAC	rcgtatacaa'	TCAGACCAAAG	GTCTTATCCA	TTTGTAGATGG	AGC

		psb	A-trnH	< > t	rnL							
]	1440	1450	1460	1	470	1480	1490	1500	1510	1520	1530	1540]
Berkheya	TTCGATAGCAGCTAAGI	FCTAGAGGGA	AATTATGA	GCACGO	ACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
Gorteria	???????????????????????????????????????	???????????????????????????????????????	?????????	???CGG	ACTTAA	TTGGATTGAG	CCTTGGTATG	GAAACTTACI	AAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
Hirpicium	TTCGATAGCAGCTAAG	ICTAGAGGGA	AATTATGA	GCACGG	ACTTAA	TTGGATTGAG	CTTGGTATG	GAAACTTACI	AAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
caespitosa RVC448	TTCGATAGCAGCTAAG	ICTAGAGGGA	AATTATGA	GCACGG	ACTTAA	TTGGATTGAG	CTTGGTATG	GAAACTTACI	AAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
caespitosa RVC307	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGO	ACTTAA	TTGGATTGAGO	CTTGGTATG	GAAACTTACI	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
ciliaris RM1230	TTCGATAGCAGCTAAG	rctagaggga	AATTATGA	GCACGO	ACTTAA	TTGGATTGAG	CTTGGTATG	GAAACTTACI	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
ciliaris_RM1382	???????????????????????????????????????	???????????????????????????????????????	?????????	??ACGG	ACTTAA	TTGGATTGAG	CTTGGTATG	GAAACTTACT	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
heterochaeta_RM1429	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGG	ACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
heterochaeta_RM1451	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGG	AATTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
jurineifolia_jur_SR682	TTCGATAGCAGCTAAGI	rctagaggga	AATTATGA	GC????	???????	TTGGATTGAGO	CCTGGTATG	GAAACTTACI	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
jurineifoliajur_RM1518	TTCGATAGCAGCTAAGI	rctagaggga	AATTATGA	GC????	???????	???????????????????????????????????????	????????????	???????AC1	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
jurineifolia_scab_CAM1604	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GC????	·???????	???????????????????????????????????????	???????????????	???????????????????????????????????????	??????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???
jurineifolia_scab_CAM2652	TTCGATAGCAGCTAAGI	rctagaggga	AATTATGA	GCACGG	ACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
krebsiana_arctotoides_RM868	TTCGATAGCAGCTAAGI	CTAGAG???	?????????	???????		???????????????????????????????????????	???????????????	???????????????????????????????????????	· · · · · · · · · · · · · · · · · · ·	?????????????	???????????????????????????????????????	???
krebsiana_arctotoides_RM876	TTCGATAGCAGCTAAGI	FCTAGAGGGA	AATTATGA	GC????		???????????????????????????????????????	???????????????	???????????????????????????????????????	· · · · · · · · · · · · · · · · · · ·	?????????????	???????????????????????????????????????	???
krebsiana_krebisiana_RM1114	TTCGATAGCAGCTAAG	FCTAGAGGGA	AATTATGA	GC??GG	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
krebsiana_krebsiana_RM1136	TTCGATAGCAGCTAAGI	FCTAGAGGGA	AATTATGA	G?ACGG	GACTTAA	TTGGATTGAGC	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
krebsiana_serrulata_RM863	TTCGATAGCAGCTAAG	FCTAGAGGGA	AATTATGA	GCACGG	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
krebsiana_serrulata_RM965	TTCGATAGCAGCTAAGI	FCTAGAGGGA	AATTATGA	GC????	· : : : : : : : : : : : : : : : : : : :	???????????????????????????????????????	?????????????	????CTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
leiopoda_M240901	TTCGATAGCAGCTAAGI	FCTAGAGGGA	AATTATGA	GC????	· : : : : : : : : : : : : : : : : : : :	???????????????????????????????????????	?????????????	???????????????????????????????????????	??????????????????????????????????????	????????????	???????????????????????????????????????	???
leiopoda_RM1309	TTCGATAGCAGCTAAGC	GCTAGAGGGA	AATTATGA	GCACGO	GACTTAA	TTGGATTGAGC	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
lichtenstenii_CAM1916	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GC????	。???????	\$\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$\$???????????????????????????????????????	\$\$\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$\$??A
lichtensteinii_RM1249	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGO	GACTTAA	TTGGATTGAGC	CCTTGGTATG	GAAACTTACI	'AAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
linearis_linearis_RM1010	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	G????G	SACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
linearis_linearis_SH113	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGO	GACTTAA	TTGGATTGAGC	CCTTGGTATG	GAAACTTACI	'AAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
linearis_ovalis_NDsn	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGG	SACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
linearis_ovalis_RM854	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GC????	·???????	\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$\$\$\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???
maritima_RM1038	T?????????????????????????????????????	???????????????????????????????????????	?????????	??ACGG	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
maritima_M290606_6	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GCACGG	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
othonnites_RM1306	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GCACGG	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
pectinata_M120903	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGG	SACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
pectinata_RM1044	???????????????????????????????????????	???????????????????????????????????????	\$\$\$\$\$???????	· ? ? ? ? ? ? ?	\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$\$\$\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???
rigida_M280902	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GC????	·???????	\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$????CTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
rigida_RM840	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GCACGO	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
rigens_leucolaena_RM773	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GC????	???TAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
rigens_leucolaena_RM952_1	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GC????	·???????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	?????????????	???????????????????????????????????????	\$\$\$\$\$\$\$\$\$\$\$?????????????	????????CCT	GGA
rigens_rigens_RM763	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GC????	· ? ? ? ? ? ? ?	\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$\$\$\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???
rigens_rigens_SR463	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GC????	· ? ? ? ? ? ? ?	??GGATTGAGC	CCTCGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
rigens_uniflora_JC201205	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGG	SACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
rigens_uniflora_RM920	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GC????	·???????	\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$\$\$\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???
schenckii	TTCGATAGCAGCTAAGT	FCTAGAGGGA	AATTATGA	GCACGG	GACTTAA	TTGGATTGAGO	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA
serrata_M250904_15	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GC????	· ? ? ? ? ? ? ?	\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$???
serrata_RM898	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGO	GACTTAA	TTGGATTGAGC	CCTTGGTATG	GAAACTTACI	'AAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
tenuifolia_CAM1601	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	G?????	·	\$\$\$\$\$\$\$\$\$\$???????????C(CTGTCTTACI	'AAGTGATAAC'	TTTCAAATTC	AGAGAAACCCT	GGA
tenuifolia_M2730	TCCGATAGCAGCTAAGT	CTAGA????	?????????	???CGG	GACTTAA	TTGGATTGAGC	CCCTGGTATG	GAAACTTACI	'AAGTGATAAC'	TTTCAATTTC	AGAGAAACCCT	GGA
spnov_M040906_33	TTCGATAGCAGCTAAGT	rctagaggga	AATTATGA	GCACGO	GACTTAA	TTGGATTGAGC	CCTTGGTATG	GAAACTTACI	TAAGTGATAAC	TTTCAAATTC	AGAGAAACCCT	GGA

[1550	1560	1570	1580	1590	1600	1610	1620	1630	1640	1650]
Berkheya	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGG1	TTCAGAAAGCG	AAAATCAAA	AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
Gorteria	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	AAAATAAAA	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
Hirpicium	ATTAATAAAAATGGGC	GATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	АААААААА	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
caespitosa_RVC448	ATTAATAAAAATGGGT	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	AAAATAAAA	AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
caespitosa_RVC307	ATTAATAAAAATGGGT	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	AAAATAAAA	AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
ciliaris RM1230	ATTAATAAAAATGGGT	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
ciliaris RM1382	ATTAATAAAAATGGGT	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
heterochaeta RM1429	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
heterochaeta RM1451	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
jurineifolia jur SR682	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
jurineifoliajur RM1518	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGI	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
jurineifolia scab CAM1604	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	????????????	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????	GCAGAGACTC	GATGGAAGCTG	TTC
jurineifolia scab CAM2652	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
krebsiana arctotoides RM868	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????	??????????GI	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
krebsiana arctotoides RM876	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	???АТАААА	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
krebsiana krebisiana RM1114	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
krebsiana_krebsiana_RM1136	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
krebsiana serrulata RM863	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
krebsiana_serrulata_RM965	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
leiopoda_M240901	???????????????????????????????????????	???????AGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
leiopoda_RM1309	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
lichtenstenii_CAM1916	ATT-ATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
lichtensteinii_RM1249	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
linearis_linearis_RM1010	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
linearis_linearis_SH113	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
linearis_ovalis_NDsn	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
linearis_ovalis_RM854	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	?????AAAA	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
maritima_RM1038	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
maritima_M290606_6	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
othonnites_RM1306	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
pectinata_M120903	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
pectinata_RM1044	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	?????????GGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
- rigida_M280902	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
rigida_RM840	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	AAAATAAAA	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
rigens_leucolaena_RM773	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	AAAATAAAA	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
rigens_leucolaena_RM952_1	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
rigens_rigens_RM763	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
rigens_rigens_SR463	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
rigens_uniflora_JC201205	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
rigens_uniflora_RM920	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	????????GTG	GCAGAGACTC	GATGGAAGCTG	TTC
schenckii	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG	AAAATAAAA	AAGGATAGGTO	GCAGAGACTC	GATGGAAGCTG	TTC
serrata_M250904_15	??????????????GGC	AATCCTGAGC	CCAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TCAGAAAGCG		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
serrata_RM898	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGI	TCAGAAAGCO		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
tenuifolia_CAM1601	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGI	TCAGAAAGCO		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
tenuifolia_M2730	ATT-ATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGTAAA	CAAACAAAGG1	TCAGAAAGCO		AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC
spnov_M040906_33	ATTAATAAAAATGGGC	AATCCTGAGC	CAAATCACGT	TTTCCGAAAA	CAAACAAAGGT	TTCAGAAAGCO	AAAATAAAA	AAGGATAGGT	GCAGAGACTC	GATGGAAGCTG	TTC

I	1660	1670	1680	1690	1700	1710	1720	1730	1740	1750	1760]
Berkheya	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGAAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGTTGTG	AATC
Gorteria	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAGAAG	GATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
Hirpicium	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGTTGTC	AATC
caespitosa_RVC448	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	1ATC
caespitosa_RVC307	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
ciliaris RM1230	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
ciliaris RM1382	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
heterochaeta RM1429	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
heterochaeta RM1451	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
jurineifolia jur SR682	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
jurineifoliajur RM1518	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	тссааасттс	AGAAAAGATGA	AGGATAAAC	СТСТАТАСАТ	AATACAGAAG	AATTGCTGTG	AATC
jurineifolia scab CAM1604	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG		TCGAAACTTC	AGAAAAGATGI	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	
jurineifolia scab CAM2652	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG		TCGAAACTTC	AGAAAAGATGI	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	
krebsiana arctotoides RM868	TAACGAATGGAGTTGG	TTGTCTTACC	TTACTCCACC	a atte atte atte	TCGAAACTTC		ACCATAAAC	CTGTATACAT	AATACAGAAG	A ATTGCTCTCTC	
krebsiana_arctotoides_RM876	TAACGAATGGAGTTGG	TTGTCTTACC	TTACTCCACC		TCGAAACTTC	ACAAAACATC	ACCATAAAC	CTGTATACAT	ANTACACAAC	AATTGCTGTG7	ATC ATC
krebsiana_krebisiana_RM1114	TAACGAATGGAGTTGG	TTGTCTTACC	TTACTCCACC	A ATCATTOTA	TCCANACTIC	ACANA ACATCI	ACCATAAAC	CTCTATACAT	латасасало.	AATTCCTCTCTC	ATC
krebsiana krebsiana PM1136	TAACGAAIGGAGIIGG	TTGTCTTACC	TTTAGIGGAGG	AAICAIICIA AATCATTOTA	TCGAAACIIC	AGAAAAGAIG/	AGGATAAAC	CIGIAIACAI	AATACAGAAG.	AATIGCIGIGZ AATTCCTCTCZ	ATC ATC
krobajana gorrulata PM962		TIGICIIACO	TTTTAGIGGAGG		TCGAAACIIC		AGGATAAAC	CIGIAIACAI	AATACAGAAG.	AATIGCIGIGZ AATTCCTCTCZ	ATC ATC
krebsiana_serrulata_RM005						AGAAAAGAIGA	AAGGA I AAAC		AAIACAGAAG.	AAIIGCIGIGA	AIC
leiepede M240001						AGAAAAGAIGA	AAGGA I AAAC		AAIACAGAAG.	AAIIGCIGIGA	AIC
leienede DM1200									AAIACAGAAG.		AIC
letopoda_RMI309							AAGGA I AAAC		AATACAGAAG.		AAIC
lichtenstenii_CAMI916	TAACGAATGGAGTTGG	TIGICITACO	FI TAGTGGAGG	AATCATTCTA		AGAAAAGATGA	AAGGATAAAC	CIGIAIACAI	AATACAGAAG	AATTGCTGTG	ATC
lichtensteinii_RMI249	TAACGAATGGAGTTGG	TTGTCTTACC	GITAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTGA	AATC
linearis_linearis_RMI010	TAACGAATGGAGTTGG	TIGICITACC	STTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CIGIATACAT	AA'I'ACAGAAG	AATTGCTGTG	AA.I.C
linearis_linearis_SH113	TAACGAATGGAGTTGG	TTGTCTTACG	GTTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
linearis_ovalis_NDsn	TAACGAATGGAGTTGG	TTGTCTTACG	GTTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
linearis_ovalis_RM854	TAACGAATGGAGTTGG	TTGTCTTACO	GTTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
maritima_RM1038	TAACGAATGGAGTTGG	TTGTCTTACO	GTTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
maritima_M290606_6	TAACGAATGGAGTTGG	TTGTCTTACG	STTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTGA	4ATC
othonnites_RM1306	TAACGAATGGAGTTGG	TTGTCTTACG	STTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	1ATC
pectinata_M120903	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	4ATC
pectinata_RM1044	TAACGAATGGAGTTGG	TTGTCTTACO	GTTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	4ATC
rigida_M280902	TAACGAATGGAGTTGG	TTGTCTTACC	STTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	4ATC
rigida_RM840	TAACGAATGGAGTTGG	TTGTCTTACC	STTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	4ATC
rigens_leucolaena_RM773	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
rigens_leucolaena_RM952_1	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
rigens_rigens_RM763	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	1ATC
rigens_rigens_SR463	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	1ATC
rigens_uniflora_JC201205	TAACGAATGGAGTTGG	TTGTCTTACO	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
rigens uniflora RM920	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
schenckii	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
serrata M250904 15	TAACGAATGGAGTTGG	TTGTCTTACG	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
serrata RM898	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
tenuifolia CAM1601	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATG	AAGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	AATC
tenuifolia M2730	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
spnov M040906 33	TAACGAATGGAGTTGG	TTGTCTTACC	TTAGTGGAGG	AATCATTCTA	TCGAAACTTC	AGAAAAGATGA	AGGATAAAC	CTGTATACAT	AATACAGAAG	AATTGCTGTG	ATC
SETTO A TIO TO 200 - 22	11110011100601100							C.C.I.I.I.CAII			

[1770	1780	1790	1800	1810	1820	1830	1840	1850	1860	1870]
Berkheya	GATTTCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC	ATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
Gorteria	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC	ATTCAC	ICCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
Hirpicium	GATTTCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC	ATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
caespitosa_RVC448	GATTCCATATTCAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
caespitosa_RVC307	GATTCCATATTCAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
ciliaris_RM1230	GATTCCATATTCAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
ciliaris_RM1382	GATTCCATATTCAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
heterochaeta_RM1429	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
heterochaeta_RM1451	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
jurineifolia_jur_SR682	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
jurineifoliajur_RM1518	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
jurineifolia_scab_CAM1604	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
jurineifolia_scab_CAM2652	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
krebsiana_arctotoides_RM868	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
krebsiana_arctotoides_RM876	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
krebsiana_krebisiana_RM1114	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
krebsiana_krebsiana_RM1136	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
krebsiana_serrulata_RM863	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
krebsiana_serrulata_RM965	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
leiopoda_M240901	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
leiopoda_RM1309	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
lichtenstenii_CAM1916	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
lichtensteinii_RM1249	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
linearis_linearis_RM1010	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
linearis_linearis_SH113	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
linearis_ovalis_NDsn	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
linearis_ovalis_RM854	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
maritima_RM1038	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
maritima_M290606_6	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
othonnites_RM1306	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
pectinata_M120903	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
pectinata_RM1044	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigida_M280902	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigida_RM840	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigens_leucolaena_RM773	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigens_leucolaena_RM952_1	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigens_rigens_RM763	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigens_rigens_SR463	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigens_uniflora_JC201205	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
rigens_uniflora_RM920	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
schenckii	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
serrata_M250904_15	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
serrata_RM898	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
tenuifolia_CAM1601	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
tenuifolia_M2730	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACCATT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT
spnov_M040906_33	GATTCCATATTGAAGA	AAGAATCGAA	ATATTCATTGA	TCAAACC-TT	CACCATTCAC	TCCATAATCT	GATAGATCTT	TTGAAGAACT	GATTAATCGG.	ACGAGAATAAA	GAT

								trnL <	> trnL-F		
[1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980]
Berkheya	AGAGTCCT-GTTCTA	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAAGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
Gorteria	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGGGAGGGTTC	AAGTCCCTCT	FATCCCCAAAA	AGA
Hirpicium	AGAGTCCT-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTCT	FATCCCCAAAA	AGA
caespitosa RVC448	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTCT	FATCCCCAAAA	AGA
caespitosa_RVC307	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
ciliaris_RM1230	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATT????	???????????????????????????????????????	????????????		???????????????????????????????????????	??????????	???????????????????????????????????????	???
ciliaris_RM1382	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGA		???????????????????????????????????????	??????????	???????????????????????????????????????	???
heterochaeta_RM1429	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGG????	AAGTCCCTCT	FATCCCCAAAA	AGA
heterochaeta_RM1451	AGAGTCCC-GTTCTA	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
jurineifolia_jur_SR682	AGAGTCCC-GTTCTA	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
jurineifoliajur_RM1518	AGAGTCCC-GTTCTA	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
jurineifolia_scab_CAM1604	AGAGTCCC-GTTCTA	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
jurineifolia_scab_CAM2652	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
krebsiana_arctotoides_RM868	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
krebsiana_arctotoides_RM876	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
krebsiana_krebisiana_RM1114	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
krebsiana_krebsiana_RM1136	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
krebsiana_serrulata_RM863	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAATCG	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
krebsiana_serrulata_RM965	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
leiopoda_M240901	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
leiopoda_RM1309	AGAGTCCCCGTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGA?	???????????	·	???????????????????????????????????????	??????????	???????????????????????????????????????	???
lichtenstenii_CAM1916	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
lichtensteinii_RM1249	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
linearis_linearis_RM1010	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGA??????	????CCCTC1	FATCCCCAAAA	AGA
linearis_linearis_SH113	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
linearis_ovalis_NDsn	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGGGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
linearis_ovalis_RM854	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
maritima_RM1038	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGATGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
maritima_M290606_6	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAG	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
othonnites_RM1306	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTTGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
pectinata_M120903	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	FATCCCCAAAA	AGA
pectinata_RM1044	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
rigida_M280902	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
rigida_RM840	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAG???CTC	PATCCCCAAAA	AGA
rigens_leucolaena_RM773	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
rigens_leucolaena_RM952_1	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
rigens_rigens_RM763	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
rigens_rigens_SR463	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
rigens_uniflora_JC201205	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
rigens_uniflora_RM920	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
schenckii	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	PATCCCCAAAA	AGA
serrata_M250904_15	AGAGTCCC-GCTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
serrata_RM898	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
tenuifolia_CAM1601	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
tenuifolia_M2730	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	JTAAGAGGAA	AATCCGTCGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCAAAA	AGA
spnov_M040906_33	AGAGTCCC-GTTCTAC	CATGTCAATAC	CGGCAACAAT	GAAATTTATA	GTAAGAGGAA	AATCCGTTGAT	TTCAAAAAT	CGTGAGGGTTC	AAGTCCCTC	TATCCCCANNN	NNN

[1990	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090]
Berkheya	GCTTTCGGCTCCTTAT	CGTATCCTTT	'TT	TCGT	TAGCGGTTCA	AACTCCTTA	TCTTTCTCAT	TCACTACTCT	TTATACAAAT	GAATCTGGGCG	GAA
Gorteria	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AACTCCTTA	ICTTTCTCAT	TCACTACTTT	TTATACAAAT	GGATCTGAGCG	;GAA
Hirpicium	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTT-CGT	TAGCGGTTCA	AAACT	TTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	;GAA
caespitosa_RVC448	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	;GAA
caespitosa_RVC307	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
ciliaris RM1230	??????????????TAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AA-CTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
ciliaris RM1382	???TTCGGCTCCTTAT	CGTATACTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
heterochaeta RM1429	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
heterochaeta RM1451	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
jurineifolia_jur_SR682	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TAACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
jurineifoliajur RM1518	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TAACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
jurineifolia_scab_CAM1604	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TAACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
jurineifolia_scab_CAM2652	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TAACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
krebsiana arctotoides RM868	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
krebsiana arctotoides RM876	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
krebsiana_krebisiana_RM1114	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
krebsiana_krebsiana_RM1136	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
krebsiana_serrulata_RM863	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
krebsiana_serrulata_RM965	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
leiopoda_M240901	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTCTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
leiopoda RM1309	??????????????TAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AA-CTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
lichtenstenii_CAM1916	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	FCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
linearis_linearis_RM1010	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
linearis_linearis_SH113	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	FCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
linearis_ovalis_NDsn	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
linearis_ovalis_RM854	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
maritima RM1038	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
maritima_M290606_6	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
othonnites_RM1306	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
pectinata M120903	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
pectinata RM1044	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigida M280902	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigida_RM840	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	FCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigens_leucolaena_RM773	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	FCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigens_leucolaena_RM952_1	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	FCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigens_rigens_RM763	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigens rigens SR463	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAG
rigens uniflora JC201205	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
rigens uniflora RM920	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	TCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
schenckii	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	TCTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
serrata M250904 15	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
serrata RM898	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AAACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCC	GAA
tenuifolia CAM1601	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
tenuifolia M2730	GCTTTCGGCTCCTTAT	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AACTCCTTA	CTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCG	GAA
spnov M040906 33	NNNNNNNNNNNNNNNN	CGTATCCTTT	TTATTTATCC	TTTTTTTCGT	TAGCGGTTCA	AACTCCTTA	ICTTTCTCAT	TCACTACTCT	TTATACAAAT	GGATCTGAGCC	GAA
· · · · · · · · · · · · · · · · · · ·											

[2100	2110	2120	2130	2140	2150	2160	2170	2180	2190	2200]
Berkheya	ATGCTGTTTTCTTATC	CACA-GTGATA	TATATGATAC	CATGTACAAA	IGAACATCTTI	GAGGAAGGAA	rcccc	TGATTCAC	GATCGATATT	TTTATTCATAC	TGA
Gorteria	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	IGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
Hirpicium	ATGCTGTTCTCTTATC	CACACGTGATA	TATATGATAC	CATGTACAAA	IGAACATCTTI	GAGGAAGGAA	CCCCATTT(GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
caespitosa_RVC448	ATGCGGTTCTCTTATC	CACATGTGATA	TATA-GATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
caespitosa_RVC307	ATGCGGTTCTCTTATC	CACATGTGATA	TATA-GATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	rccccattt(GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
ciliaris_RM1230	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATTGATATT'	TTTATTCATAC	TGA
ciliaris_RM1382	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATTGATATT'	TTTATTCATAC	TGA
heterochaeta_RM1429	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
heterochaeta_RM1451	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
jurineifolia_jur_SR682	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATCGAGATT'	TTTATTCATAC	TGA
jurineifoliajur_RM1518	ATGATGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTTO	GAATGATTCAC	GATCGAGATT	TTTATTCATAC	TGA
jurineifolia_scab_CAM1604	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GTGGAAGGA-	CCCCATTTO	GATGATTCCC	GATCCGGATT	TTTTTTCCTCC	CG?
jurineifolia_scab_CAM2652	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GGGGAAGGAA	CCCCATTTO	GAATGATTCAC	GATCGAGATT	TTTATTCATAC	TGA
krebsiana_arctotoides_RM868	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTTO	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
krebsiana_arctotoides_RM876	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTTO	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
krebsiana_krebisiana_RM1114	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTTO	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	FCCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
krebsiana serrulata RM863	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
krebsiana serrulata RM965	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
leiopoda M240901	ATGCGGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
leiopoda RM1309	ATGCTGTTCTCTTATC	ACATGTGATA	TATGATAC	ATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
lichtenstenii CAM1916	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
lichtensteinii RM1249	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
linearis linearis RM1010	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
linearis linearis SH113	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
linearis ovalis NDsn	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
linearis ovalis RM854	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCG?????	??????????????	???
maritima RM1038	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
maritima M290606 6	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
othonnites RM1306	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
pectinata M120903	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	ATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
pectinata RM1044	ATGCTGTTCTCTTATC	ACATGTGATA	TATATGATAC	ATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
rigida M280902	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigida RM840	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigens leucolaena RM773	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigens leucolaena RM952 1	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTI	GAGGAAGGAA	rccccattt(GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigens rigens RM763	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigens rigens SR463	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigens uniflora JC201205	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	CCCCATTT	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
rigens_uniflora_RM920	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAA-(CGAACATCTTT	GAGGAAGGAA	CCC-ATTT	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
schenckii	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	FCCCCATTTO	GAATGATTCAC	GATCGATATT'	TTTATTCATAC	TGA
serrata M250904 15	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTTT	GAGGAAGGAA	rccccattt	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
serrata_RM898	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	ATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTTO	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
tenuifolia_CAM1601	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	ATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTTO	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
tenuifolia_M2730	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	ATGTACAAA	CGAACATCTTI	GAGGAAGGAA	FCCCCATTTO	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA
spnov_M040906_33	ATGCTGTTCTCTTATC	CACATGTGATA	TATATGATAC	CATGTACAAA	CGAACATCTT	GAGGAAGGAA	FCCCCATTTO	GAATGATTCAC	GATCGATATT	TTTATTCATAC	TGA

[2210	2220	2230	2240	2250	2260	2270	2280	2290	2300	2310]
Berkheya	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAG	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
Gorteria	AA-CTTACAAAGTAGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAI	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
Hirpicium	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
caespitosa_RVC448	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
caespitosa_RVC307	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCTTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
ciliaris RM1230	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GGTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
ciliaris RM1382	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GGTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
heterochaeta RM1429	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
heterochaeta RM1451	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
jurineifolia jur SR682	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
jurineifoliajur RM1518	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAG	CCCAAGTTCT	CTAGTAAAAT	JAAAATGAGGA'	TGA
jurineifolia scab CAM1604	<u>5555555555555555555555555555555555555</u>	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	222222222222222222222222222222222222222	2222222222	222222222222	?????????????	22222222222222	???
jurineifolia scab CAM2652	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	JAAAATGAGGA'	TGA
krebsiana arctotoides RM868	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	JAAAATGAGGA'	TGA
krebsiana arctotoides RM876	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	JAAAATGAGGA'	TGA
krebsiana krebisiana RM1114	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATZ	ACCCTTTTCAAT	TGACATAG	ACCCAAGTTCT	CTAGTAAAAT	JAAAATTAGGA'	TGA
krebsiana krebsiana RM1136	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATZ	ACCCTTTTCAAT	TGACATAG	ACCCAAGTTCT	CTAGTAAAAT	JAAAATGAGGA'	TGA
krebsiana serrulata RM863		ТСТТТТСАСА	AATTATAGGGC	CTGGATGAG	GCTTTGTAATZ		TGACATAG		CTAGTAAAAT	JAAAATGAGGA'	TGA
krebsiana serrulata RM965		тоттталол	AATTATACCCC	CTCCATCAC	CCTTTCTAATZ		TGACATAGI		CTACTAAAAT		TGA
leiopoda M240901		ТСТТТТСАСА	AATTATACCCC	CTCCATCAC	CCTTTCTANT	ACCCTTTCAA1	TGACATAGE		CTACTAAAAT	7773333333333333	222
leiopoda RM1309		ТСТТТТСАСА	AATTATACCCC	CTCCATCAC	CCTTTCTANT	ACCCTTTCAA1	TGACATAGE		CTACTAAAAT		··· тса
lichtenstenii CAM1916		TOTTTGACA	ATTATAGGGC	CIGGAIGAG	CITIGIAAIF	CCCTTTCAA1	TGACATAGE		CIAGIAAAAI	JAAAAI IAGGA JAAAAT TAGGA	TGA
lichtensteinii RM1249		ТСТТТТСАСА	AATTATACCCC	CTCCATCAC	CCTTTCTANT	ACCCTTTCAA1	TGACATAGE		CTACTAAAAT	ZA A A A TCACCA	TGA
linearia linearia RM1010		TOTTTGACA	ATTATAGGGC	CIGGAIGAG	CITIGIAAIF	CCCTTTCAA1	TGACATAGE		CIAGIAAAAI	JAAAAIGAGGA	TGA
linearia linearia Sulla		TOTTTGACA	ATTATAGGGC	CIGGAIGAG	COTTIGIANT		TGACATAGE		CIAGIAAAAI CTACTAAAAI	JAAAAIGAGGA	
linearia evalia MDan		TCTTTTGACA	ATTATAGGGC		COTTIGIAAIA	ACCCITICAAI	TGACATAGE		CIAGIAAAAI(CTACTAAAAAI(JAAAAIGAGGA	
linearia evalia DM954	AA-CIIACAAAGIIGI	1CIIIIGACA	ALIAIAGGGC	CIGGAIGAG	GCITIGIAAIA	ACCCTTTCAAT	IGACAIAGA	ACCCAAGIICI	222222222222	JAAAA I GAGGA	1GA 222
maxitima DM1029			, , , , , , , , , , , , , , , , , , ,						(((((((((((((((, , , , , , , , , , , , , , , , , , ,	rrch Trch
maritima_RMI038	AA-CIIACAAAGIIGI.		AAIIAIAGGGC							JAAAAIIAGGA	IGA
maritima_M290606_6	AA-CIIACAAAGIIGI.		AAIIAIAGGGC							JAAAA I GAGGA	IGA
OLHOHHILES_RMI306	AA-CIIACAAAGIIGI.		AAIIAIAGGGC	CIGGAIGAG	GCITIGIAAIA		IGACATAGA	ACCCAAGIICI	CIAGIAAAAI	JAAAAIIAGGA	IGA
pectinata_MI20903	AA-CITACAAAGITGT.	I'C'I''I''I''I'GACA	AA'I''I'A'I'AGGGC	CTGGATGAG	GCTTTTGTAATA	ACCCTTTCAAT	"I'GACA'I'AGA	ACCCAAGTTCT	CTAGTAAAAT(JAAAA'I''I'AGGA'	TGA
pectinata_RM1044	AA-CITIACAAAGITIGIT.	I'C'I''I''I''I'GACA	AA'I''I'A'I'AGGGC	CTGGATGAG	GCTTTTGTAATA	ACCCTTTTCAAT	"I'GACA'I'AGA	ACCCAAGTTCT	CTAGTAAAAT(JAAAA'I'GAGGA'	TGA
rigida_M280902	AA-C'I"I'ACAAAG'I"I'G'I".	I'C'I''I''I''I'GACA	AA'I'I'A'I'AGGGC	CTGGATGAG	GCTTTTGTAATA	ACCCTTTTCAAT	"I'GACA'I'AGA	ACCCAAGTTCT(CTAGTAAAAT(JAAAA'T'GAGGA'	TGA
rigida_RM840	AA-C'I"I'ACAAAG'I"I'G'I".	I'C'I''I''I''I'GACA	AA'I'I'A'I'AGGGC	CTGGATGAG	GCTTTTGTAATA	ACCCTTTTCAAT	"I'GACA'I'AGA	ACCCAAGTTCT(CTAGTAAAAT(JAAAA'T'GAGGA'	TGA
rigens_leucolaena_RM/73	AA-C'I"I'ACAAAG'I"I'G'I".	I'C'I"I"I"IGACA	AATTATAGGGC	CTGGATGAG	GCTTTTGTAATA	ACCCT"I"I'CAA'I	"I'GACATAGA	ACCCAAGTTCT	CTAGTAAAATO	JAAAA'I"I'AGGA'	TGA
rigens_leucolaena_RM952_1	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAI	TGACATAG	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
rigens_rigens_RM763	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGG?	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	??????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???
rigens_rigens_SR463	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAI	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATTAGGA'	TGA
rigens_uniflora_JC201205	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAI	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
rigens_uniflora_RM920	AA-CTTA????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	·	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$??????????????????????????????????	\$\$\$\$\$\$\$???
schenckii	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
serrata_M250904_15	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTG?????	???????????????????????????????????????		??????????????	????????????	???????????????????????????????????????	???
serrata_RM898	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAG	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
tenuifolia_CAM1601	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
tenuifolia_M2730	AAACTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	CTTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATGAGGA'	TGA
spnov_M040906_33	AA-CTTACAAAGTTGT	TCTTTTGACA	AATTATAGGGC	CTGGATGAG	GCTTTGTAATA	ACCCTTTCAAT	TGACATAGA	ACCCAAGTTCT	CTAGTAAAAT	GAAAATTAGGA'	TGA

1	2320	2330	2340	2350	2360]
Berkheya	GACATCAGGAATAO	TCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	!G
Gorteria	GACATCAGGAATAC	TCGGGATAGCTC.	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
Hirpicium	GACATCAGGAATAC	TCGGGATAGCTC.	AGTTGGTAGA	GCAGA?????	???????????????????????????????????????	?
caespitosa_RVC448	GACATCAGGAATAC	TCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
caespitosa_RVC307	GACATCAGGAATAC	TCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
ciliaris_RM1230	GACATCAGGAATAC	TCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
ciliaris_RM1382	GACATCAGGAATAG	TCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
heterochaeta_RM1429	GACATCAGGAATAG	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
heterochaeta_RM1451	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	!G
jurineifolia_jur_SR682	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	!G
jurineifoliajur_RM1518	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	!G
jurineifolia_scab_CAM1604	???????????????????????????????????????	·?????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	?
jurineifolia_scab_CAM2652	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
krebsiana_arctotoides_RM868	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	?
krebsiana_arctotoides_RM876	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	?
krebsiana_krebisiana_RM1114	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	:G
krebsiana_krebsiana_RM1136	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
krebsiana_serrulata_RM863	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	:G
krebsiana_serrulata_RM965	GACATCAGGAATAC	STCGGGATAGCTC	AGTA??????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	\$\$\$\$\$\$\$\$\$?
leiopoda_M240901	??????????????????????????????????????	·	\$\$\$\$\$\$\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	\$\$\$\$\$\$\$\$\$?
leiopoda_RM1309	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
lichtenstenii_CAM1916	GACATCAGGAATAC	TC???????????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	?
lichtensteinii_RM1249	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
linearis_linearis_RM1010	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
linearis_linearis_SH113	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
linearis_ovalis_NDsn	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
linearis_ovalis_RM854	?????????????????	·?????????????????????????????????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	?
maritima_RM1038	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
maritima_M290606_6	GACATCAGGAATAC	STCGGGATAGCTC.	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
othonnites_RM1306	GACATCAGGAATAC	STCGGGATAGCTC.	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
pectinata_M120903	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
pectinata_RM1044	GACATCAGGAATAC	STCGGGATAGCTC.	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
rigida_M280902	GACATCAGGAATAC	GTCGGGATAG???	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	?
rigida_RM840	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAA??????	?
rigens_leucolaena_RM773	GACATCAGGAATAC	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	.G
rigens_leucolaena_RM952_1	GACATCAGGAATAC	STCGGGATA????	???????????????????????????????????????	???????????????????????????????????????	?????????????	?
rigens_rigens_RM763	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	?????????????	??????????????	?
rigens_rigens_SR463	GACATCAGGAATAG	STCGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	'G
rigens_uniflora_JC201205	GACATCAGGAATAG	FTCGGGATAGCTC	AG'I''I'GG'I'AGA	GCAGAGGAC'I'	GAAAATCCTC	.G
rigens_uniflora_RM920	???????????????????????????????????????		???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	?
SCHENCK11	GACATCAGGAATAG	FICGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G
serrata_M250904_15	??????????????????????????????????????		??????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	2
serrata_KM898	GACATCAGGAATAG	FICGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAA???????	2
tenuiiolia_CAMI6UI	GACATCAGGAATAG	TC????????????????????????????????????	??????????????????????????????????????	···???????????????????????????????????	??????????????????????????????????????	<i>*</i>
tenuiiolia_M2730	GACATCAGGAATAG	FTCGGGATAGCTC	AGTTGGTAGA	GCAGAAGACT	GAAA??????	?
spnov_M040906_33	GACATCAGGAATAC	FICGGGATAGCTC	AGTTGGTAGA	GCAGAGGACT	GAAAATCCTC	G

[10	20	30	40	50	60	70	80	90	100	110]
lichtensteiniiRM1323	TCGAACCCTGCATA	GCGGAACGA	CCCGCGAACA	CGTACATACA	ACCGGGTGTAA	AGGGGGGCAG	G-CTCTAGCC	CGGCGACCCTT	GACGCCCTG	CCTTCCTGCGT.	ACATGT
lichtesteiniiM050906_2	TCGAACCCTGCATA	GCRGAACGA	CCCGCGAACA	CGTACATACA	ACCGGGTGTAA	AGGGGGGCAG	G-CTCTAGCC	CGGCGACCCTT	GACGCCCTG	CCTTCCTGCGT.	ACATGT
heterochaetaM160901_5g	TCGAACCCTGCATA	GCAGAACGA	CCCGCGAACA	TGTACATACA	ACCGGGTGTAA	AGGGGCAG	G-CTCTAGCC	CGGCGACCCTT	GACGCCCTG	CCTTCCTGCGT	GCATGT
heterochaetaRM1348	TCGAACCCTGCATA	GCAGAACGA	CCCGCGAACA	TGTACATACA	ACCGGGTGTAA	AGGGGCAG	G-CTCTAGCC	CGGCGACCCTT	GACGCCCTG	CTTCCTGCGT	GCATGT
neterochaetaRM1255	TCGAACCCTGCATA	GCAGAACGA	CCCGCGAACA	TGTACATACA	ACTGGGTGTAA	AGGGGGGCAG	G-CTCTAGCC	GGCGACCCTT	GATGCCCTG		GCATGT
tenulioliam/219_10	TCGAACCCTGCATA	GCAGAACGA	CCCGCGAACA	CGTACATACA	ACCGGGTGTAA	AGGGGGGACAG		GGCGACCCTT	GATGCCCTG		GCATGT
tenuitoliaRMI352	TCGAACCCTGCATA	GCAGAACGA	CCCGCGAACA	CGTACATACAA	ACCGGGTGTAA	AGGGGGACAG	G-CTCTAGCC	GGCGACCCTT	GATGCCCTG	CTACCTGCGT	GCATGT
ciliarisse/05	TCGAACCCTGCAAA	GCAGAACGA	CCCGCGAACA	CGTACATACA	ACCGGGTGTCA	AGGGGGGACAG	G-CACTAGCC	GGCGACCGTT	GATGCCCTG		GCATGT
Jurineirolia_scabCAM1953	TCGAACCCTGCATA	JCAGAACGA		CGTACATACAA	ATCGGGTGTTA	AGGGGGGACAG			GACGCCCTG		GCATGT
linearia linear Deknesi		GCAGAACGA		CGIACAIACAA	ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		GCAIGI
linearis_inear_Boxnesz		JCAGAACGA				AGGGGGGACIG			GAIGCCCIG		GCAIGI
ninearis_ovaiM041001_2g		JCAGAACGA			ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		GCAIGI
rigens_ieuco_M070714_1		JCAGAACGA			ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		GCAIGI
krebsiana_krebM071001_1g		GCAGAACGA		CGIACAIACAA	ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		GCAIGI
krebsiana_krebM071001_391		JCAGAACGA			ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		TCAIGI
rigidoM100002 4		JCAGAACGA			ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		CAIGI
rigidaM100905_4	TCGAACCCIGCAIA	CAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIG		CCCCACCCII	GAIGCCCIG		GCAIGI TONTOT
$rigidaM100904_4$		JCAGAACGA			ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		
rigideM120805_10		GCAGAACGA		CGIACAIACAA	ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		GCAIGI
loiopodoM160704 E		JCAGAACGA			ACCGGGIGICA	AGGGGGGACIG			GAIGCCCIG		GCAIGI
postipataM180804_5	TCGAACCCIGCAIA	CAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIG		CCCCACCCII	GAIGCCCIG		CONTOT
krobajana krobM210902 1	1CGAACCCIGCAIA	CAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIG		CCCCACCCII	GAIGCCCIG		CONTOT
krobgiona krobM220802_1		JCAGAACGA	CCCCCCCAACA	CGIACAIACA	ACCGGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		CCATGI
$\operatorname{RiebSialla_RiebM230005_0}$	TCGAACCCIGCAIA	JCAGAACGA	CCCCCCCAACA	CGIACAIACA	ACCGGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		JCAIGI
leienedeM2E0001_24	TCGAACCCIGCAIA	JCAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		ACAIGI
postipataM250901_34	TCGAACCCIGCAIA	CAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIG		CCCCACCCII	GAIGCCCIG		CONTOT
$pectIllataM250901_37$	TCGAACCCIGCAIA	CAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIG		CCCCACCCII	GAIGCCCIG		JCAIGI
maritimaM260901	22222222222222222	JCAGAACGA		CGIACAIACA	ACCGGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		CCATCT
krobgiona krobM261001 2			CCCCCCAACA	CGIACAIACA	ACCGGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		CCATGI
maritimaM270901 5g	TCGAACCCIGCAIA	GCACAACGA GCACAACGA	CCVCCCAACA	CGTACATACA	ACCGGGIGICA	AGGGGGGACIGC		CCCCACCCII	GAIGCCCIGO	CIACCIGCGI	CCATGI
rigong rigongM7292	TCGAACCCIGCAIA	CAGAACGA	CCCCCCAACA	CCTACATACA	ACCOGGIGICA	AGGGGGGAIIG			GAIGCCCIG		CONTOT
rigong rigongM7299	TCGAACCCIGCAIA	JCAGAACGA	CCCCCCCAACA	CGIACAIACA	ACCGGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		CCATGI
rigong rigongM7527_2	TCGAACCCIGCAIA	JCAGAACGA	CCCCCCCAACA	CGIACAIACA	ACCGGGGIGICA	AGGGGGGACIGC			GAIGCCCIG		CCATGI
leiopodaM200901_22g	TCGAACCCIGCAIA	GCAGAACGA GCAGAACGA	CCCCCCCAACA	CGTACATACA	ACCGGGIGICA	AGGGGGGACIGC		CCCCACCCII	GAIGCCCIGO		CCATGI
sphoy M7237 4	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA	ACCGGGGIGICA	AGGGGGGACIGC		ACCGACCCTT	GAIGCCCIG	CAACCIGCGI	TCATCT
Sphov_M/23/_4	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA	ACCOGGIGICA	AGGGGGGACIGC			GAIGCCCIG		CONTOT
krobajana krobNP1465	TCGAACCCIGCAIA	CAGAACGA		CGIACAIACA	ACCGGGIGICA	AGGGGGGACIG		CCCCACCCII	GAIGCCCIG		CAIGI
linearig linearDM1013	TCGAACCCIGCAIA	GCAGAACGA GCAGAACGA	CCCCCCCAACA	CGTACATACA	ACCGGGIGICA	AGGGGGGACIGC		CCCCACCITI	GAIGCCCIGO		CCATGI
rigens leucoPM1021	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA	ACCGGGGIGICA	AGGGGGGACIGC		CCCCACCCII	GAIGCCCIG	CIACCIGCGI	CCATCT
pectinataPM1044 1	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA	ACCGGGGIGICA	AGGGGGGACIGC		CCCCAVCCTT	GAIGCCCIG	CIACCIGCGI	CCATCT
hybrPM1061	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA	ACCGGGGIGICA	AGGGGGGAIIG		CCCCACCCTT	GAIGCCCIG	CIACCIGCGI	CCATCT
leiopodaRM1063	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CGTACATACA	ACCOGGIGICA	AGGGGGGACIGC		CCCCACCCTT	GAIGCCCIG	CIACCIGCGI	ACATCT
rigidaPM1082	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA	ACCGGGGIGICA	AGGGGGGACIGC		CCCCACCCII	GAIGCCCIG		CCATCT
linearig linearRM1090	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA		ACCCCCACTC		CCCCACCCII	CATGCCCIG		CCATCT
linearis linearRM1090	TCGAACCCIGCAIA	CAGAACGA	CCCGCGAACA	CGTACATACA		ACCCCCACTCC		CCCCACCCII	CATGCCCIG		GCATGT
linearig linearRM1094	TCGAACCCIGCAIA	CAGAACGA	CCCCCCCAACA	CCTACATACA		ACCCCCACTC		CCCCACCCII	CATGCCCIG		CCATCT
linearis linearRM1103	TCGAACCCIGCAIA	CAGAACGA	CCCGCGAACA	CGTACATACA		ACCCCCACTCC		CCCCACCCII	CATGCCCIG		GCATGT
krebsiana serrRM1137	TCGAACCCTGCAIA	CACAACCA	CCCCCCCAACA	CCTACATACA	ACCCCCCTCTCF	ACCCCCACIGO		CCCCACCCII	CATCCCCTC		CCATCT
VECODENTIA DCEETVLIEED /	LCONNCCCIGCAIA	JUNACUA	CCCCCGAACA		TCCOOGIGICE	TOOOOGUCIGC	, CICINGCC		01310CCC1G(CCHIGI

linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens_rigensRM772_1 linearis linearRM780 rigens_uniflRM782_1 rigens_uniflRM783 rigens uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana_krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens_leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana_krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana RM996 krebsiana_krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 ??????CTGCATAGCAGAACGACCCGCGGAACACGTACATACAACCGGGTGTCAAGGGGGGACTGG-CTCTAGCCGGCGACCCTTGATGCCCTGCCTACCTGCGTGCATGT ??????TGCATAGCAGAACGACCCGCGAACACGTACATACAACCGGGTGTCAAGGGGGACTGG-CTCTAGCCGGCGACCCTTGATGCCCTGCCTACCTGCGTGCATGT

leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana_krebSH111_1 krebsiana_krebSH111_2 krebsiana_krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis linearSR571 rigens rigSR574 rigens rigSR575 rigensSR581 rigens uniflSR625 krebsiana krebSVHF1 krebsiana arctSV HF2

[

lichtensteiniiRM1323 lichtesteiniiM050906 2 heterochaetaM160901 5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia_scabCAM1953 rigens unifl Boknes1 linearis linear Boknes2 linearis ovalM041001 2g rigens_leuco_M070704_1 krebsiana krebM071001 1g krebsiana_krebM071001_3gl krebsiana arctM071001 3pg rigidaM100903 4 rigidaM100904 4 rigidM110805 10 rigidaM120805_80 leiopodaM160704 5 pectinataM180904 5

120	130	140	150	160	170	180	190	200	210	220]
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7q leiopodaM250901 34 pectinataM250901_37 pectM260901_2g maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens rigensM7293 rigens rigensM7298 2 rigens rigensM7527 2 leiopodaM200901 22q spnov M7237 4 serrataHerm_NB krebsiana krebNB1465 linearis_linearRM1013 rigens leucoRM1021 pectinataRM1044 1 hvbrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis_linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens_rigensRM772_1 linearis linearRM780 rigens_uniflRM782_1 rigens uniflRM783 rigens uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812

AGCCCTTTTTTAGGGCTCGTGAAC--TTAGTGTTGGCATCTAAACAAA-CCCCGGCATGTGCCCAAGGAAAACAAAGGAAGGGCTCGTACCGTGGCGTGCCCG AGCCCTTTTTTGGGGCTCGTGAAC--TTAGTGTTGGCATCTAAACAAA-CCCCGGCATGTGCCAAGGAAAACAAAGGAAGGGCTCGTACCGTGGCGTGCCCG AGCCCTTTTTTGGGGCTCGTGAAC--TCAGTGTTGGCATCTAAACAAA-CCCMGGCACGGCATGTGCCAAGGAAAACAAAACATAGGAAGGGCTCGTACCGTGGCGTCCCG AGCCCTTTTTTGGGGCTCGTGAAC--TYAGTGTTGGCATCTAAACAAA-CCCCCGGCACGGCATGTGCCAAGGAAAACAAAAGATAGGAAGGGCTCGTACCGTGGCGTCCCG rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana_krebRM874 krebsiana_serrRM877 linearis_linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana_krebRM929 krebsiana krebRM949 krebsiana_krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana_krebSH111_2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis_linearSH131 linearis_linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis_linearSR571 rigens rigSR574 rigens_rigSR575 rigensSR581 rigens uniflSR625

krebsiana_krebSVHF1 krebsiana_arctSV_HF2

•	
ъ.	

[230	240	250	260	270	280	290	300	310	320	330]
lichtensteiniiRM1323	TT-GCGGTGTACGCAT	GTGCGTGTCT	CTTTTTATAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAA	ATGCGATACTTG	JGTG
lichtesteiniiM050906 2	TTTGCGGTGTACGCAT	GTGCKTGTCT	CTTTTTATAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	JGTG
heterochaetaM160901 5q	TTTGCGGTGTACGCAT	GTGCGTGTCT	CTTTTTATAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
heterochaetaRM1348	TTTGCGGTGTACGCAT	GTGCGTGTCT	CTTTTTATAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	JGTG
heterochaetaRM1255	TTTGCGGTGTACGCAT	GTGTGTGTCTC	CTTTTTAAAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	JGTG
tenuifoliaM7219 10	TTTGCGGTGTACGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	JGTG
tenuifoliaRM1352	TTTGCGGTGTACGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	GTG
ciliarisSR705	TTCGCGGTGTGCGCAT	GTGCTTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
jurineifolia scabCAM1953	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigens unifl Boknesl	TTTGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
linearis linear Boknes2	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
linearis ovalM041001 2g	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigens leuco M070704 1	TTTGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
krebsiana krebM071001 lg	TTCGCGGTGTGCGCAT	GTGCGTGTCT	TTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GATATCTCG	CTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
krebsiana krebM071001 3gl	TTCGCGGTGTGCGCAT	GTGCGTGTCT	TTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	IGTG
krebsiana arctM071001 3pg	TTCGCGGTGTGCGCAT	GTGCGTGTCT	TTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	IGTG
rigidaM100903 4	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigidaM100904 4	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigidM110805 10	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigidaM120805 80	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
leiopodaM160704 5	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
pectinataM180904 5	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
krebsiana krebM210902 1	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
krebsiana krebM230803 8	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	JGTG
 serrM230901 7q	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	JGTG
leiopodaM250901 34	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
pectinataM250901 37	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	GTG
pectM260901 2g	TTCGCGGTGTGCGCAT	GTGCGTGTCT	TTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	IGTG
maritimaM260901	TTCGCGGTGTRYGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
krebsiana krebM261001 2	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
maritimaM270901 5g	TTCGCGGTGTRYGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigens rigensM7293	TTTGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	rcgatgaagaac	GTAGCAAAA	ATGCGATACTTG	GTG
rigens rigensM7298 2	TTTGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
rigens rigensM7527 2	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
leiopodaM200901 22g	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
spnov M7237 4	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
serrataHerm NB	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	GTG
krebsiana krebNB1465	TTCGCGGTGTGCGCAT	GTGCGTGTCT	TTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GATATCTCG	CTCACGCAT	CGATGAAGAAC	GTAGCAGA	ATGCGATACTTG	IGTG
linearis linearRM1013	TTCGCGGTGTGCGCAT	GTGCGTGTCT	TTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTG	IGTG
rigens leucoRM1021	TTTGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTC	JGTG
pectinataRM1044 1	TTCGCGGTGTATGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTC	JGTG
hybrRM1061	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTC	JGTG
leiopodaRM1063	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTC	JGTG
rigidaRM1082	TTCGCGGTGTGCGCAT	GTGCGTGTCT	CTTTTGTAA	TCACAAACGAC	TCTCGGCAAC	GGATATCTCG	GCTCACGCAT	CGATGAAGAAC	GTAGCAAAA	ATGCGATACTTC	JGTG

linearis linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana_serrRM1137 linearis_linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens rigensRM772 1 linearis linearRM780 rigens uniflRM782 1 rigens uniflRM783 rigens uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis_linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana_krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana_krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana_krebRM962 krebsianaRM966 krebsiana krebRM968

TTCGCGGTGTGCGAATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGGAGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCTCTCTTTTGTAATCACAAACGACTCTCGGCCACGGATATCTCGGCTCACGCATGAGAAGAACGACGAAGAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGGCTCACGCATGAAGAACGTAGCAGAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTRYGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTTGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAA-TGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAGCGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAGCGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGWGCGCATGTGCGTGTCTCTTTTGTAATCACAAACCACTCTCGGCAACGGATATCTCGGCTCACGCATGGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAA-TGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG $- {\tt TCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG$ TTCGCGGTGTGCGCATGTGCGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTTGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAA-TGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCKTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGYCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG

340

krebsiana krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis_linearRM1406_2 leiopodaRM1466 serrataHerm_RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis_linearSH117 krebsianaSH118 linearis_linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis linearSR571 rigens rigSR574 rigens rigSR575 rigensSR581 rigens uniflSR625 krebsiana krebSVHF1 krebsiana arctSV HF2

ſ

lichtensteiniiRM1323 lichtesteiniiM050906 2 heterochaetaM160901 5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia_scabCAM1953 rigens_unifl_Boknes1 linearis linear Boknes2 linearis ovalM041001 2q rigens leuco M070704 1 krebsiana krebM071001 1q krebsiana_krebM071001_3gl krebsiana_arctM071001_3pg rigidaM100903 4

TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCKTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGGAGAAGAACGTAGCAAA-TGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCTCTCTTTTGTAATCACAAACGACCCCCCGGCACACGGATATCTCGGCTCACGCATGGAGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAAACACAAACGACTCTCGGCAACGGATATCTCGGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCTTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTTGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTTGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG TTCGCGGTGTGCGCATGTGCGCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATCGATGAAGAACGTAGCAAAATGCGATACTTGGTG

 350
 360
 370
 380
 390
 400
 410
 420
 430
 440]

TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTCGGGCGTCACGCATCGCGTCGCCCCCTCAC rigidaM100904 4 rigidM110805 10 rigidaM120805 80 leiopodaM160704 5 pectinataM180904_5 krebsiana krebM210902 1 krebsiana_krebM230803_8 serrM230901 7q leiopodaM250901 34 pectinataM250901 37 pectM260901 2g maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens_rigensM7293 rigens_rigensM7298_2 rigens_rigensM7527_2 leiopodaM200901 22g spnov M7237 4 serrataHerm NB krebsiana krebNB1465 linearis linearRM1013 rigens leucoRM1021 pectinataRM1044 1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis_linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis_linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens rigensRM772 1 linearis linearRM780 rigens_uniflRM782_1 rigens_uniflRM783 rigens uniflRM785

TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTCGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAY TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTYGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGSGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGCGTCACGCGTCGCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGSGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGCGTCACGCGTCGCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGCGTCACGCGTCGCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGGGTCGCCCCCTCAC linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900_1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana_krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana_krebSH111_2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis_linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis_linearSR523 krebsianaSR564

TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTCGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTTGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCSGTCGAGGGCACGTCTGCCTGGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTMGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGGCGTCACGCGTCGCCCCCCCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTCGGCGTCACGCATCGCGTCGCCCCCTCAC linearis linearSR571 rigens rigSR574 rigens_rigSR575 rigensSR581 rigens_uniflSR625 krebsiana_krebSVHF1 krebsiana_arctSV_HF2

ſ

lichtensteiniiRM1323 lichtesteiniiM050906 2 heterochaetaM160901 5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219_10 tenuifoliaRM1352 ciliarisSR705 jurineifolia_scabCAM1953 rigens unifl Boknes1 linearis linear Boknes2 linearis ovalM041001 2q rigens leuco M070704 1 krebsiana krebM071001 1q krebsiana_krebM071001_3gl krebsiana_arctM071001_3pg rigidaM100903_4 rigidaM100904 4 rigidM110805 10 rigidaM120805_80 leiopodaM160704 5 pectinataM180904_5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7q leiopodaM250901 34 pectinataM250901_37 pectM260901_2g maritimaM260901 krebsiana krebM261001 2 maritimaM270901_5g rigens_rigensM7293 rigens_rigensM7298_2 rigens rigensM7527 2 leiopodaM200901 22g spnov_M7237_4 serrataHerm NB krebsiana_krebNB1465 linearis_linearRM1013 rigens leucoRM1021

TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC ${\tt TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCGTCGCCCCCTCAC$ TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC TGAATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCTCAC

	450	460	470	480	490	500	510	520	530	540	550]
AAC-CCT	CCTTGTTGGG	AACACGTTG	TGTCAGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTYGGTGGA	CGCACGGCTA	GTGG
AAC-CCT	CCYTGTTGGG	AACACGTTG	TGTCAGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTYGGTGGA	CGCACGGCTA	GTGG
TAC-CCT	rcctgttggg	AACACGTTG	TGTGAGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTTGGTGGA	CGCACGGCTA	GTGG
TAC-CCT	rcctgttggg	AACACGTTG	TGTGAGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTTGGTGGA	CGCACGGCTA	GTGG
AAC-CCT	rcctgttggg	AACATGTTG	TGTCAGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AACACGTTG	TGTCA-GGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AACACGTTG	TGTCA-GGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTTTTGGG	AGAACGTTG	TGTAGGGGG	CGGATATTGG	TCTCCCGTGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTTGGCGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	ATCACGTTG	GGTT-GGGGGG	CGGATATTGG	CCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCAGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CSCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTRTTGGG	AAAACRTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTATTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTC-GGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATTTGAGTC	CCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTRTTGGG	AAAACATTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACATTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTC-GGGGGG	CGGATATTGG	TCTCCCATGC	CTTCGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTC-GGGGGG	CGGATATTGG	TCTCCCATGC	CTTCGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGYTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTC-GGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGATGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACRTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATYTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAAAGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGCTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG
AACTCCT	CCCTGTTGGG	AAAACGTTG	TGTCGGGGGGG	CGGATATTGG	TCTCCCATGC	CTTTGGTGT	GGTTGGCCTAA	ATCTGAGTC	CCCTCGGTGGA	CGCACGGCTA	GTGG

pectinataRM1044 1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis_linearRM1090 linearis linearRM1092 linearis_linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens rigensRM772 1 linearis linearRM780 rigens uniflRM782 1 rigens uniflRM783 rigens_uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana_krebRM874 krebsiana serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana_arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana_krebRM949 krebsiana krebRM950 linearis linearRM951

AACTCCTCCCTGTTGGGAAAACGTTGTGTC-GGGGGCGGATATTGGTCTCCCATGCCTTCGGTGGCCTGGCCTAAATCTGAGTCCCCTCGGTGGACGCACGGCTAGTGG AACTCCTCCCTGTTGGGAAAACGTTGTGTC-GGGGGCGGATATTGGTCTCCCATGCCTTTGGTGTGGATGGCCTAAATCTGAGTCCCCTCGGTGGACGCACGGCTAGTGG krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana_krebRM992 krebsiana RM996 krebsiana_krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana_krebSH111_2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis_linearSR571 rigens rigSR574 rigens_rigSR575 rigensSR581 rigens_uniflSR625 krebsiana krebSVHF1 krebsiana arctSV HF2

560 570 580 590 600 610 620 630 640 650 660]

[

lichtensteiniiRM1323 lichtesteiniiM050906_2 heterochaetaM160901_5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219_10 tenuifoliaRM1352 ciliarisSR705 jurineifolia_scabCAM1953 rigens_unifl_Boknes1 linearis_linear_Boknes2 linearis_ovalM041001_2g rigens_leuco_M070704_1

krebsiana krebM071001 lq krebsiana krebM071001 3gl krebsiana arctM071001 3pg rigidaM100903 4 rigidaM100904_4 rigidM110805_10 rigidaM120805_80 leiopodaM160704 5 pectinataM180904 5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7q leiopodaM250901 34 pectinataM250901 37 pectM260901_2g maritimaM260901 krebsiana_krebM261001_2 maritimaM270901 5g rigens rigensM7293 rigens rigensM7298 2 rigens rigensM7527 2 leiopodaM200901 22q spnov M7237 4 serrataHerm NB krebsiana krebNB1465 linearis linearRM1013 rigens leucoRM1021 pectinataRM1044_1 hvbrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis_linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana_arctRM770_2 rigens rigensRM772 1

TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAAYGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTATGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAAGACCCAAACGCATTGTCTTCTGACGACGCTCGACGCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCGGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCRTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGYAATGGAAGTRCTCATGAAAAGACCCCAAAYGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTATGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCATTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAASACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCSACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCGGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAASACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGYAATGGAAGTRCTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCGCCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCRTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCCGACCGCGACCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG linearis linearRM780 rigens uniflRM782 1 rigens uniflRM783 rigens uniflRM785 linearis_linearRM787 linearis_linearRM789 linearis_linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana krebRM874 krebsiana_serrRM877 linearis linearRM884 linearis_linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana_krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana_RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm_RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis linearSH131 linearis_linearSH132 krebsianaSH133 krebsianaSH135

TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCCTCGACGCGACCCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAT$ TGGTTGACAAGACCCTCTTCTGGTGTCRTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGCAATGGAAGTGCTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGAAAAGACCCTCTTCTGGTGTCGTGCTAAAACCGTAATGGAAGTACTCATGAAAAAGACCCAAATGCGTTGTCTTCTGACGACGCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTGGTGGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCGCCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGYAATGGAAGTRCTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGYAATGGAAGTRCTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGCCAATGGAAGTGCTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGCCAATGGAAGTGCTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTRCTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAGTGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGCCCCCGGTCAG ${\tt TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACAATGCTTCGACCGCGCGCCCCAGGTCAG$ TGGTTGACAAGACCCTCTTCTGGTGTCGTGCTAAACCGTAATGGAAGTACTCATGAAAAGACCCCAAACGCGTTGTCTTCTGACGATGCTTCGACCGCGACCCCAGGTCAG

krebsianaSR480 krebsianaSR520 linearis_linearSR523 krebsianaSR564 linearis_linearSR571 rigens_rigSR574 rigens_rigSR575 rigensSR581 rigens_uniflSR625 krebsiana_krebSVHF1 krebsiana_arctSV_HF2

670 680 690 700 710 720 730 740 750 760	770
---	-----

lichtensteiniiRM1323 lichtesteiniiM050906 2 heterochaetaM160901 5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia scabCAM1953 rigens unifl Boknes1 linearis linear Boknes2 linearis_ovalM041001_2g rigens leuco M070704 1 krebsiana krebM071001 1g krebsiana_krebM071001_3gl krebsiana arctM071001 3pg rigidaM100903_4 rigidaM100904 4 rigidM110805 10 rigidaM120805 80 leiopodaM160704 5 pectinataM180904 5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7g leiopodaM250901_34 pectinataM250901 37 pectM260901_2g maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens rigensM7293 rigens_rigensM7298_2 rigens_rigensM7527_2 leiopodaM200901 22g

 ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACACATGGACTAGCCAACACGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACACTAAACGA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACGCGTCACACATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACACTAAACGA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGTCACACATGGACTAGCCAACACGCGAGAGTG-ATCGTTTTAGAGAAGCGAGAACACTAAACGA GCGGGACTACCCGCTGAGGGTAGCATTCTTCTCGACGCAACCCGTCACACATGGACTAGCCCAACGCGCAACGAG-TG-ATCGTTTTAGAGAAGCGAGAACACTAAAGGA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGGCACGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGTGAGAACACTAAACGA GCGGGACTACCCG?????GGTAGCATTCCTCTTCGACGCAACCCGCCACGACGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGTGAGAACACTAAACGA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGATGCARCCCGCCATGCATGGACTTGCCAACACACGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACGA GCG?????????????????GTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGTCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA}$ GCGGGACTACCCGCTGAG?GTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAG?GTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGG????????????GTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA G???????????????????????????????????GTAGCATTCCTCTCGACGCAACCCGTCACACATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGTCACGCATGGACTAGCCAACACGCGACGACGACGACGATTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGTCAACACGCGAGG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAG??TAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAG ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA}$ GCGG??????????????GGTAGCATTCCTCTTCGACGCAACCCCGTCACGCATGGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAGCAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCACTCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCATCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGTCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCC??????GGTAGCATTCCTCTTCGACGCAACCAGCCACGACTAGCCAACACGCGACGACGACGACGACGAGAAGCGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCAGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCATCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGTCACGCATGGACTAGCCAACACGCGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA

spnov M7237 4 serrataHerm NB krebsiana krebNB1465 linearis linearRM1013 rigens_leucoRM1021 pectinataRM1044_1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis_linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana_arctRM770_2 rigens rigensRM772 1 linearis linearRM780 rigens_uniflRM782_1 rigens uniflRM783 rigens_uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana krebRM874 krebsiana_serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana_arctRM903 krebaRM904 krebsiana krebRM906

GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA}$ ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA}$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCGTCACACATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA}$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGACACCCATGGACTAGCCAACACGCGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGC-ACACATGGACTAGCCAACACGCGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACCCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAG??TAGCATTCCTCTTCGACGCAACCCATCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGGCACGACTAGCCAACACGCGACGACGACGACGACGAGAAGCGAGAACGCTAAACAG GCGGGACTACCC??????GTAGCATTCCTCTTCGACGCAACCAGTCACGCATGGTCTAGCCAACACGCGACGACGACGACGATCATTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAG}{\tt GTAGCATTCCTCTTCGACGCAACCCATCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCATCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCAATCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGG-ACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCG?????GGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAG??TAGCATTCCTCTTCGACGCAACCCCGTCACGCATGGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGG-ACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGG-ACT???????GGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTGGACTAGCCAACACGCGACGACGACGACGATTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGAGG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA

rigens leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis_linearRM951 krebsiana krebRM960 krebsiana_krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana_RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis linearSR571 rigens rigSR574 rigens_rigSR575 rigensSR581 rigens_uniflSR625 krebsiana krebSVHF1 krebsiana arctSV HF2

[

lichtensteiniiRM1323 lichtesteiniiM050906_2 heterochaetaM160901_5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219_10 tenuifoliaRM1352 ciliarisSR705 780

790

800

810

GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGAGG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA}$ GCGGG???????????????GTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACACATGGACTAGCCAACACGCGACAAG-TG-ATCGTTTTAGATAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCATCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCTCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAG GCGGGACTACCCGCTGAGGGTAGCATTCCTCTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAG??TAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGC-ACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCAC-CATGGACTAGCCAACACGCGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGAGA-TGGATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGAGG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTGGACTAGCCAACACGCGACGACGACGACGATTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGAGG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA}$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAAAAA ${\tt GCGGGACTACCCGCTGAG}{\tt GTAGCATTCCTCTTCGACGCGACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGCATGGACTAGCCAACACGCGAGG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA ${\tt GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA$ GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCGCCACGCATGGACTAGCCAACACGCGACGAG-TG-ATCGTTTTAGAGAAGCGAGAACGCTAATCAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA GCGGGACTACCCGCTGAGGGTAGCATTCCTCTTCGACGCAACCCCGCCACGACTAGCCAACACGCGACGAGA-TG-ATCGTTTTAGAGAAGCGAGAACGCTAAACAA

GGACATAAAAAGATCATCTAAGACCCCATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCGAAACTCAACAAGCCACATCGACGAA-GTGTTTACAACGACAAAA
GGACATAAAAAGATCATCTAAGACCCCATGCCCACATCAGGTTCYGTATCCAAGACACCAAGCGAAACTCAACAAGCCACATCGACGAA-GTGTTTACAACGACAAAA
GGACATAAAAGGATCATCTAAGACCCCATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCAAAACTCAGCAAGCCACATCAACGAA-GTGTTTACAACGACAAGA
GGACATAAAAAGATCATCTAAGACCCCATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCAAAACTCAGCAAGCCACATCAACGAA-GTGTTTACAACGACAAGA
GGACATAAAAGGATCATCTAAGACCCCATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCGAAACTAAGCAAGC
GGACATAAAAGGATCATTTAAGACCCCATGCCCACATCAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAA-GTGTTTACAACGACAAGA
GGACATAAAAGGATCATTTAAGACCCCATGCCCACATCAGGTTGCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATTGCCGAA-GTGTTTACAACGACAAGA
GGACATAAAAGGATCATTTAAGACCCCATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCAAAACTTAGCAAGCCACATCGTCGAA-GTGTTTACAACGACAAGA

830

840

850

860

870

820

jurineifolia scabCAM1953 rigens unifl Boknes1 linearis linear Boknes2 linearis ovalM041001 2g rigens_leuco_M070704_1 krebsiana_krebM071001_1g krebsiana_krebM071001_3gl krebsiana_arctM071001_3pg rigidaM100903 4 rigidaM100904 4 rigidM110805 10 rigidaM120805 80 leiopodaM160704 5 pectinataM180904 5 krebsiana_krebM210902_1 krebsiana krebM230803 8 serrM230901_7g leiopodaM250901 34 pectinataM250901 37 pectM260901 2q maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens rigensM7293 rigens rigensM7298 2 rigens rigensM7527 2 leiopodaM200901_22g spnov_M7237_4 serrataHerm NB krebsiana krebNB1465 linearis_linearRM1013 rigens leucoRM1021 pectinataRM1044_1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis_linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 riqidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291

GGGCATAAAAGGATCATGTAAGACCCTATGCCCACATCAGGTTCCGTATCCAAGACACCAAGCGAAACTCAGCAAGCCATATCGTCGTA-G--TGTTTACAACAACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTAAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGGCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGACCACGACGACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAC-TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGRCACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAC-TGTACACAACGACAAGA GGACATAAAAAGATCATTAAGAACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGACACCATCGSCGAT-G--TGTACACAAACGACAAGA GGACATAAGATGATCGTTTACCACCC-ATGACAACATTAGGT-CCATATCCAAGAAACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCRCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAC-TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-TTGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGGGAAACTCAGCAAGGCACACTCGGCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGGCACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACAACAAGA leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens_rigensRM772_1 linearis_linearRM780 rigens_uniflRM782_1 rigens uniflRM783 rigens uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana_arctRM831_1 krebsiana_krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens_leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana_krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana_RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana_RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana_krebSH111_2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117

GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGACCACGACGACGACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGACCACGACGACGACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTTAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTYAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGACGAC-TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATYTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATYTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTRGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTRCACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTWAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATYTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATYKAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCRAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA

krebsianaSH118 linearis linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis linearSR571 rigens rigSR574 rigens rigSR575 rigensSR581 rigens uniflSR625 krebsiana_krebSVHF1 krebsiana arctSV HF2

ſ

lichtensteiniiRM1323 lichtesteiniiM050906 2 heterochaetaM160901 5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia_scabCAM1953 rigens unifl Boknes1 linearis linear Boknes2 linearis ovalM041001 2g rigens leuco M070704 1 krebsiana_krebM071001_1g krebsiana krebM071001 3ql krebsiana arctM071001 3pg rigidaM100903 4 rigidaM100904 4 rigidM110805_10 rigidaM120805_80 leiopodaM160704 5 pectinataM180904 5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901_7g leiopodaM250901 34 pectinataM250901 37 pectM260901 2q maritimaM260901 krebsiana_krebM261001_2 maritimaM270901_5g rigens rigensM7293

GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGACCACGACGACGACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACAWTAGGTTCCATATCCAAGACAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATCTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCARGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGACCACGACGACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA GGACATAAAAAGATCATTTAAGACCC-ATGCCCACATTAGGTTCCATATCCAAGACACCAAGCGAAACTCAGCAAGCCACATCGCCGAT-G--TGTACACAACGACAAGA

890	900	910	920	930	940	950	960	970	980	990]
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

TGGCTTACAGAGACCACTTACTGGTCCGTCATGCACCACCACGAGTGCGATGCGTGACGGAAACAGATTCAATCGGTCCATACAATGCCTTTGATTAGGTACGCAACACAGGA TGGCTTACAGAGACCACTTACTGGTCCGTCATGCACCACAAGTGCGATGCGTGACGGAAACAGATTCAATCGGTCCATACAATGCCTTTGATTAGGTACGCACACAGGA TGGCTTACAGAGACCACTTACTGGTCCGTCATGCACCAC-AGTGCGATGCGTGACAAAAACAGATTCAATCGGTCCATACAATGCCTTTGATTAGGAACGCAACACAGGA TGGCTTACAGAGACCACTTACTGGTCCGTCATGCACCAC-AGTGCGATGCGTGACAAAAACAGATTCAATCGGTCCATACAATGCCTTTGATTAGGAACGCAACACAGGA TGGCTTACAAAGACCACTTACTGGTCCGTCATGCACCACAAGTGCGATGAGCGACGAAAACAGATTCAATCGGTCCATACAATGCCTTTGATTAGGTACTCAACACAGGA TGGATTACGGAGACCACTTACTGGTCCGTCATGCACCACCACAAGTGCGATGCGTGACGGAAAAAGATTCAATCTGT-CATACAATGCCCTCAATCTGTCATACATCATCTAG TGGATTACGGAGACCACTTACTGGTCCGTCATGCACCACAAGTGCGATGCGTGACGGAAAAAGATTCAATCAGT-CATACAATGCCCTTGATTAGGTACGCAACACAGGA CGGATTACAGAGAATGCTTACTGGTCCGTCATGCACCACATGTGCGATGCGTGACGGAAACAGATTCAATCGGTCCATACAATGCCTTCGATTAGGTACGCAACACAGGA ${\tt TGGATTACAGAGAGCCACTTGCTGGTCCGTCATGCACCACAAGTGCGATGCGTGACGGAAACAGAATTCAATCGGTCCATACAATGCCTTCGATTAGGTACGCAACACAGAA$ TGGATTACTAAGACCACTTACCGGTCCATCATGCACCACCACTGTGYGATGCATGACGGATACATATTCATTCGGTCCATACAATGCCTTCGATTAGGTACGCAACACAGTA rigens rigensM7298 2 rigens rigensM7527 2 leiopodaM200901_22g spnov M7237 4 serrataHerm_NB krebsiana_krebNB1465 linearis_linearRM1013 rigens_leucoRM1021 pectinataRM1044 1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis linearRM1092 linearis_linearRM1094 linearis linearRM1103 krebsiana_serrRM1137 linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana_arctRM770_2 rigens rigensRM772 1 linearis_linearRM780 rigens uniflRM782 1 rigens uniflRM783 rigens uniflRM785 linearis linearRM787 linearis_linearRM789 linearis_linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana_arctRM831_1 krebsiana krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis_linearRM885 krebsianaRM888 rigidaRM900 1

TGGATTACTAAGACCACTTACCGGTCCATCATGCACCACCACTGTGCGATGCATGAYGGATACATATTCATTCGGTCCATACAATGCCTTCGATTAGGTACGCAACACAGTA
krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana_krebRM929 krebsiana krebRM949 krebsiana_krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana RM996 krebsiana_krebRM1403 linearis linearRM1406 1 linearis_linearRM1406_2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis linearSH117 krebsianaSH118 linearis linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis linearSR571 rigens_rigSR574 rigens_rigSR575 rigensSR581 rigens uniflSR625 krebsiana krebSVHF1 krebsiana arctSV HF2

[

lichtensteiniiRM1323 lichtesteiniiM050906_2 heterochaetaM160901_5g heterochaetaRM1348 heterochaetaRM1255 1000

AACCCACAATACGAGCAAGTCTACAACAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAAGTCTACAACAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCACCACCAAAACCAAA AACCCACAAAACGAGCAAGTCTACAACAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCACCACCACCAAAACCAAA AACCCACAAAACGAGCAAGTCTACAACAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCACCACCACCAAAAACCAAA AACCCACAAAACGAGCAAGTCTACAACAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCACCCGTAACAAACCAAA AACCCACAAAACGAGCAAGTCAACAACCACAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCACCCGTAACAAACCAAA

tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia scabCAM1953 rigens_unifl_Boknes1 linearis linear Boknes2 linearis_ovalM041001_2g rigens_leuco_M070704_1 krebsiana krebM071001 1g krebsiana krebM071001 3ql krebsiana arctM071001 3pg rigidaM100903 4 rigidaM100904 4 rigidM110805 10 rigidaM120805_80 leiopodaM160704 5 pectinataM180904_5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7q leiopodaM250901 34 pectinataM250901 37 pectM260901 2q maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens rigensM7293 rigens_rigensM7298_2 rigens_rigensM7527_2 leiopodaM200901 22g spnov_M7237_4 serrataHerm NB krebsiana_krebNB1465 linearis linearRM1013 rigens leucoRM1021 pectinataRM1044 1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana_serrRM1137 linearis linearRM1182 riqidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260

AACCCACAATACGAGCAAGTCTATAACAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCAAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATATGAGCAAGTCTAAAACAAGACTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAAGTCTAAAACAAGCCTTGCTACGTAAAATGAAGAGGTAAGCRCGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCGCCAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCATAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCATAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAAGACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAAGACTGAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCGCAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTATGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCRCAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATAYGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACACATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACTAGCAAGACTGAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana_arctRM770_2 rigens rigensRM772 1 linearis linearRM780 rigens uniflRM782 1 rigens uniflRM783 rigens uniflRM785 linearis linearRM787 linearis linearRM789 linearis_linearRM794 linearis_linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana_arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana_krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana_RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis_linearRM1406_2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana_krebSH111_1 krebsiana_krebSH111_2 krebsiana krebSH112

AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCGCAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCGCAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAACGAAGGGAAGGTAAGCACGCATGGAAGTTGCTTCGCTAGGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTAYGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCRCAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA ____ AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCGCAATACGAGCAACACTAAAATAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAASACTRAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCCGTAACAAACCAAA

krebsianaSH115
linearis_linearSH116
linearis_linearSH117
krebsianaSH118
linearis_linearSH131
linearis_linearSH132
krebsianaSH133
krebsianaSH135
krebsianaSR480
krebsianaSR520
linearis_linearSR523
krebsianaSR564
linearis_linearSR571
rigens_rigSR574
rigens_rigSR575
rigensSR581
rigens_uniflSR625
krebsiana_krebSVHF1
krebsiana_arctSV_HF2

[

lichtensteiniiRM1323 lichtesteiniiM050906 2 heterochaetaM160901 5q heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia scabCAM1953 rigens_unifl_Boknes1 linearis linear Boknes2 linearis ovalM041001 2q rigens leuco M070704 1 krebsiana krebM071001 1q krebsiana_krebM071001_3gl krebsiana_arctM071001_3pg rigidaM100903 4 rigidaM100904 4 rigidM110805_10 rigidaM120805 80 leiopodaM160704_5 pectinataM180904 5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7q leiopodaM250901_34 pectinataM250901 37 pectM260901 2q

AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTATGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA AACCCACAATACGAGCAACACTAAATTAAGCCTTGCTACGTAAATGAAGAGGGTAAGCACGCATGGAAGTTGCTTCGCTAGAAGACATCCAACCACCCGTAACAAACCAAA

	1110	1120	1130	1140	1150	1160	1170	1180	1190	1200	1210]
CACCACT	CATGCACCTTT	ACGGTAAACA	TTCCCCGAAA	CCACCCGACT	AGTAGCCACC	CACTTAACAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTCCCCGAAA	CCACCCGACT	AGTAGCCACC	CACTTAACAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTCCCCGAAA	CCACCCGACT	AGTAGCCACC	CACTTAGCAC	AGATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTCCCCGAAA	CCACCCGACT	AGTAGCCACC	CACTTAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTCCCCGAAA	CCACCCGACT	AGTAGCCACC	CACTTAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTCCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAGA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTCCCGAAA	CCACCCAACT	AGTAGCCACC	CACATAGCAC	AAAGGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACKGTAAACA	TTTCCCGGAA	CCACCCGACT	AGTAGCCACC	CACGTAGCAC	AAAAGGCCAA	.GCAAGCAACC	AAAAGCCGAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAA	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAA	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAGCC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAa	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAaTGCAA	.GCAaGCAACC	AAAAGC????	\$\$ \$ \$\$\$\$\$\$\$\$??
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGAAGCCACC	CACATAGCAC	AAATGCAA	GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTI	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CACATAGCAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA
CACCACT	CATGCACCTTT	ACGGTAAACA	TTTTCCGAAA	CCACCCGACT	AGTAGCCACC	CGCATAGCAC	AAATGCAA	.GCAAGCAACC	AAAAGCCAAA	GCAATCCCAA	AA

maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens rigensM7293 rigens_rigensM7298_2 rigens_rigensM7527_2 leiopodaM200901_22g spnov_M7237_4 serrataHerm NB krebsiana krebNB1465 linearis linearRM1013 rigens leucoRM1021 pectinataRM1044 1 hvbrRM1061 leiopodaRM1063 rigidaRM1082 linearis_linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens rigensRM772 1 linearis linearRM780 rigens_uniflRM782_1 rigens uniflRM783 rigens uniflRM785 linearis linearRM787 linearis linearRM789 linearis linearRM794 linearis_linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana_krebRM856 krebsiana_krebRM874 krebsiana serrRM877

CACCACTCATGCACCTTTACGGTAAACATTTTCCCGAAAACCACCCGACTAGTAGCCACCACATAGCACAAAA--TGCCAAGCAAGCAAACCAAAAGCCAAAGCAATCCCCAAAA CACCACTCATGCACCTTTACGGTAAACATTTTCCCGAAAACCACCCGACTAGTAGCCACCACATAGCACAAAA--TGCCAAGCAAGCAAACCAAAAGCCAAAGCAATCCCCAAAA

linearis linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana_arctRM903 krebaRM904 krebsiana_krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana_krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana_krebSH112 krebsianaSH115 linearis linearSH116 linearis_linearSH117 krebsianaSH118 linearis_linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis linearSR523 krebsianaSR564 linearis linearSR571 rigens_rigSR574 rigens_rigSR575 rigensSR581 rigens uniflSR625 krebsiana krebSVHF1 krebsiana_arctSV_HF2

CACCACTCATGCACCTTTACGGTAAACATTTTCCCGAAAACCACCCGACTAGTAGCCACCACATAGCACAAAA--TGCCAAGCAAGCAAACCAAAAGCCAAAGCAATCCCCAAAA 1220 1230 1260 1290 1300 1240 1250 1270 1280 1310 1320]

lichtensteiniiRM1323

lichtesteiniiM050906 2 heterochaetaM160901 5q heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219_10 tenuifoliaRM1352 ciliarisSR705 jurineifolia scabCAM1953 rigens unifl Boknesl linearis linear Boknes2 linearis ovalM041001 2g rigens leuco M070704 1 krebsiana krebM071001 1g krebsiana krebM071001 3gl krebsiana_arctM071001_3pg rigidaM100903 4 rigidaM100904_4 rigidM110805_10 rigidaM120805 80 leiopodaM160704 5 pectinataM180904 5 krebsiana krebM210902 1 krebsiana krebM230803 8 serrM230901 7q leiopodaM250901 34 pectinataM250901 37 pectM260901 2q maritimaM260901 krebsiana krebM261001 2 maritimaM270901 5g rigens_rigensM7293 rigens rigensM7298 2 rigens_rigensM7527_2 leiopodaM200901 22q spnov M7237 4 serrataHerm NB krebsiana krebNB1465 linearis_linearRM1013 rigens_leucoRM1021 pectinataRM1044 1 hvbrRM1061 leiopodaRM1063 rigidaRM1082 linearis_linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis_linearRM1182 rigidaRM1210 serrataRM1216

 $\label{eq:accomparison} at {\tt GCACCGAACGAACGAACGAACGAACGAACGAACGAACGCACGCACGACCGCCTCATCAACGCTTCATGATTTTCT-A-GACACAATGCATCGCCAGACTGGGCT$ -----CCAACCCGCCTCATCAAAACGCTCGCTTCATCGTTTTCC-A-CACACAACGCATCGCAAGCCA-GGCT ATGTACCGAACGATGCGAGAAACATTAAAGCTACGAAACCAACACGATCGCCTCATACAAAAGCTCGCTTCATTATTTCCA-A-GACACGCATCGCTAGCAA-GGCT ATGTACCGAACGATGCGAGAAACAGTAAAGCTACGAAAACCAACAGGATCGCCTCATACAAACACTCGCTTCATTATTTCCA-A-CACACAACGCATCGCTAGCAA-GGCT ATGTACCGAACGATGCGAGAAACAGTAAAGCTACGAAACCWACACGATCGCCTCATACAAACGCTCGCTTCATTATTTCCA-A-CACACAACGCATCGCTAGCAA-GGCT

serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana arctRM770 2 rigens rigensRM772 1 linearis linearRM780 rigens uniflRM782 1 rigens_uniflRM783 rigens uniflRM785 linearis_linearRM787 linearis linearRM789 linearis linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1 krebsiana krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis_linearRM884 linearis linearRM885 krebsianaRM888 rigidaRM900 1 krebsiana arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana_krebRM950 linearis linearRM951 krebsiana krebRM960 krebsiana krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana_krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana RVC162

ATGCACCGAACGATGCAAGAAACAGTAACGCTACGAAACCAACACGATCGGCTCATACAAACACTCRCTTCATTATTTCCA-A-CACACAACGCATCGCTAGCGG-GGCT ATGCACCGAACGATGCGAGAAACAGTAAAGCTACGAAAACCAACACGATCGCCTCATACAAAACGCTTCATTATTTCCA-A-CACACAACGCATCGCTAGCAA-GGCT ATGTACCGAACGATGCGAGAAACAGTAAAGCTACGAAACCGAACAGGATCGCCTCATACAAACGCTCRCTTCATTATTTCCA-A-CACACAACGCATCGCTAGCAA-GGCT -----GCCTCATACAAACGCTCGCTTCATTATTTCCA-A-CACACGCATCGCTAGCAA-GGCT

krebsiana krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana krebSH112 krebsianaSH115 linearis linearSH116 linearis_linearSH117 krebsianaSH118 linearis linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis_linearSR523 krebsianaSR564 linearis_linearSR571 rigens rigSR574 rigens rigSR575 rigensSR581 rigens uniflSR625 krebsiana_krebSVHF1 krebsiana arctSV HF2

[

lichtensteiniiRM1323 lichtesteiniiM050906_2 heterochaetaM160901 5g heterochaetaRM1348 heterochaetaRM1255 tenuifoliaM7219 10 tenuifoliaRM1352 ciliarisSR705 jurineifolia scabCAM1953 rigens unifl Boknes1 linearis linear Boknes2 linearis_ovalM041001_2g rigens leuco M070704 1 krebsiana krebM071001 1g krebsiana krebM071001 3gl krebsiana_arctM071001_3pg rigidaM100903 4 rigidaM100904_4 rigidM110805 10 rigidaM120805 80 leiopodaM160704 5 pectinataM180904 5 krebsiana_krebM210902_1 krebsiana_krebM230803_8 serrM230901 7q

ATGTACCGAACGATGCGAGAAACAGTAAAGCTACGAAAACCAACACGATCGCCTCATACAAAACGCTTCATTATTTCCA-A-CACACAACGCATCGCTAGCAA-GGCT ATGTACCGAACGATGCGAGAAACAGTAAAGCTACGAAAACCAACASGATCGCCTCATACAAACGCTCGCTTCATTATTTCCA-A-CACACAAACGCATCGCTAGCAA-GGCT

1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430
------	------	------	------	------	------	------	------	------	------	------

 ${\tt CTTGCGAACA-CGTCATGCATCGAAAAGTAATCA--GCTTGCCATCCTCCATGGTGTTGCGAAGCGACAACACCACCATCGTC--AAACCGTTAACTACGTCGCCTT$ --TGCAAACA-CGTCATGCATCGAAAACAAATCA--GCTTGCCACCCTCCATGGTGTTGCGAAGCGACAACACCACCATCATTGGC---ACACCGTTAACTACGTCGCCTT TGTGCCAACA-CGTCATGCATCGAAAACAAATCA--GCTTGCCACCCTCCATGGTGATGCGAAGCGACATCACCACCATCGGGTACGCCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCAG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCACCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCACCAGATCATCGG---ACACCGTTCACTACGTCGCCTT

leiopodaM250901 34 pectinataM250901 37 pectM260901 2g maritimaM260901 krebsiana_krebM261001_2 maritimaM270901_5g rigens_rigensM7293 rigens_rigensM7298_2 rigens rigensM7527 2 leiopodaM200901 22q spnov M7237 4 serrataHerm NB krebsiana krebNB1465 linearis linearRM1013 rigens_leucoRM1021 pectinataRM1044_1 hybrRM1061 leiopodaRM1063 rigidaRM1082 linearis linearRM1090 linearis linearRM1092 linearis linearRM1094 linearis linearRM1103 krebsiana serrRM1137 linearis linearRM1182 rigidaRM1210 serrataRM1216 serrataRM1241 serrataRM1245 rigidaRM1254 serrataRM1260 rigidaRM1270 serrataRM1280 leiopodaRM1291 leioRM1320 pectinataRM1390 krebsiana krebRM713 krebsiana_arctRM770_2 rigens rigensRM772 1 linearis linearRM780 rigens uniflRM782 1 rigens uniflRM783 rigens uniflRM785 linearis_linearRM787 linearis linearRM789 linearis_linearRM794 linearis linearRM804 serrataRM812 rigidaRM813 serrataRM821 krebsiana arctRM831 1

AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGC??? AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTAATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAACCA--GCTTGCCACCCCCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGSTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCC?? AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCATGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTC????? AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCT--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCACCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGGC---ACACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCT? AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCAG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACGGTTCACTACGTCGCCT? AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT krebsiana krebRM856 krebsiana krebRM874 krebsiana serrRM877 linearis linearRM884 linearis_linearRM885 krebsianaRM888 rigidaRM900_1 krebsiana_arctRM903 krebaRM904 krebsiana krebRM906 rigens leucoRM919 krebsiana krebRM929 krebsiana krebRM949 krebsiana krebRM950 linearis_linearRM951 krebsiana krebRM960 krebsiana_krebRM962 krebsianaRM966 krebsiana krebRM968 krebsiana krebRM992 krebsiana RM996 krebsiana krebRM1403 linearis linearRM1406 1 linearis linearRM1406 2 leiopodaRM1466 serrataHerm RM krebsiana RVC162 krebsiana_krebSH110 krebsiana krebSH111 1 krebsiana krebSH111 2 krebsiana krebSH112 krebsianaSH115 linearis_linearSH116 linearis linearSH117 krebsianaSH118 linearis_linearSH131 linearis linearSH132 krebsianaSH133 krebsianaSH135 krebsianaSR480 krebsianaSR520 linearis_linearSR523 krebsianaSR564 linearis_linearSR571 rigens rigSR574 rigens rigSR575 rigensSR581 rigens uniflSR625 krebsiana_krebSVHF1 krebsiana_arctSV_HF2

AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGSTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAWCACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCATTACGTCGCCTT AGTGCCAACA-CGTCATGGTTTGAAAACAAATCA--GCTTGCCATCCTCCCTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCACCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---CACACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGWGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGC??? AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCTGATCATCGG----TCACCGTTCACTACGTCGC??? AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCATGGTTTGAAAAACAAATCA--GCTTGCCATCCTCCCTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTCGTGGTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCC?? AGTGCCAACA-CGTCGTCGTGCTTTGAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG---TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGCTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT AGTGCCAACA-CGTCGTGGTTTGAAAAACAAATCA--GCTTGCCATCCTCACTGATGTTGCGAAGCGACAACACCAGATCATCGG----TCACCGTTCACTACGTCGCCTT