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ABSTRACT 

This dissertation explores three research topics related to automated spatiotemporal 

and semantic information extraction about hazard events from Web news reports and other 

social media. The dissertation makes a unique contribution of bridging geographic 

information science, geographic information retrieval, and natural language processing. 

Geographic information retrieval and natural language processing techniques are applied 

to extract spatiotemporal and semantic information automatically from Web documents, to 

retrieve information about patterns of hazard events that are not explicitly described in the 

texts. Chapters 2, 3 and 4 can be regarded as three standalone journal papers. The research 

topics covered by the three chapters are related to each other, and are presented in a 

sequential way. Chapter 2 begins with an investigation of methods for automatically  

extracting  spatial  and  temporal  information  about  hazards  from  Web  news  reports.  A  set  of  

rules  is  developed  to  combine  the  spatial  and  temporal  information  contained  in  the  reports  

based  on  how   this   information   is   presented   in   text   in  order   to   capture   the  dynamics  of  

hazard  events  (e.g.,  changes  in  event  locations,  new  events  occurring)  as  they  occur  over  

space  and  time.  Chapter  3  presents  an  approach  for  retrieving  semantic  information  about  

hazard  events  using ontologies and semantic gazetteers.  With  this  work,  information  on  the  

different  kinds  of  events  (e.g.,  impact,  response,  or  recovery  events)  can  be  extracted  as  

well  as   information  about  hazard  events  at  different   levels  of  detail.  Using   the  methods  

presented  in  Chapter  2  and  3, an approach for automatically extracting spatial, temporal, 

and semantic information from tweets is discussed in Chapter 4. Four different elements of 

tweets are used  for assigning appropriate spatial and temporal information to hazard events 

in tweets. Since tweets represent shorter, but more current information about hazards and 

how they are impacting a local area, key information about hazards can be retrieved 

through extracted spatiotemporal and semantic information from tweets. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Motivation  

  Spatiotemporal information is regularly contributed to the public through online 

articles, daily news reports, blogs, and Twitter feeds. Because of the massive amount of 

spatiotemporal information provided in the form of unstructured texts (e.g., news reports, 

tweets), it is necessary to automatically acquire relevant information from online text 

sources. Information retrieval (IR) provides valuable opportunities for users to 

automatically obtain information from Internet search engines or digital library applications. 

For  example,  when  a  user  types  “Hurricane Sandy”  into  a  search  engine  (e.g.,  Google),  a  

set of web files such as documents, images or videos with URLs that match the query will 

be retrieved.  

As IR techniques have improved over the past decade, they accommodate and 

exploit a broader range of information, e.g., geographic information. Geographic 

information retrieval (GIR) stems from the discipline of IR, and involves not only IR 

methods, such as indexing, searching, browsing and querying web documents, but also 

includes methods that exploit the geographic content of documents (Kemp et al. 2007; Jones 

and Purves 2008; Teitler et al. 2008; Strotgen et al. 2010; Purves and Jones 2011; 

Karimzadeh et al. 2013; Andrienko et al. 2013). For example, if a document refers to  “a 

winter storm in Chicago”, the location (Chicago) described in the document help users 

understand where the winter storm has occurred. Natural language processing (NLP) is used 

to analyze the content and context of documents, and manipulate texts to perform useful 

tasks with a set of computational algorithms and statistical approaches (Chowdhury 2003). 

Combining GIR and NLP techniques, salient geographic information can be automatically 

extracted  from  large  volumes  of  unstructured  text.  For  example,  it’s possible to extract ZIP 

codes, addresses, and well-known landmarks automatically from documents. While the 
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fields of GIR and NLP have contributed solutions that help users find information based on 

their interests, the possibility of automatically tracking spatiotemporal and semantic 

changes relating to events in text documents, and visualizing the extracted results using GIS 

is a new challenge (Janowicz et al. 2012; Crooks et al. 2013; Croitoru et al. 2013; Li et al. 

2013; Stefanidis et al. 2013; Wang and Stewart 2013; Stock et al. 2013; Tsou and Leitner 

2013; Tsou et al. 2014; Wang and Stewart 2014). Extracting spatiotemporal and semantic 

information from a set of Web documents enables us to build a rich representation of the 

geographic knowledge described in text, capturing where, when, or what events occurred 

(Egenhofer 2002; Jones and Purves 2008; Sankaranarayanan 2009; Larson and Shaw 2009; 

Joliveau et al. 2011; Chasin et al. 2014).   Twitter   messages   are   another   source   for  

spatiotemporal  event  information  and  it  is  designed  to  work  as  a  “micro”  version  of  blogs  

or news reports. One of the most important advantages of Twitter is the rapid information 

transmission via the Internet (Signorini et al. 2011; Lau et al. 2014). As the major social 

networking platform nowadays, Twitter becomes a valuable and rich revenue for mining 

the  “real-time  Web”  (MacEachren  et  al.  2011;;  Pak  and  Paroubek  2012;;  Schuurman  2013;;  

Leetaru et al. 2013; Wang 2013; Tsou et al. 2013; Tsou and Leitner 2013). 

In geographic information science (GIScience), geographic dynamics refers to 

change or movement events with spatial and temporal characteristics, and involves an 

understanding of the principle functions of relevant forces and their relationships over space 

and time (Yuan and Stewart Hornsby 2008). Representing dynamics of geographic domains 

includes determining the characteristic patterns of movement of individuals or groups 

(Laube et al. 2007; Dodge et al. 2008); time geography analyses, that investigate patterns of 

people’s activities from spatial and temporal perspectives (Miller 1991; Kwan 2000; Raubal 

et al. 2004; Yu 2006; Shaw and Yu 2009); and modeling the movement paths or trajectories 

of moving objects, such as people, vehicles or natural phenomena over space and time 

(Dodge et al. 2008; Stewart Hornsby and Li 2009; Theruaykt and Claramunt 2013). 

GIScience research is a contributor to the field of GIR, and there is a growing interest in the 
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intersection of text analysis and mapping of geographic information (Janowicz et al. 2012; 

Gelernter and Mushegian 2011; Wang and Stewart 2013; Stefanidis et al. 2013; Tsou and 

Leitner 2013; Leetaru et al. 2013). However, modeling geographic dynamics based on 

information extraction from text documents needs further study, for example, additional 

research is needed regarding the automated extraction of spatiotemporal information from 

Web text documents, geographic semantic information retrieval, and the limitations of 

representing extracted geographic information from Twitter.  

This dissertation aims to bridge the gap in GIR, NLP and GIScience, and 

investigates the automatic   extraction   of   spatiotemporal   and   semantic   information   from  

Web   texts,   and   the   representation   of   the   underlying   relationships   using   GIS.   In   this  

dissertation,   spatial   information   is   defined   as   geographic   locations,   such   as   countries,  

states,  counties,  cities,  coordinates,  zipcodes,  street  names,  residential  addresses,  schools,  

or  airports.  Temporal  information  refers  to  the  time,  such  as  years,  months,  days,  or  hours.  

Semantic  information  is  associated  with  the  meanings  of  different  domain-­related  events  

associated  with  hazards  (e.g.,  airport  closed  or  electricity  shortage)  and  the  higher-­level  

classes  to  which  events  belong  (e.g.,  hazard  impact  is  the  super  class  of  airport  closed  or  

electricity  shortage).  This  research  not  only  transfers  text  content  to  a  visual  representation  

that   preserves   informational   characteristics   from   the   text   documents,   but   also   offers  

individuals   an   understanding   of   spatial   and   temporal   characteristics   that   are   otherwise  

buried   within   the   text.   Extracted results can be visualized in a GIS environment, 

transferring a “textual surrogate” of text documents to a “visual surrogate”. These  new  

map-­based   representations   visualized   using  GIS   provide   details   about   dynamic   change  

patterns   and   trends   of   world   events   over   space-­time. The research questions to be 

addressed through this dissertation focus broadly on: 

x Improving   spatiotemporal   information   extraction   through   the   development   of  

methods  to  automatically  extract  spatial  and  temporal  details  about  hazard  events  

from  Web  news  reports;; 



 

 

 

4 

x Using  automated  semantic  information  extraction  of  hazard  events  for  supporting  

the  understanding  of  hazard  phenomena  from different perspectives (e.g., natural 

hazard, hazard impact, hazard response, hazard recovery, etc.);; 

x Developing methods for automatically extracting spatiotemporal semantic 

information from Twitter messages affording the extraction of hazard event 

information at multiple granularities. 

1.2 Research Questions 

Automatically extracting spatiotemporal and semantic information from news 

reports and social media is challenging due to the complex contents and context of these 

data. To support effective spatiotemporal and semantic information extraction, three main 

research topics and their associated research questions are addressed in this dissertation: 

x Can spatial and temporal information presented in Web news reports be 

extracted to retrieve a temporal ordering of extracted hazard events and 

correctly assign locations and times to these events? In addition to using 

software tools such as GATE 8.0, what additional approaches are needed so that 

spatial and temporal information about hazard events can be extracted from text 

documents and these events can be mapped using GIS?  

x Can gazetteers and ontologies be integrated in order to contribute to semantic 

information retrieval over multiple granularities of hazard information? Can 

ontologies be used to provide semantic information that supports a GIR 

process? How does mapping semantic information associated with hazard 

events contribute to an understanding of event dynamics? 

x Can the same methods for spatial, temporal and semantic information extraction 

developed for Web news reports be applied to tweets?  Does it need any 

additional processing? What are the benefits of augmenting the results from 
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processing Web news reports with data extracted through processing Twitter 

feeds? 

1.3 Major Results and Contributions 

This dissertation follows a three papers format. Figure 1.1 diagrams the three main 

research topics in this dissertation. The topics investigate methods for automatically 

extracting spatiotemporal and semantic information from hazard-related Web news 

documents and Twitter data. For this dissertation, more than 300 web news reports related 

to different types of natural hazards (tornadoes, hurricanes, and blizzards) and 270,000 

tweets related to winter storms, are studied as a basis for developing approaches for 

automatically extracting spatiotemporal and semantic information about hazards from text 

documents, and to represent the geographic dynamics of the extracted information about 

hazards using a GIS. For this dissertation, an open source software tool, General 

Architecture for Text Engineering (GATE 8.0) (http://gate.ac.uk/) is used to implement the 

extraction tasks and GIR. GATE provides a Java-based environment for developers to 

implement multilingual text processing tasks. ESRI ArcGIS 10.1 is used to map the 

extracted results and perform spatiotemporal analyses. 

The  first  paper  describes  a  framework  for  automatically  extracting  and  combining  

spatial   and   temporal   information   from   text   documents   in   order   to   capture   and   model  

geographic  dynamics  about  hazard  events.  Spatial  and  temporal  references  in  new  reports  

are  extracted  using  GATE  and   its  supported  NLP  processing   techniques.  As  part  of   this  

work,  spatial  and  temporal  gazetteers  are  created  for  contributing  to  the  text  matching  steps.  

In  this  work,  gazetteer refers to a dictionary with lists of specific terms or phrases that are 

used to match the corresponding information from text documents.   Algorithms   are  

developed  and   implemented   in  Java   to  assign  proper  spatial   and   temporal   references   to  

relevant  hazard  event  information  according  to  the  content  of  the  Web  documents.  Results  

are  exported  to  a  local  geodatabase  for  geocoding.  The  exported  data  is  then  mapped  in  a  
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GIS  environment.  A  validation  of  the  developed  techniques  is  conducted  and  presented  for  

discussion.   

 

Figure 1.1 The three main research topics 

In  the  second  paper,  a  new  semantic  gazetteer  is  developed  and  the  gazetteers  are  

combined  with  a  hazard  ontology   to  support  semantic   information  extraction  from  Web  

news   reports   about   hazards.   In   this   study,   natural   and   human-­related   semantics   about  

hazards   are   sourced   from  web   texts   that   describe  weather-­related   topics   as  well   as   the  

human   side   of   hazards   (e.g.,   response,   impact   and   recovery   aspects).   The   semantic  

gazetteer   and   the   hazard   ontology   address   the   extraction   of   semantics   associated   with  

spatiotemporal  events.   In  this  chapter,  dynamics  and  semantic  information  about  hazard  

events   are   automatically   extracted   from  news   reports.  Combining   semantic   information  

with  the  spatiotemporal  information  in  a  mapped  representation  reveals  the  different  kinds  

of  events  and  how  they  unfold  over  space  and  time.  Making  sense  of  the  extracted  semantic  
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information   through   the   addition   of   spatiotemporal   information   contributes   further  

understanding   of   the   hazard   (e.g.,   environmental   or   natural   aspects   vs.   human   hazard-­

related  activities)  to  the  dynamic  pattern  of  hazard  outbreaks  for  Web  users.  Maps  portray  

the  spatial  and  temporal  characteristics  associated  with  different  events  described  in  text  

documents  without  users  having  to  read  through  each  document.   

In   the   third   paper,   an   approach   for   extracting   spatiotemporal   and   semantic  

information  from  hazard-­related  tweets  is  demonstrated.  In  this  chapter,  we  investigate  how  

the  processing  of  hazard  information  extracted  from  news  reports  can  be  augmented  with  

information  gleaned  from  Twitter  feeds.  Four  features  (coordinates  attached  to  tweets  using  

GPS-­enabled  devices,   user   profile   locations,   tweet   text   content,   and   tweeting   time)   are  

parsed   from   Twitter   to   obtain   spatial,   temporal   and   semantic   information.   The   rules  

developed   to   automatically   assign   appropriate   spatial   and   temporal   information   to   the  

relevant  hazard  events  are  extended  here   for   tweets.  Patterns  of   events   from   tweets  are  

detected   through   aggregating   spatiotemporal   tweets   into   clusters  using   a   kernel   density  

approach,   revealing   the   evolution   of   severe   weather   events   monitored   over   time.   The  

results   provide   information   about   the   different   kinds   of   events   that   occur,   patterns   of  

change,   and   spatiotemporal   trends   of   hazard   events.   The   research   also   shows   how  

information   processed   from   tweets   can   be   combined   with   event   information   similarly  

extracted  from  Web  news  reports  in  order  to  capture  hazard  event  information  over  multiple  

granularities   and   increase   the   richness   of   real-­time   hazard   information   especially   with  

regard  to  local  hazard  event  details. 

This dissertation makes a unique contribution by bridging GIScience, GIR, and 

NLP and applying new methods for the extraction and visualization of spatiotemporal and 

semantic text information. Three hazard-related case studies in Chapter 2, 3 and 4 highlight 

the application of these methods for modeling event dynamics. 
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1.4 Dissertation Outline 

The dissertation is organized as   follows (Figure 1.2). In Chapter 2, methods are 

illustrated to automatically extract and combine spatial and temporal information from web 

news reports to reveal geographic dynamics (e.g., the evolution of storm events) about 

hazard events described in text. This topic represents the work for the first paper in this 3-

paper dissertation. A case study and evaluation of methods is included in this chapter using 

a collection of web news reports on tornadoes that occurred over a large portion of the US 

Midwest, especially Oklahoma, during April 2012.  
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In Chapter 3, semantic information extraction and retrieval is undertaken by 

integrating a semantic gazetteer with a hazard ontology to represent the different kinds of 

hazard event information (e.g., natural or environmental and that from a human 

perspective), automatically and map the extracted text information at multiple granularities 

using the ontology. This is the subject of paper two in the dissertation.  Two case studies 

using a collection of Web news reports about tornadoes in the Midwest in April 2012 and 

hurricane Sandy, from October 24-November 4, 2012 are demonstrated to examine the 

approach discussed in this chapter. An evaluation is conducted to assess the performance 

of the approach demonstrated in this chapter. 

Chapter 4 addresses the third paper that focuses on automatically extracting 

spatiotemporal and semantic information from hazard-related tweets. A case study of 

winter storms that occurred in the southeastern United States during January 2014 and 

270,000 tweets, is used to illustrate the steps necessary for spatiotemporal extraction from 

tweets. The extracted results from Twitter support the interpretation of spatiotemporal 

patterns of hazards (e.g., snowstorms in this case) as well as the impact of this hazard over 

space and time and we show how information derived from tweets can be used to augment 

that collected from processing Web news reports.  

The final chapter in the dissertation presents a summary of the major results arising 

from the investigation of research questions, a discussion of these results, and topics open 

for future research, for example, improving and extending the gazetteers, improving the 

results of geocoding, and improve the quality of spatiotemporal and semantic information 

retrieval from tweets. 
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CHAPTER 2 

 AUTOMACTICALLY EXTRACTING  SPATIOTEMPORAL  

INFORMATION  FROM  WEB  TEXT  DOCUMENTS 

2.1 Introduction 

Digital text information is widely available in the form of Web articles, news 

reports, blogs, Twitter feeds, and other formats. Spatial and temporal information is 

commonly referenced in these Web documents, especially for articles about natural 

hazards, as this information is related to dynamic occurrences (e.g., the track of a storm) 

for severe weather events and their related human activities (e.g., the movement of relief 

supplies in the wake of a natural disaster). Automatically  extracting  spatial  and  temporal  

information  from  a  group  of  Web  text  documents  and  representing   the  extracted  results  

using  GIS  enables  us  to  build  a  rich  representation  of  the  geographic  knowledge  described  

in  the  texts.  Such  representations  provide  details  about  dynamic  change  patterns  and  trends  

of  world  events  over  space-­time  (Sankaranarayanan 2009; Janowicz et al. 2012; Li et al. 

2013).  The main objective of this chapter is to present an approach that automatically 

represents the spatiotemporal characterizations of hazard-related events described in Web 

news articles in a dynamic mapping environment. In this way, it is possible to map, for 

example, event sequences from documents, as they are described in text documents.  

The   research  described   in   this  chapter  of   the  dissertation   focuses  on  developing  

methods  to  automatically  extract  and  represent  geographic  dynamics  from  hazard-­related  

Web  news  reports  through  spatiotemporal  information  extraction.  Geographic  dynamics,  

refers   to   the  change  or  movement  of   an   event  with   spatial   and   temporal   characteristics  

(Yuan and Stewart Hornsby 2008).  Geographic  dynamics  is  an  important  topic  in  the  field  

of   GIScience,   and   involves   understanding   the   fundamental   characteristics   of   relevant  

forces  and   their  underlying   relationships   in   space  and   time   (Yuan  and  Stewart  Hornsby  

2008;; Dodge et al. 2008; Stewart Hornsby and Li 2009; Stewart and Wang 2013; Yuan 
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2013; Kwan et al. 2014).   In   GIScience,   modeling   geographic   information   from   web  

documents   is  a  growing   topic  of  research  to  which  this  dissertation  makes  an  important  

contribution   by   focusing   on   handling   the   dynamics   associated   with   spatiotemporal  

information   in   text   (Egenhofer 2002; Jones and Purves 2008; Larson and Shaw 2009; 

Joliveau et al. 2011; Crooks et al. 2013; Croitoru et al. 2013; Stefanidis et al. 2013; Wang 

and Stewart 2013; Stock et al. 2013; Chasin et al. 2014).  The  novel  feature  of  this  research  

is  to  extract  the  spatial  and  temporal  information  related  to  events  based  on  the  context  of  

the  text  documents,  and  dynamically  represent  the  results  in  a  GIS  environment,  instead  of  

exploring  these  two  elements  in  isolation.   

This chapter presents methods for automatically extracting spatial and temporal 

information from hazard-related web news reports. The  research  questions  addressed   in  

this  chapter  are: 

x Can spatial and temporal information presented in Web news reports be 

extracted to retrieve a temporal ordering of extracted hazard events and 

correctly assign locations and times to these events?  

x In addition to using software tools such as GATE 8.0, what additional 

approaches are needed so that spatial and temporal information about hazard 

events can be extracted from text documents and these events can be mapped 

using GIS?  

In   this   research,   a   framework   is   presented   for   automatically   extracting  

spatiotemporal   information   from  unstructured  Web  documents  and  detecting   the  hidden  

spatiotemporal  patterns  of  hazard  events  using  GIS. For this work, GATE 8.0 is used as 

the primary tool to support spatiotemporal information extraction from texts. GATE 

provides users a Java-based environment to extract salient information from a wide range 

of text documents, including web pages, RSS news feeds, and Facebook context pages. 

This research extends the capabilities of GATE through additional processing to show how 

spatial and temporal references available in text can be extracted and combined together to 
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inform users about the spatiotemporal pattern of hazard-related events. In this research, 

only text documents in English are considered and the text corpus is primarily concerned 

with locations in the United States. As part of this research, we employ GIS (ArcGIS 10.1) 

with respect to mapping extracted results from text and representing geographic dynamics 

for users. 

2.2 Related work in GIR and GIScience fields 

Geographic information such as locations, street addresses, zip codes, and x,y 

coordinates, are extracted from text documents and used in different applications (Mani et 

al. 2006; Jones and Purves 2008; Goodchild and Glennon 2010; Sakaki et al. 2010; 

Janowicz et al. 2012; Crooks et al. 2013). For example, geographic locations extracted 

from  authors’  affiliations  can  be  assigned  to  their  publications  to  examine  a  geographic  

flow of citations (Pan et al. 2011).  

A key objective of GIR is to detect and capture location-based information from 

natural language text. Most GIR systems are based on detecting spatial references in text. 

To extract geographic information from text documents, a spatial gazetteer is a key element 

for data processing that affects the accuracy of extraction results. Specifically, the 

references in the documents are compared with the terms in the gazetteers and, if a match 

is found, those words or phrases from text documents are annotated by the NLP system. 

Numerous systems have been developed based on GIR techniques. GIPSY, a geo-

referenced information processing system, supports automatic geographic indexing of text 

documents (Woodruff and Plaunt 1994). Using GIPSY, geographic words and phrases are 

identified from documents by matching terms in a document to terms in a thesaurus. The 

thesaurus contains place names and the names of other geographically significant objects 

(e.g., rivers, lakes, bioregions, animal and plant habitats, and land use types). The thesaurus 

plays an important role as it directly affects the accuracy of identifying locations. Two 

datasets serve as key components for the thesaurus in GIPSY: the geographic names 
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information system (GNIS) and the geographic information retrieval and analysis system 

(GIRAS) (Price et al. 2003). Based on these datasets, geographic references are extracted 

and then located on a map by using basic spatial operations including overlay and statistical 

methods. For example, probability weights calculations are used for determining the 

frequency of locations correctly displayed on the map. Since GYPSY, the idea of designing 

and applying gazetteers has become a standard component in most GIR systems. 

Similar to GIPSY, the web-a-where system employs a thesaurus-based approach to 

identify geographic locations from web pages (Amitay et al. 2004). This system uses 

geotagging, a process of adding geographic references (e.g., place names) to different 

medias (e.g., web pages), to tag each place name with geographic coordinates (Scharl et al. 

2008). The web-a-where system determines a geographical focus for each document 

(Amitay et al. 2004). Instead of detecting the focus of a single document, MetaCarta 

displays all spatial references in a set of documents on a map in order to produce a 

visualization of the locations for each document in the set (Kornai 2005). Another system, 

STEWARD (Spatial-Textual Extraction on the Web Aiding the Retrieval of Document), 

combines searching and mapping functions together, creating a system for extracting, 

querying, and visualizing textual references to geographic locations in unstructured text 

documents (Lieberman et al. 2007; Lieberman et al. 2010). STEWARD uses two NLP 

techniques, Part-of-Speech (POS) tagging and Name Entity Recognition (NER), to help 

select location-based words. This system also enables users to visualize all locations 

extracted from the text documents though a map interface. NewsStand, another GIR 

system, detects geographic-related information from RSS feeds using a custom-built 

geotagger (Teitler et al. 2008; Lieberman and Samet 2012). The extracted locations are 

displayed via a map viewer that dynamically displays the locations associated with news 

articles (Lieberman et al. 2010; Teitler et al. 2008).  

In the field of GIScience, researchers are growing increasingly interested in 

incorporating GIR techniques into their studies (Egenhofer 2002; Purves and Clough 
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2006; Purves et al. 2007; Jones and Purves 2008; Derungs et al. 2012; Janowicz et al. 

2012; Crooks et al. 2013; Croitoru et al. 2013; Li et al. 2013; Stefanidis et al. 2013; Stock 

et al. 2013; Chasin et al. 2014). In GIScience, researchers are using GIR techniques to 

extract spatial information from a group of text documents related to routes, and represent 

paths on a map (Klippel et al. 2008; Zhang et al. 2012). In this work, direction-related 

documents containing route descriptions from different websites are tagged for some 

route direction elements (origin, destination, and route parts). Specifically, an HTML 

document is converted into a document object model tree and traversed in a depth-

first order. The plain text part is separated from the document and stored in a text list. 

Using NLP techniques, the text is parsed into sentences, in which a variety of 

features are tagged: basic features, surficial features, visual features, domain-specific 

features, and window features. These different features serve as a basis for extracting 

route-related sentences. Domain-specific features could be a list of nouns and noun 

phrases that relate to a place, such as a school or a hotel. With these features, the 

sentences are classified into one of four classes: origin, destination, instruction, and 

other. The route can then be specified based on these elements and is visualized in a 

map viewer (Zhang et al. 2012). One application on narrative materials traced residential 

life histories based on narrative materials, such as oral histories and biographies (Kwan 

and Ding 2008). This work combined qualitative GIS, narrative analysis, and 3D GIS-

based time-geographic frameworks to provide a multimedia environment for the 

interpretation, analysis, and visualization of the life path for each individual. GIR 

techniques were used to extract spatial, temporal, action, and emotional terms from 

narrative materials. These extracted terms were incorporated in a geodatabase to facilitate 

the  exploration  of  the  relationships  among  individual’s  feelings  and  the  locations  being  

visited at specific times. For example, in studying the movements of Muslim women in 

Columbus,  Ohio  after  September  11,  2001,  movement  paths  modeling  the  women’s  daily  

activities and qualitative data about locations that were visited over time by each woman, 
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are  represented  to  show  changes  in  Muslim  women’s  sense  of  safety  or  danger  in  relation 

to specific locations and times after 9/11. In other recent work, a context discovery 

application is designed for the production of geo-historical context from RSS feeds 

(Tomaszewski 2008; Tomaszewski and MacEachren 2010). In this work, based on 

identifying and extracting context for humanitarian crisis situations from the ReliefWeb 

Sudan RSS feed, humanitarian terms are extracted from articles describing the long-term 

humanitarian crisis situation in the Sudan and geo-located using GoogleEarth.  

In this chapter, we show how a composition of GIR and NLP techniques can be 

employed in GIScience research to provide news ways for representing Web news content 

related to natural hazards from a spatiotemporal perspective. The methods demonstrated 

in this research supports spatial and temporal information extraction from unstructured 

data, saving the extracted locations as well as temporal ordering information about the 

extracted events in a geodatabase for subsequent event sequence visualization. Designing 

an approach for assigning appropriate spatial and temporal information to the relevant 

event information is an important objective for this research. 

2.3 Extracting Spatiotemporal Information from Text  

Documents 

In this research, a framework is employed for automatically extracting 

spatiotemporal information from text documents (Figure 2.1) that includes several key 

components: 1) creating spatial and temporal gazetteers, 2) parsing and combining 

spatiotemporal references with event information, 3) exporting annotated results to a local 

geodatabase for geocoding and geovisualization. Such   a   methodology   provides   a  

systematic  way  to  process  spatial  and  temporal  content  along  with  the  corresponding  event  

information  from  text  documents. 

2.3.1 Creating spatial and temporal gazetteers 

Traditionally, a gazetteer is regarded as a dictionary that contains lists of geographic 
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references (Goodchild and Hill 2008), and is used for extracting place names in information 

retrieval systems. Geographic terms or phrases in text documents are compared with 

locations in the gazetteer, and when a word or a phrase in the text document matches a 

reference in the gazetteer, the word or the phrase is annotated as the spatial information. 

The  term  ‘gazetteer’  in  NLP  is  applied  more  broadly  than  for  a  geographic  gazetteer.  In  

this field, gazetteer refers to a dictionary with lists of specific terms or phrases (e.g., 

organization, facility, locations, etc.) that are used to match the corresponding information 

in text documents. 

 
 

Figure 2.1 A framework for automatically extracting spatiotemporal information 
from text documents to a geodatabase and visualizing as a map using GIS. 
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In this work, different gazetteers store different kinds of vocabulary commonly 

found  in  news  reports  on  hazards.  GATE’s  default  gazetteer  supports  extracting  locations  

and  dates  from  text  documents.  Most  of  GATE’s  regional  references  are  related  to  general  

world geographical references, especially geographical locations in the UK, where GATE 

is   developed.   US   geographical   information   is   not   widely   covered   in   GATE’s   default  

gazetteer.   The   spatial   gazetteer   developed   for   this   research   extends   GATE’s   original  

gazetteer by importing U.S. state abbreviations, county names for all states, and 25,150 

regional places (e.g., cities, towns, villages, census designated places, airports, schools, 

etc.).  To  compare  our  gazetteer  with  GATE’s,  the  developed  spatial  gazetteer  detected  801  

locations from 11 test documents (news reports from CNN) as compared to only 380 

locations   extracted   using   GATE’s   default   gazetteer   for   the   same   documents.      The  

geographic data is obtained from StreetMap Premium for ArcGIS 

(http://www.esri.com/data/streetmap/), Geonames (http://www.geonames.org), and the U. 

S. Gazetteer Files for the 2010 Census 

(https://www.census.gov/geo/mapsdata/data/gazetteer2010.html). This data is stored as a 

set of .lst files where spatial terms belonging to the same type are grouped into the same 

.lst, e.g., city.lst, county.lst, state.lst, airport.lst, etc. Currently, this gazetteer contains 

locations for the US and the Caribbean that supports the extraction of places relating to the 

hazard events in the news reports used in this research, however, the gazetteer could be 

expanded as necessary. 

Temporal information extraction is also considered in this research where the 

extracted information is based on textual descriptions of time. It is common for events or 

happenings that appear in text to occur in a temporal order and this ordering can be 

exploited when extracting temporal information (Alfonseca and Manandhar 2002; Ling 

and Weld 2010). However, temporal expressions in text documents are often not explicit. 

Some temporal information is expressed as intervals, for example, ten years or two months, 

and some are vague, such as last Sunday morning and early Sunday evening. For this 



 

 

 

18 

reason, extracting only absolute temporal expressions from text documents may limit the 

amount of information possible relating to temporal extraction results. Similar to the spatial 

gazetteer, a temporal gazetteer for capturing temporal attributes, has been developed to 

complement  GATE’s   built-in support (e.g., common temporal references, such as day, 

week, month, and year). This affords temporal processing of 150 additional references, 

such as early morning or late Monday evening to expand further the temporal annotation 

capabilities.  

2.3.2 Parsing and combining spatiotemporal references 

The second component of the extraction process involves parsing and combining 

spatial and temporal terms. Text parsing is the practice of recognizing references (e.g., 

spatial information and temporal information) from Web text documents with the help of 

NLP techniques and the gazetteers developed in the previous subsection. The general 

process of text parsing includes linguistic processing (in this case GATE ANNIE for the 

tokenizer, sentence splitter, part of speech tagger, etc.), gazetteer matching, and annotating 

extracted information. Specifically, as a part of linguistic processing, text documents are 

split into simple units (i.e., tokens), differentiating between different elements (e.g., 

uppercase letters, lowercase letters, mixed uppercase and lowercase letters, symbols, 

numbers, and punctuation). For gazetteer matching, tokens in text documents are compared 

with spatial references and temporal expressions in the gazetteers, and when a term or a 

phrase in the text document matches a reference in the gazetteers, the term or the phrase 

will be annotated as either spatial information or temporal information (Figure 2.2). 

The process of automated spatiotemporal information extraction from Web text 

documents includes combining annotated spatial and temporal information according to 

how they are presented in text documents. Spatial and temporal data are combined to 

capture the salient details of spatiotemporal dynamics in articles. Designing an approach 

for assigning appropriate spatial information and relevant temporal information to event 

information is an important objective for this research. For many documents, geographical  
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Figure 2.2 Annotated spatial and temporal terms in GATE 

references are associated with temporal expressions (Strotgen et al. 2010). For example, 

More than 1,000 volunteers rushed to fill sandbags Wednesday as many in Fargo tried to 

protect themselves from a historic flood that is expected to swamp the area. In this example, 

Fargo is associated with the temporal expression Wednesday, affording both spatial and 

temporal details about an event of interest in a sentence. A sentence has been considered 

as a unit for reasoning temporal/spatial information or exploring spatiotemporal 

information by other researchers (King and Weld 2010; Strotgen et al. 2010; Strotgen and 

Gertz 2010). In this research, we follow the same pattern. Each sentence is treated as a 

processing unit, however, we extract  the  spatial  and  temporal  information  jointly  with  our  

own  developed  rules  instead  of  exploring  these  two  elements  separately.   
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Figure 2.3 Algorithm for combining extracted spatiotemporal information from 
text documents 

However, not every sentence will have both spatial and temporal information. Five 

possible cases can arise with respect to spatiotemporal information in a sentence (Stewart 

Hornsby and Wang 2010), and rules are implemented in Java for assigning proper temporal 

expressions to spatial references according to how spatial and temporal references available 

in each sentence (Figure 2.3). 

1) only spatial information is present; 

2) one spatial term and one temporal reference; 

3) one spatial term and multiple temporal references; 
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4) multiple spatial terms and a single temporal reference; 

5) multiple spatial and multiple temporal references. 

Specifically, for each sentence, tokens on the left and right side of each spatial term 

are checked as a first step for assigning events to a location. The parsing of a sentence starts 

on the left of the spatial term (a left context), and stops when the first period in the text is 

reached (the end of the current sentence). Then the search process moves to the right side 

of the spatial term (a right context), and stops when the first period on the right side is 

encountered (the end of the current sentence). If a temporal expression is discovered either 

context, then the expression will be assigned to the spatial term according to one of the five 

possible cases. 

1. When only spatial information is present  

In some cases, only spatial information is given in a sentence with no temporal 

information being available, for example, LaGuardia airport remains shut down due to 

flooding. LaGuardia airport is extracted as a spatial location. After checking the left and 

right context of the spatial term (i.e., the context is the surrounding characters of the spatial 

term) within a sentence, it is found that no relevant temporal information is contained in 

the text. In this case, since no temporal expression is present here, the published date of the 

article can serve as the temporal information that is assigned to the spatial information, 

therefore, LaGuardia airport is  assigned  the  document’s  date  (e.g.,  10/31/  2012).   

2. Sentences with one spatial term and one temporal reference 

For documents, such as news reports that describe dynamic happenings, it is likely 

that sentences contain a spatial reference along with an associated unit of time. For 

example, wind blows across a flooded street on October 29, 2012 in Atlantic City, New 

Jersey. In this case, Atlantic City, New Jersey and October 29, 2012 are parsed as spatial 

and temporal references using the augmented gazetteers, and a check of the left and right 

context finds one temporal term in the left context of Atlantic City, New Jersey. In this 



 

 

 

22 

case, October 29, 2012 is assigned as a temporal entity to this location. In the example, 

Tropical Storm Claudette is expected to make landfall in the Florida Panhandle by 

Monday, the expressions Monday and the Florida Panhandle are extracted, and Monday is 

assigned to the Florida Panhandle following the same rationale (using the right context in 

this case). 

3. Sentences with one spatial term and multiple temporal references 

It is also possible for multiple temporal references to be present in a sentence. 

Temporal expressions can occur either before or after the spatial reference. All temporal 

expressions are assigned to the spatial reference respectively. For example, the core of 

hurricane Bill will be passing well to the Leeward Islands on Late Wednesday and Early 

Thursday. In this example, the spatial term Leeward Islands is associated with two 

temporal expressions Late Wednesday and Early Thursday. Both of these are assigned to 

Leeward Islands respectively. In the study, a more refined temporal modeling is provided, 

for example, early Monday, Monday morning, early Monday morning are not just assigned 

as Monday. Each of them will be mapped to a time period, which is very useful for 

modeling refined temporal information described in text, and capturing details of 

geographic dynamics.  

4. Sentences with multiple spatial terms and a single temporal reference 

It is also possible for more than one spatial reference to exist with only one temporal 

term in a sentence, for example, the remnants of Tropical Depression Ana continued to 

drop heavy rain across Hispaniola and Cuba on Tuesday. For these cases, multiple 

locations are linked with one temporal term. The left and right context information of the 

spatial terms Hispaniola and Cuba are checked in GATE in order to match the locations 

with a temporal reference. In this example, Tuesday is extracted and assigned to Hispaniola 

and Cuba respectively. 
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5. Sentences with multiple spatial and multiple temporal references 

This last case is often the most complex where multiple spatial references and 

multiple temporal references are given in the same sentences. Here two types of cases are 

considered for assigning temporal expressions to spatial terms. 

 For the first case, punctuation is used to assist with assigning the temporal terms 

to spatial terms. The system checks for specific punctuation, such as commas in the left 

and right contexts of spatial terms. For example, some services in Philadelphia were 

restored Tuesday, and Southeastern Pennsylvania was scheduled to resume service 

Wednesday morning, according to a SEPTA statement. In this example, Philadelphia is 

parsed as the first spatial term. Starting from the left context, if there is a comma in the 

left context of Philadelphia, checking is stopped and the temporal expressions that have 

been detected are assigned to the location respectively. When the left context checking is 

finished, the search moves to the right context of the location term and applies the same 

rationale. In this example, there is no punctuation mark on the left of Philadelphia and no 

temporal information is detected, so checking moves to the right context using the same 

rationale. In the right context of Philadelphia, there is a comma and only Tuesday is 

detected as a temporal term to assign to Philadelphia. After finishing checking both context 

of the first spatial term, the search moves to the next spatial term. Therefore, Tuesday is 

assigned to Philadelphia, and Wednesday morning is assigned to the second spatial term, 

Southeastern Pennsylvania.  

The second case is for sentences that do not contain any commas, for example, 

hurricane appeared on track to hit Destin and Panama City Beach late Sunday or early 

Monday. In this example, no punctuation marks exist except a period at the end of the 

sentence. Destin and Panama City Beach are identified as spatial references. The extracted 

temporal terms are late Sunday and early Monday. The left and right context information 

for each spatial reference is checked to help assign the temporal expressions appropriately. 

In this case, each of these temporal expressions is assigned to Destin. Then the second 
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spatial reference Panama City Beach is combined with every temporal term, e.g., Panama 

City Beach with late Sunday, Panama City Beach with early Monday.  

It is also possible for text documents to present only spatial information and not 

contain any temporal information. In these cases, the document date in the headline of each 

news article is assigned to spatial locations mentioned in the article, providing some 

temporal information. When combining spatiotemporal information, additional processing 

is undertaken to manage temporal information. In this work, the handling of temporal 

expressions is extended with additional processing to standardize temporal information for 

mapping the temporal ordering of events. For example, the duration of events is assigned 

to a discrete time period, e.g., early Thursday is assigned a period between 5:00 am and 

11:00 am on Thursday. The published date of the news reports also serves as a criterion to 

compare temporal expressions (e.g., Thursday, tomorrow, the next day) in the documents 

so that these expressions may be ordered temporally and assigned with appropriate dates. 

All temporal information needs to be converted to a standard time format (i.e., YYYY-

MM-DD hh: mm: ss) in the geodatabase for further processing. The data is then ready for 

geocoding and mapping. 

2.3.3 Exporting results for geocoding and geovisualization 

All results are exported in a database that includes a set of tuples {SID, SE, SG, X, Y, 

T}, where (1) SID is the id number of SE (a spatial term). GATE marks each annotated term 

with a specific ID number after the results are sorted. The spatial terms can be mapped 

based on their ID number that determines the order of positions according to where spatial 

terms occur in text documents; (2) SE corresponds to the spatial term; (3) SG describes 

spatial granularity of the spatial term (e.g., city, state, or county name); (4) X and Y 

represent x, y coordinates for the location of the term SE; and (5) T refers to the associated 

temporal information (e.g., 08/09/2012 12:00con:00). After all records are stored in 

ArcGIS, the locations are mapped with an x, y display function. 
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Using   Yahoo’s   geocoding   API,   geographic   coordinates   are   assigned   to   each  

extracted location (http://www.gpsvisualizer.com). In this research, for generalized (i.e., 

high-level) geographic references including states, counties, and regional geographic 

entities (e.g., southwest Florida, Riley county), geocoding selects a central point of 

reference. Researchers are investigating techniques for improved handling of vague places 

(Delboni et al. 2007; Jones et al. 2008; Vasardani et al. 2013; Chasin et al. 2014). This 

aspect remains a challenge for geographic information retrieval. For spatial references that 

are at a finer granularity, such as cities, towns, neighborhoods, or street references (e.g., 

City Island, New York or West Street, Manhattan), the gazetteers can be parsed, and 

locations geocoded on maps to show where events are occurring. The mapping of extracted 

spatiotemporal  information  is  implemented  using  ESRI’s  ArcMap  10.1   

2.4 Case study: tornadoes in Oklahoma, US.  

April 14-16, 2012 

The dataset for this case study includes Web news reports on tornadoes that 

impacted a large portion of the US Midwest, especially Oklahoma, during April 2012. 

Twenty articles about this event published from April 14 to April 17 have been obtained 

from http://www.cnn.com/ and processed for their spatial and temporal content. Initially 

each Web news report is ordered by its published date after spatiotemporal parsing. In this 

way, the date of the document can provide a time frame for the phenomena being analyzed. 

Each news article includes a header specifying its published date that is used to distinguish 

documents and sort them in an order that they are published. Therefore, document date can 

be used to give a basic temporal order to the extracted spatial locations. However, temporal 

ordering of events can be improved further by extracting temporal expressions contained 

in the text content. The temporal detail, in addition to the extracted spatial information 

enriches our understanding of the hazard dynamics. Specifically, rules of assigning 

appropriate spatial information and temporal information to events, according to how this 
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information are presented in the documents, have been developed. Two approaches will be 

applied to the data set: 1) only use extracted spatial information plus document date 

information (Figure 2.4); 2) extract both spatial and temporal information and employ the 

combined spatiotemporal information (Figure 2.5). With comparing the results of these 

two approaches, we test to determine whether additional spatiotemporal changes and trends 

that would remain otherwise unknown are revealed through the application of the second 

approach.  

For the first approach, each document in the dataset includes a header giving the 

published date of the article, and spatial information is extracted using GATE, allowing 

locations retrieved from the text to be ordered according to the different document dates 

(i.e., April 14-17). A map shows a portion of the central United States and the Great Lakes 

region that were impacted by the tornadoes with the highest number of events occurring in 

Kansas (Figure 2.4). Currently, for generalized geographic references in the articles, such 

as states, counties, and regional geographic entities, geocoding selects the centroid in the 

area. In this case study, these types of locations mentioned in the documents, for example, 

Kansas, western Kansas, northern Oklahoma, Nebraska, and Iowa etc., are represented on 

maps with a unique symbol   to highlight that the extracted locations of these events are 

uncertain. For all other locations, however, the gazetteers capture the explicit spatial 

references that can be parsed and geocoded on maps directly (Figure 2.4). 

For approach 2, spatial and temporal information is automatically extracted from 

text. In this case, some of the locations identified in Figure 2.4 where only the document 

date is used, are now associated with dates that are different to the document date, and a 

greater range of dates is represented. For example, Norman, Oklahoma, extracted from the 

news report on April 14, is also associated with events occurring earlier on April 13th 

(Figure 2.5). Some states, such as Kansas, Iowa, Nebraska, Oklahoma, reported on April 

15th, are revealed to be actually associated with events  that  occurred  on  April  14th.  It’s  

also possible to detect some locations that are associated with events that will happen in 
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the future (e.g., events that will occur on April 15th were reported on April 14th). After 

extracting and processing temporal references from each document and using these in 

conjunction with spatial references, the locations displayed on the map represent a temporal 

sequence of events that is more detailed and realistic than when only document dates are 

used. In this way, it is possible to distinguish information about current or past movements 

vs. future movements by extracting both spatial and temporal information about events 

from the documents. 

 

Figure2.4 Locations automatically extracted from news documents about tornadoes that 
struck Oklahoma, US in April 2012 
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Figure 2.5 Locations extracted from news reports about tornadoes in April 2012.   
Temporal information refines the spatial pattern of locations affected by the tornadoes 

associating events with more days as compared to the map in Figure 2.4 

This research demonstrates that spatial and temporal information presented in Web 

news reports can be extracted to retrieve a temporal ordering of extracted hazard events 

and correctly assign locations and times to these events. Geographic dynamics about 

hazards is captured through automated spatiotemporal information extraction, and the 

extracted results reveals possible spatiotemporal patterns that remain otherwise unknown 

in text document datasets. There are challenges too since different documents often contain 

varying degrees of spatial and temporal detail, that can lead to uncertain descriptions of 

change. The degree, to which generalized locations, for example, are included, is still an 

open research question. News articles are helpful to develop and test our approach and this 
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work may be especially promising for obtaining information about local dynamics where 

text-based descriptions may be one of the few available sources of information about events 

that are happening in a local area. It should be noted that our methods do not test for 

correctness of a news article, i.e., whether the reporting of a hazard accurately depicts the 

hazard. Rather, our work focuses on the processing of information in the documents 

revealing spatiotemporal details that can be mapped and further compared or analyzed for 

correctness as needed.  

2.5 Evaluation  

This research presents a set of steps used to extract and combine spatial and 

temporal information about hazard events from Web news reports to capture the dynamics 

of the events. To assess how well the extraction system performs, an evaluation is 

undertaken. In IR and NLP, the most commonly used evaluation approach is to compute 

precision and recall statistics over a set of evaluation data (Manning et al. 2008). Precision 

refers to how many of the extracted results are correct. The higher precision, the fewer 

errors are contained in the extracted results. Recall indicates the numbers of items that 

should have been detected, and records how many are effectively extracted. The highest 

recall value (i.e., 1) indicates the results that need to be extracted are actually all extracted 

(Sitter et al. 2004). In this evaluation, we extend the traditional evaluation metrics of using 

precision and recall to measure the performance of our approach:  

 STprecision = the number of correctly resolved spatiotemporal references / the 

total number of spatiotemporal references that the system attempts to resolve, 

 STrecall = the number of correctly resolved spatiotemporal references/the total 

number of all references.  

To compute the STprecision and STrecall values, automatically processed results 

by the system are compared with a golden standard in order to acquire the numbers of 

correctly resolved spatiotemporal references, incorrectly resolved spatiotemporal 
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references, and missing spatiotemporal references. We recruited human subjects to provide 

a golden standard for this evaluation (Clark et al. 2010). Five volunteers were recruited to 

manually process spatial and temporal references and assign spatial and temporal 

references to an event. The volunteers were trained before they conducted the evaluation 

tasks by providing two sample news reports along with instructions of how to recognize 

events, and spatial and temporal information. In the two training documents, spatial and 

temporal information have been annotated by a human expert. The instructions provide 

predetermined criteria and examples for volunteers so they understand the definition of 

spatial and temporal information, and the assignment tasks. After training, volunteers were 

assigned 10 CNN news reports to process. Each volunteer manually annotated spatial and 

temporal terms from the evaluation data, and assigned the spatial to relevant temporal 

results based on the context of hazard event information given in the news reports. The 

results of manual annotation of spatial and temporal information, as well as the 

combination of spatiotemporal information were saved in csv.data by volunteers. 

It is recognized that human subjects might not be consistent in their judgments of 

spatial and temporal references contained in the news reports, as well as how to detect 

spatial and temporal information and assign it to an event. Therefore, Kappa statistics are 

applied to the results by the human evaluators to achieve the golden standard (Viera and 

Garrett 2005; Manning 2008). This involves comparing the results from each volunteer. 

An acceptable standard for assessing the results obtained from the manual test is where 

either the results by all volunteers agree, or four out of five of the results agree (Viera and 

Garrett 2005). Results where three out of five or two out of five agree are required to be 

rechecked by all volunteers, and results with 0% agreement are excluded. In summary, the 

manually-derived spatiotemporal assignments, and the results obtained from automatically 

processing the text using the system, are each compared with the standard to get the 

precision and recall values.  
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Table 2.1 compares the results for precision and recall based on human performance 

with the performance results for the algorithms (i.e., the system). For the 10 news reports, 

there are a total of 126 events with associated spatiotemporal references in the golden 

standard. The average results processed by human subjects are shown in this table: 116 

correct references, 10 incorrect references, and 8 missed references. This results in 

precision and recall values of 0.92 and 0.94 respectively for the manual annotation task. 

For the same 126 processed events with spatiotemporal references, the system performed 

with 108 correct references, 18 incorrect references, and 15 missed spatiotemporal 

references. Based on this performance, precision and recall are calculated as 0.86 and 0.88 

respectively. The precision and recall values (0.86 and 0.88) achived by our method is 

acceptable compared to other precision and recall values in the field of information 

extraction, for example, the precision (0.756) and recall (0.4135) values from GATE using 

ANNIE on spatial information retrieval (Clough 2005), and average evaluation results 

(precision 77.6 and recall 86.1) using benchmark data to process spatial and temporal 

information (Strotgen et al. 2010). Again, our evaluation does not test for correctness of a 

news article, i.e., whether the reporting of a hazard accurately depicts the hazard. Rather, 

our work focuses on the processing of information in the documents revealing 

spatiotemporal details that can be mapped and further compared or analyzed for correctness 

as needed. 

The precision and recall values are also computed to evaluate the performance of 

each class of rule for assigning spatiotemporal information, i.e.., the five cases discussed 

in this chapter (Table 2.2). For the 10 documents, the case of one spatial term and one 

temporal term is relatively more common than the other cases (34% of cases). The highest 

precision value occurred for the case where only spatial information appears in a sentence 

(i.e., 0.91). However, the recall value of this case is lower than the other cases (i.e., 0.86). 

The highest recall value occurs with the case of one spatial term and one temporal term. 

Compared to the other cases, the case of multiple spatial and multiple temporal terms in a 
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sentence has the lowest precision and recall values. This is perhaps not so surprising given 

that this is the most complex case. Further testing is necessary to confirm the patterns 

observed here, but these evaluation results suggest the methods can lead to appropriate 

spatiotemporal assignments.  

Table 2.1 Manually annotated and automatically processed precision and recall results 
based solved spatiotemporal references 

Spatio- 
Temporal 
References 

Correct 
References 

Incorrect 
References 

Missed 
References 

Precision Recall 

Manual Auto Manual Auto Manual Auto Manual Auto Manual Auto 

126 116 108 10 18 8 15 0.92 0.86 0.94 0.88 

Table 2.2 Precision and recall results based on the assigning rules 

Type of Assignment %of cases Precision Recall 

Only spatial (information) 23% 0.91 0.86 

One spatial and one temporal (information) 34% 0.90 0.95 

Multi spatial and one temporal (information) 20% 0.85 0.92 

One spatial and multi temporal (information) 16% 0.84 0.86 

Multi spatial and multi temporal (information) 7% 0.80 0.79 

2.6 Conclusions 

This chapter combines principles from the field of GIR and NLP with ongoing work 

in the field of GIScience where there is an interest in capturing geographic dynamics. In 

this study, a set of steps created a framework that can be employed for extracting spatial 

and temporal information about hazard events from Web news reports. The main 
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contribution of this chapter is that the spatial and temporal information presented in Web 

news reports be extracted to retrieve a temporal ordering of extracted hazard events and 

correctly assign locations and times to these events. In this work, spatial and temporal 

gazetteers were created for supporting spatial and temporal references matching in GATE. 

Algorithms were developed to automatically assign appropriate spatial to temporal 

information based on how they presented in text documents. Five possible cases for how 

spatial and temporal information can occur in a document were identified, including the 

possibility that only spatial information is available in a sentence, sentences where events 

are associated with one spatial and one temporal reference, one spatial term and multiple 

temporal references, multiple spatial terms and a single temporal reference, and finally, 

with multiple spatial and multiple temporal references. The method of automatically 

extracting and combining spatiotemporal information reveals how geographic dynamics 

over space and time can be automatically retrieved from web news reports. 

A case study based on web news reports describing tornadoes that impacted a large 

portion of the US Midwest during April 2012 is used to illustrate this research. Tornado 

events were represented using GIS based extracted temporal and spatial details about the 

events described in the news reports. This research shows how spatial and temporal 

information from Web news reports can be extracted to retrieve a temporal ordering of 

hazard events.  The work involves designing spatial and temporal gazetteers, applying rules 

for assigning extracted spatial and temporal event information, and geocoding the spatial 

data so that spatial and temporal information about hazard events can be mapped using 

GIS. In addition to spatial and temporal information, semantic information about events 

(e.g., information about the type of event) adds rich meaning to extracted spatiotemporal 

information. The next chapter investigates the role of ontologies and semantic information 

retrieval for spatiotemporal events described in Web news reports.  
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CHAPTER 3 

 USING A HAZARD ONTOLOGY FOR SEMANTIC INFORMATION 

RETRIEVAL 

3.1 Introduction 

In the second chapter, spatial and temporal information are automatically captured 

from text documents to reveal the dynamics of hazards (e.g., the event sequence of storm 

events) described in web news reports. Semantic   information,   that   assigns   a   particular  

meaning  to  spatial  and  temporal  information,  is  also  considered  an  important  component  

for  supporting  the  understanding  of  spatiotemporal  patterns  of  hazard  phenomena.  In  this  

research,  semantic  information  in  Web  documents  is  defined  as  domain-­related  events  (e.g.,  

airport  closed  or  electricity  shortage)  associated  with  hazards  and  the  higher-­level  classes  

to  which  events  belong,  e.g.,  hazard  impact  is  a  more  abstract  class  (superclass)  of  airport  

closed   or   electricity   shortage.  Making spatiotemporal information more meaningful by 

adding semantics (e.g., hazard recovery and hazard response) improves an understanding 

about the dynamic patterns of hazard outbreaks (e.g., tornado impacts with respect to time 

and space) for Web users. Users can directly visualize spatial and temporal trends of 

various events and map semantics at multiple levels of detail that are not explicitly 

described in text documents. While the fields of NLP and GIR have contributed solutions 

for helping users to find information based on their interests, the possibility of 

automatically tracking semantic changes relating to spatiotemporal events in Web news 

reports is still a challenge. 

  In   this   research,  an   approach   is  presented   for  automatically   extracting  semantic  

information  from  hazard-­related  Web  news  reports.  This research investigates the role of 

ontologies as a key component in the process of semantic information retrieval. Ontologies 

deal with the nature of the phenomena, focusing on the organization of reality (Welty 2003; 

Kalfoglou and Schorlemmer 2003). In information science, ontologies have been applied 
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as a tool for knowledge management and knowledge representation. They using formal 

methods to represent entities, attributes, relationships, and values for a specific domain 

(Noy 2004; Wiegand and Garcia 2007; Sawsaa and Lu 2012). Well-developed ontologies 

can serve as a standard for conceptualizing and understanding domains of interest, and 

ontologies enable data sharing and semantic interoperability (Cruz and Xiao 2005; 

Schorlemmer and Kalfoglou et al. 2008; Fernadez et al. 2011; Cruz et al. 2013). 

 Ontologies can also play an important role in GIR, by providing a knowledge base 

that supports semantic understanding of text and improves search results as well as 

extracted information (e.g., geographic information). Associations between different 

semantics can be achieved by applying ontologies with classification schemes and 

hierarchies (Kemp et al. 2007; Jones and Purves 2008; Kontopoulos et al. 2013). 

Ontologies can also be applied for the disambiguation of geographic names and improving 

gazetteer interaction in GIR systems (Volz et al. 2007; Janowicz and Kebler 2008; 

Machado et al. 2011). Applying ontology in GIR applications can help to capture natural 

facts and related information from a human perspective and represent extracted text 

information using relations in the ontology. Events can also be represented in ontologies 

(Allen and Ferguson 1994; Worboys and Stewart Hornsby 2004;  Imran  et  al.  2013;;  Lee  et  

al.  2013).  

This chapter presents methods for automatically extracting spatiotemporal and 

semantic information from hazard-related Web news reports. The   research   questions  

addressed  in  this  chapter  are: 

x Is it possible to integrate gazetteers and ontologies in order to contribute to 

semantic information retrieval over multiple granularities of hazard 

information? 

x  Can ontologies be used to provide semantic information that supports a GIR 

process?  
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x How does mapping semantic information associated with hazard events 

contribute to an understanding of event dynamics? 

For this work, we are interested in capturing the spatiotemporal patterns of hazard-

related events as well as this associated semantics from texts in order to track the 

occurrences of natural hazards from different perspectives. A hazard-based ontology has 

been built to assist the semantic information retrieval process, especially with the automatic 

detection of semantics from news articles about hazards and represent the hidden 

relationships between the events over space-time using GIS. In this way, events associated 

with hazards or other dynamic happenings can be automatically extracted and represented 

and is particularly useful if a large set of documents multiple analyzed for content. The 

semantic information retrieval provides richness to maps through a story-telling approach 

using both natural and human perspectives.  

3.2 Related Work 

Ontologies have been imported into the GIR process to facilitate the retrieval of 

heterogeneous geographic information from texts, and knowledge representation and 

reasoning (Buscaldi et al. 2006; Saggion et al. 2007; Jones and Purves 2008; Machado 

et al. 2011; Kontopoulos et al. 2013; Buscaldi et al. 2014). Ontologies reflect different 

relations that hold among entities, for example, entities are arranged into superclasses 

and subclasses related by is-a relations in order to classify entities into subgroups, or to 

capture part-whole relationships through part-of relations. Ontologies have also been 

applied to capture events, e.g., biomedical events (Hu et al. 2011) or business events 

(Saggion et al. 2007; Arendarenko and Kakkonen 2012). Ontologies can refer to upper-

level concepts or domain-based (i.e., lower level) concepts. An upper-level ontology is 

a model that captures high-level abstractions of entities in the world such as Region, 

Event, Physical Object and Feature (e.g., DOLCE and BUFO) (Guarino 1998). Upper 

ontologies benefit GIR by formalizing and integrating extracted information relating to 
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high-level semantics (Gangemi et al. 2002). Domain ontologies on the other hand, 

capture features that relate to a particular domain (e.g., medicine, indoor or outdoor) and 

specialize the concepts in the top-level ontology (Guarino 1998; Stewart et al. 2013). 

Domain ontologies are especially useful for processing and reasoning over text content, 

and enhance semantic information construction in information extraction systems.  

Ontologies for geographic phenomena were introduced as an important 

component of naive geography in GIScience (Egenhofer and Mark 1995). Geographic 

ontology is described as a representation that consists of geospatial concepts, 

categories, relations, and processes, and with their interrelations at different resolutions 

(Mark et al. 2001). Geographic ontologies not only describe location names, but also 

spatial concepts including topologies, measurements, and spatiotemporal variation 

(Egenhofer and Mark 1995). Using ontologies, geographic domain knowledge that is 

relevant for conceptual modeling can be formalized to facilitate the sharing of 

geographic information and improved data modeling. 

The SPIRIT project (SPatially-aware Information Retrieval on the InTernet) 

incorporates a domain ontology, a geographic ontology, footprints, and spatial indexing 

to create a spatial search engine in which geospatial semantic differences are 

distinguished (Purves et al. 2007; Jones and Purves 2008). The developed geographic 

ontology contains actual and alternative place names, place types, spatial footprints (i.e., 

geometric extent), and spatial relationships (i.e., part-of), and is applied to recognize 

place names and support disambiguation of place name expression in user queries. In 

this work, the domain ontology included non-spatial concepts related to an application, 

for example, tourism, useful for  capturing  “what”  in  a  spatial  query.    For a project on 

marine environmental management (Kemp et al. 2007), an ontology framework is 

developed to assist GIR by mapping between alternative spatiotemporal classifications. 

Three ontologies were integrated to capture the semantics of spatial, temporal and 
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thematic dimensions drawn from two heterogeneous fishery databases. The thematic or 

domain ontology provides a hierarchical structure of concept terms and also links 

between concepts in one domain (i.e., the fishery) with other domains (e.g., biology). 

For this research, an ontology that is suited for information extraction relating to 

natural hazard events especially severe storms (hurricanes, tornadoes, blizzards, etc.) 

was developed. The ontology is used to provide support for analyzing hazard-related 

events in natural language and perform semantic information retrieval. The ontology 

includes hazard-related topics from not only a natural perspective (e.g., geological 

hazards, hydrological hazards, etc.), but also from a human perspective, where the 

impacts of hazards (e.g., airport closings, flight cancellations, closed roads, power 

outages, etc.) and the human responses to the hazard (e.g., evacuations, power restored) 

are relevant for extracting information about hazards from text.  

3.3 Constructing a Hazard Ontology  

To support semantic information retrieval tasks involving events relating to major 

natural hazards such as severe storms, an ontology is created that includes key concepts 

describing both the natural perspective of hazards as well as the human perspective. An 

open source toolkit, NeOn (http://neon-toolkit.org/), is used to construct the hazard 

ontology. This platform was chosen for its flexible environment that supports easy 

importing, editing, visualizing, and exporting ontologies. The ontology is created from 

authoritative sources on hazards, e.g., the US Federal Emergency Management Agency 

(http://www.fema.gov/) and the US National Weather Service (http://www.weather.gov/), 

existing ontologies (e.g., OpenCyc (http://sw.opencyc.org/), GeoNames 

(http://www.geonames.org/), and terms extracted from the news document sets during 

training. The ontology is organized as a hierarchy where each class has one superclass and 

a set of subclasses, and classes are linked by is-a and part-of relations. The ontology 
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consists currently of approximately 250 classes relating to hazards and is presented in 

Appendix I.  

At the highest level in the ontology, there are the most abstract classes, in this case, 

Object and Happening (Figure 3.1). Upper-level class Object describes high-level 

categories of entities that are important for natural hazards. This class has two subclasses,  

Agent,   Vehicle,   Place   and   Time. Happening refers to the dynamic processes that are 

common to all hazards. Event,  is  a  subclass  of  Happening,  and  is  associated  with  subclasses  

NaturalHazard   and   MeteorologicalEvent. Four subclasses are subsumed by class 

NaturalHazard including GeologicHazard, ClimateHazard, HydrologicHazard, and 

WildfireHazard.  MeteorologicalEvent  subsumes  weather  classes  including  Precipitation, 

Storm and Wind.   

 

Figure 3.1 A partial view of classes in the hazard ontology created using NeOn 
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HazardManagement is related to class NaturalHazard through part-of relation, and 

captures the human aspects associated with a natural hazard. This class has four subclasses, 

Prediction, HazardImpact, HazardResponse, and HazardRecovery. HazardImpact has 

subclasses CommercialImpact, FacilityImpact, IndividualImpact, ResidentialImpact, and 

PoliticalImpact. For example, Hurricane Sandy occurred during the 2012 US Presidential 

election, and numerous electioneering events were affected (typically cancelled) as a result 

of the severe weather. These events are modeled as PoliticalImpact events. Subclasses of 

HazardResponse include CommunityResponse, EmergencyResponse, and 

TransportationResponse. Recovery subsumes CommericalRecovery, FacilityRecovery, 

ResidentialRecovery, TransportationRecovery, and UtilityRecovery.  

3.4 Integrating the Semantic Gazetteers with the  

Hazard Ontology  

In order to prepare Web news reports for the information retrieval process, the 

content of the news reports is annotated with respect to spatial, temporal and hazard-related 

information as described in Chapter 2 of this dissertation. For this example, the principal 

information extraction engine uses three different gazetteers. The information extraction 

task is implemented using GATE 8.0 (http://gate.ac.uk/download/). 

In this work, three gazetteers were created to store different kinds of vocabulary as 

commonly found in news reports on hazards. Spatial and temporal gazetteers were created 

as described in Chapter 2 for capturing spatiotemporal information from texts. In this 

chapter we describe the process of creating a semantic gazetteer. For the semantic 

gazetteer, a set of 180 training documents of hazard news reports is used to collect samples 

of hazard-related terms or phrases based on different hazard topics. For training, there is a 

range to the number of articles used, however, it is not uncommon to see 70% of a data set 

used for training purposes (Resnik and Lin 2010). In this work, 60% of the CNN news 

documents on blizzards, hurricanes, flooding, tornadoes, and wildfires that will be used for 
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this research were processed to capture vocabulary relating to hazards. Hazard-related 

references were manually annotated and stored in a set of .lst files in the semantic gazetteer 

to correspond with different classes in the hazard ontology, e.g., storm.lst, precipitation.lst, 

hydrologicalhazard.lst, communityresponse.lst, hazardimpact.lst, etc. Each list file 

contains a set of related hazard events as identified in the documents during training. Rules 

have been implemented in the JAPE transducer (a Java Annotation Pattern Engine) in 

GATE to support semantic reference matching between the extracted terms and phrases 

from the texts with the gazetteer. 

To link the terms from the semantic gazetteer with classes in the hazard ontology, 

the ontology is imported into GATE as a language resource, an OWLIM ontology (Figure 

3.2). An ontology API in GATE that uses several plugins, such as OntoGazetteer, is used 

to link the terms stored in the semantic gazetteer with classes in the ontology. In this way, 

gazetteer terms at different granularities can be related using the ontology. To build the 

connection between the gazetteer and ontology classes in OntoGazetteer, a mapping file is 

created. The mapping file is used to connect lists in the semantic gazetteer and classes in 

the hazard ontology. For example, 

precipitation.lst:http://gate.ac.uk/hazardontology.owl:Precipitation links the list of 

different precipitation-related terms in the semantic gazetteer to the class Precipitation in 

the ontology. Given the relations (e.g., is-a) specified in the ontology, terms in gazetteers 

are associated with different granularities in the ontology. This allows for reasoning over 

the ontological relations. For example, assume the term supercell is annotated during 

training in one of the text documents, and that this term also exists in the ontology as a 

subclass of Thunderstorm. Given that Thunderstorm is a Storm, it can be inferred that 

Supercell is-a Storm after the processing in GATE.  
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Figure 3.2 A view of the GATE interface for Importing Ontology 

3.5 Spatiotemporal and Semantic Information  

Retrieval for Natural Hazard 

Incorporating hazard-related semantics along with spatiotemporal information 

extraction provides a story-telling approach to mapping that involves both natural and 

human perspectives about hazards. The process of automated spatiotemporal and semantic 

information extraction from text documents uses the hazard ontology and the spatial, 
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temporal and semantic gazetteers to map the results of spatiotemporal information 

extraction, i.e., the different kinds of events (e.g., hazard events, response events and 

impact events) that unfold over space and time. These events, i.e., the actual phrases from 

the news reports as well as higher-level semantics derived from the ontology, can be 

visualized and represented at different spatial granularities. The resulting framework 

integrates text linguistic processing (in this case using GATE for the tokenizer, sentence 

splitter, part of speech tagger, etc.), information extraction processing using the developed 

gazetteers, an ontology, geocoding, and geovisualization using GIS (Figure 3.3).  

 

Figure 3.3 The process for incorporating ontologies into spatiotemporal and 
semantic information retrieval for hazard events  

The extraction process involves automated parsing of spatial, temporal and 

semantic terms from text documents, processing these terms with rules developed and 
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implemented in GATE, and saving the extracted results to a geodatabase (Stewart Hornsby 

and Wang 2013). Rules include assigning proper temporal and semantic terms to locations 

according to the possible spatiotemporal and semantic information represented in a 

sentence (Wang and Stewart 2014). For example, for the sentence More than 2,000 Westar 

Energy Customers in Riley County were without power Saturday evening, ‘Saturday 

evening’ and  ‘without  power’  are annotated as temporal and event information respectively 

and are assigned to Riley County after  processing.  The  event  ‘without power’  was matched 

with terms in the PowerShortage.lst file in the semantic gazetteer. In the ontology, 

PowerShortage is a subclass of UtilityImpact, and UtilityImpact is a subclass of 

HazardImpact. In this case, ‘without power’   is associated with the higher-level class 

HazardImpact through linking the semantic gazetteer and the hazard ontology. ‘Saturday 

evening’,  ‘Riley  County’,  ‘without  power’  and HazardImpact are processed as a set (along 

with all other extracted terms) to a geodatabase.  

Using these methods, spatial, temporal and semantic information about events are 

automatically extracted from Web text documents. Ontologies bolster semantic processing 

by linking annotated terms from the news articles to the different kinds of semantics about 

hazard events that they represent, and model the events at different granularities. In this 

way, event semantics (e.g., hazard impact events, response events, or recovery-related 

events) can be represented on a map. This affords important opportunities for human-

environment applications as the spatiotemporal evolution of a set of events can be tracked 

and new insights revealed about the dynamics and different kinds of reported events in 

document collections that might otherwise be unknown. 

3.6 Case Studies 

Two case studies are presented to demonstrate the methods developed in this 

chapter for extracting semantic information about hazard events over space-time. The  
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(a) 

 
(b) 

 
(c) 

 
 

Figure 3.4 Mapping hazard-related events from the news reports about tornadoes 
that struck Oklahoma, US (a). April 15, 2012 (b). April 16, 2012 (c). April 17, 2012 
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evolution of reported events can be tracked, visualized and analyzed on maps using this 

approach for semantic information retrieval. 

3.6.1 The first case study--tornadoes in the  

Midwest in April, 2012   

In this first case study, the data set applied in Chapter 2 about tornadoes impacted 

the Midwest US in April 2012 is used. After processing, the text terms are mapped to 

represent storm-related events (Figure 3.4). The spatiotemporal pattern of terms is used to 

understand more about the dynamic tornado-related events across space. The map reveals 

that large hail, lightning, heavy downpour, and strong thunderstorm were associated with 

parts of Texas, Louisiana, Wisconsin, Michigan and Minnesota. Facilities were impacted 

by tornadoes. For example, Wichita airport was damaged in Kansas. In addition, relief 

activities were triggered in Nebraska, Iowa, Kansas, and Oklahoma. For example, trucks 

were being sent out for rescue in Oklahoma. It is possible to follow the sequence of these 

different elements of a hazard (e.g., hurricane, response, recovery) automatically based on 

analysis of text. Making sense of spatiotemporal information through extracted semantic 

information contributes additional understanding to the dynamic pattern of hazard 

outbreaks such as tornadoes for users. Event-related terms extracted from multiple 

documents are represented on maps, and the dynamics of events are represented in a 

temporal order. Users can directly visualize spatial and temporal characteristics associated 

with different events described in text documents without going through each document. 

The results can also be presented at a higher level of abstraction (Figure 3.5). In 

this case, terms are presented at the granularity of super classes based on the hazard 

ontology. For example, lightning, downpour, hail, and storm are generalized to the class: 

MeteorologicalEvent while twister and tornado are represented at the higher level, 

ClimaticHazard. The map shows how the five classes vary spatially as per the report on 

April 15th, 2012. Based on this representation and for this document date, it is possible to 

see which areas are still experiencing storms (i.e., MeteorologicalEvent) and where 
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Response is beginning to occur. Event-related terms can be automatically generalized to 

upper-level classes using is-a relations, and these events can be represented on maps using 

upper-level abstractions. Events can be summarized and represented at different 

granularities to derive spatiotemporal patterns on maps. 

 

Figure 3.5 Semantics extracted from a news report about tornadoes that struck 
Oklahoma, US on April 15, 2012 

3.6.2 The second case study-- hurricane Sandy 

 from October 24 to November 4 2012 

The second case study to be discussed is based on a set of 50 CNN news reports 

collected from October 24-November 4, 2012 about Hurricane Sandy, a very severe 

weather event that hit the east coast of the US. Each document is analyzed for past, present, 

and future information about hazard events. The range of dates associated with the events 

described in the article frequently goes beyond the document date for each report, as 

articles routinely referred to both past and future happenings. 
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(a) 

 
 

Figure 3.6 Extracted events relating to Hurricane Sandy from Web news reports early in 
the storm time period (a) Oct 24-Oct 27, 2012 (b) Oct 24-Nov 04, 2012 
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  Figure 3.6 Contunued 
 

 

(b) 

 

As a result of text processing, early reports (Oct 24 to Oct 27) show described 

events located as far south as the western Caribbean Sea, Jamaica, Cuba, and the Bahamas 

(Figure 3.6a). The associated temporal information is represented using graduated colors. 
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Most of the earliest events reported in the tracked period, were located in Jamaica, Cuba, 

Bahamas, and Florida. By October 27th, events had moved north along the coast to 

locations, including Charleston, South Carolina, Cape Hatteras, North Carolina, Mount 

Airy, and Maryland. After processing all 50 of the Web news reports, mapped events 

generally shifted from south to north as far up as Maine in the northeast (Figure 3.6b). 

Inland events were also reported, for example, events in West Virginia, Ohio and 

Pennsylvania. Event-related terms extracted from all 50 news reports are represented in 

Figure 3.6b, and the temporal pattern of events is captured using graduated colors to 

represent temporal order, light pink–dark red–dark blue–light blue where light pink refers 

to the earliest dates of extracted event information, October 24, 2012, and light blue is 

associated with the latest date extracted, November 5, 2012. This map illustrates the focus 

of reporting on the highly populated regions of New York and New Jersey around October 

30th, 2012. The text extraction process shows the transition of the storm from tropical 

storm to hurricane in the afternoon of Oct24th. 

With the addition of ontology-based semantic processing, it is possible to extract 

and retrieve more information about the kinds of events occurring during the hurricane. 

Applying the ontology makes it possible to represent the extracted texts according to the 

different classes of events. An analysis based on a subset of 12 news articles published on 

October 30th, a peak day during the hurricane Sandy, shows events classified as 

HazardImpact, HazardResponse and HazardRecovery (Figure 3.7). For example, power 

failed, flights cancelled, and lost homes are specializations of the class HazardImpact while  
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Figure 3.7 Semantic information retrieval for New York and New Jersey over space and 
time. The news reports are from Oct 30th, 2012, although events from Oct 29-Oct 31 

were reported in the texts  

emergency evacuation and firefighters battled blaze activities signify aspects of 

HazardResponse. The results of the analysis capture the fact that power outages were a key 

event for facilities impacted by Hurricane Sandy as reported in Manhattan, Queens, and 

Staten Island in New York, and Newark in New Jersey. Response-related events were 
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triggered in Breezy Point, Brooklyn, and Staten Island in New York, with emergency 

evacuation in Moonachie, Queens, and Roosevelt in New York. Events associated with 

Recovery were reported in Manhattan and Syosset. To understand the spatiotemporal 

pattern of classified events with respect to the population density of the U.S. in 2012 

obtained  from  ESRI’s  2012  Updated  Demographics1, the results are mapped over space 

and time against high population areas. The extracted hazard-related events are clustered 

in major cities with high population density, such as Manhattan, Brooklyn, and Queens in 

New York. Based on the results, more spatiotemporal and semantic queries can be 

conducted to detect inherent facts that cannot be directly retrieved from the texts. For 

example, which locations in New York City did Sandy impact from the noon of Oct 29th 

until the morning of the 30th? The spatial restriction for this query is New York City, while 

the semantic restriction is HazardImpact. The temporal restriction, Oct29th afternoon to 

Oct 30th morning is between 10/29/2012 12:00pm-10/30/2012 8:00am. The results 

returned that satisfy these three conditions include the boroughs of Queens and Manhattan 

in New York City. 

Hazard impact events extracted from the 50 news reports are also mapped using 

kernel density analysis in order to show the spatial distribution pattern of hazard impact 

events (Figure 3.8a). Kernel density is a way of estimating the intensity of events by 

generating a smooth surface using a quadratic kernel function (Silverman 1986; Li et al. 

2013). Two parameters are used in the kernel density analysis: kernel search radius 

(bandwidth) to calculate density and cell size for the output raster data. The kernel search 

radius was 55km given the shorter of the width or height of the results extent in the output 

spatial reference divided by 30 (Silverman 1986), and the cell size was 6 km given the 

shorter of the width or height of the results extent in the output spatial reference, divided 

by 250 (Silverman 1986).  The kernel search radius of 55km is to avoid creating a map that 

                                                 
1 http://www.arcgis.com/home/item.html?id=a18f489521ba4a589762628893be0c13 
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is too smooth or too fuzzy to interpret. The cell size of 6 km was used to show fine detail. 

The areas with high density of hazard impact events are represented with the darkest hue 

of red, such as the east coast of New York, New Jersey, Philadelphia, Virginia, Maryland, 

Baltimore, and Washington. As shown in Figure 3.8b, Hurricane Sandy impact data 

obtained from a FEMA Modeling Task Force2 is mapped for the areas impacted by 

Hurricane Sandy with four different levels (i.e., very high, high, moderate, and low). The 

similarity of the spatial patterns between the map with the extracted HazardImpact events 

and the impact analysis map from FEMA shows our extracted results about hazard impact 

are promising. However, there are some places on both figures, such as Washing DC, 

associated with different impact levels. One of the possible reasons is that a large amount 

of human events related to hazard impact, such as school closed, airline canceled, power 

outage, road closed, etc. are associated with these area (might not be captured by FEMA). 

For Figure 3.8b, the analysis is based on a composite of surge, wind, precipitation and snow 

data from FEMA to assess the impact.  The event information retrieved from text 

documents can be used in combination with other sources of data (e.g., FEMA impact data) 

to enhance the understanding of hazard events, for example, to estimate the number of 

different events reported in association with Hurricane Sandy. In addition, integrating data 

from different sources also allows us to discover additional information, such as find all 

recovery events in the very high impact areas (FEMA) from the early morning of Oct 30th 

to late afternoon on November 2nd. 

In this research, two case studies demonstrated above illustrate the work for 

automated semantic and spatiotemporal information extraction through integrating a 

hazard ontology and a semantic gazetteer. Applying this approach, hazard-related 

semantics are automatically extracted from text documents, and can be represented on  

                                                 
2 http://fema.maps.-arcgis.com/home/webmap/viewer.html?webmap= 
307dd522499d4a44a33d7296a5da5ea0 
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(a) 

 
(b) 

Figure 3.8 Hazard impact (a) Kernel density analysis for hazard impact-related events 
extracted from 50 CNN news reports; (b) Hurricane Sandy impact analysis (11/8/2012-

4/18/2013) from FEMA Modeling Task Force (MOTF) 
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maps with events described at multiple granularities to show their spatiotemporal patterns. 

Incorporating semantics in spatiotemporal information extraction also provides richness to 

maps  using  a  “story-telling”  perspective  from both natural and human angles. 

3.7 Evaluation 

The approaches demonstrated in this chapter show how spatial, temporal and 

semantic information can be extracted from Web documents to represent the dynamics of 

hazard events.  An evaluation has been undertaken to test the automatic association of 

extracted events with the appropriate location, time and semantic. The evaluation was 

conducted using 10% of the Hurricane Sandy data set (10 news reports). A criterion for the 

evaluation of spatiotemporal semantic extraction of events is extended based on adapting 

the precision and recall evaluation metrics in Chapter 2.   

x STSPrecision = the number of correctly resolved spatiotemporal semantic 

references / the number of spatiotemporal semantic references that the 

system or users attempt to resolve; 

x STSRecall = the number of correctly resolved spatiotemporal semantic 

references / the number of all such references.  

For this evaluation, to compute the STSprecision and STSrecall values, 

automatically processed results by the system are compared with a golden standard in order 

to acquire the numbers of correctly resolved spatiotemporal semantic references, 

incorrectly resolved spatiotemporal semantic references, and missing spatiotemporal 

semantic references. Human subjects were recruited to provide a golden standard for this 

evaluation using kappa statistics (Manning 2008; Clark et al. 2010). For human evaluators, 

five volunteers were used to manually process the evaluation data. Each volunteer was 

trained to process spatiotemporal and semantic information from text documents by 

providing two sample news reports with instructions and examples. Each volunteer 

manually annotated spatial, temporal, and semantic terms from the 10 news reports, and 



 

 

 

56 

assigned the annotated terms to events based on the context in the text documents. The 

results are expressed as a set of vectors of the combination of spatial, temporal, and 

semantic information (i.e., a set of {spatial, temporal, semantic} vectors) stored in a .csv 

database file. To obtain the golden standard, the results from each volunteer were 

compared. In this evaluation, the golden standard consists of the results with at least 80% 

agreement (4 out of five volunteers). Results that are lower than 80% agreement are 

required to be rechecked and discussed with the tester, to decide whether they should be 

included or excluded from the golden standard. Results with 0% agreement are excluded. 

Manually derived spatiotemporal semantic information sets, and the results obtained from 

automatically processing the text are each compared with the gorden standard. The number 

of correct references, incorrect references, and missed references for the users and the 

system are determined.  

The results for precision and recall based on human performance and the 

performance results for the algorithms (Table 3.1). These results are derived according to 

the gorden standard (113 sets of spatial, temporal and semantic information). For the 

human evaluation, there were 103 correct sets of references, 10 incorrect sets of references, 

and 10 missed references in average. This precision and recall values are calculated as 0.91 

and 0.91 respectively. The system performed with 94 correct references, 19 incorrect 

references, and 21 missed references. Based on this performance, precision and recall are 

calculated as 0.83 and 0.82 respectively. This evaluation is based on the sets of 

spatiotemporal and semantic references, and the results for system performance are 

acceptable (0.83 for precision and 0.82 for recall).  

In this evaluation, the quality of extracted results was also checked. The geographic 

locations (i.e., 648 for the total number) can be grouped into two different classes: explicit 

locations (i.e., places that are equal or finer in spatial granularity as cities and can be 

geocoded to potentially an address location) and generalized locations (e.g., Southern New  
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Table 3.1 Manually annotated and automatically processed precision and recall results 
based on numbers of solved spatiotemporal semantic references 

Spatio- 
Temporal 
Semantic 
References 

Correct 
References 

Incorrect 
References 

Missed 
References 

Precision Recall 

Manual Auto Manual Auto Manual Auto Manual Auto Manual Auto 

113 103 94 10 19 10 21 0.91 0.83 0.94 0.82 

Jersey or East Coast, where a centroid location is used). The results contain 262 explicit 

locations and 386 generalized locations. It is worth noting that for the case study, the 

analysis was undertaken with CNN articles. It is probably the case that detailed geographic 

locations (e.g., explicit street names or addresses) are less likely to be reported in these 

news reports than generalized locations. Moving to a different, regional or local news 

source would be expected increase the relative amounts of fine-grained location 

information.  

To further evaluate the approach, the methods for spatiotemporal semantic 

extraction were applied to a text report of U.S. seasonal drought assessment from June to 

August, 20133. The text document was obtained from the Climate Prediction Center, 

National Weather Serves (http://www.cpc.ncep.noaa.gov). Spatiotemporal information 

and drought-related events were extracted from the report and then geocoded using the 

methods described above. A point density analysis was conducted based on the two main 

classes in the ontology that are associated with the geocoded locations (Figure 3.9a): 

drought and non-drought. The drought area (i.e., pink area in Figure 3.9a) is mostly 

concentrated on the west side of the US while the non_drought area is primarily located on 

the east side. In addition, a U.S. seasonal drought forecast map from May to August, 2013,  

                                                 
3 

http://www.cpc.ncep.noaa.gov/products/expert_assessment/sdo_archive/2013/sdo_jja13-
rev_text.shtml 
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(a)                                                                    (b) 

Figure 3.9 Drought visualization (a) System-generated forecast, May 2013 (b) U.S. 
Seasonal Drought Forecast Outlook4, May 16, 2013 

was obtained from the Climate Prediction Center in the National Weather Service (Figure 

3.9b), and it shows the forecast of four levels of drought tendency over space: drought to 

persist or intensify, drought ongoing with some improvement, drought likely to improve, 

drought development likely. Comparing Figure 3.9a and Figure 3.9b, the spatial 

distribution of the estimated drought area (pink area) in Figure 3.9a is similar to the area 

with drought to persist or intensify (dark brown) in Figure 3.9b. While the estimated 

non_drought area (blue area) matches the area with drought likely to improve (green area). 

The results show our extracted semantic information results are promising for modeling 

extracted environmental event information. 

3.8 Conclusions  

In this chapter, an approach for applying ontologies with NLP and GIR techniques 

is demonstrated to automatically extract spatiotemporal and semantic information from 

                                                 
4http://www.cpc.ncep.noaa.gov/products/expert_assessment/sdo_archive/2013/sdo_jja13.

pdf 
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Web news reports. The extracted results are mapped using ArcGIS to represent the 

spatiotemporal patterns of events. Events can be categorized into different classes 

according to their semantic properties and formalized in an ontology. Ontological relations 

allow us to model these event types at different granularities. This affords important 

opportunities for human-environment applications as semantic retrieval affords a more 

detailed understanding of the nature of reported events, and combining this with a 

spatiotemporal perspective offers important new insights about the dynamics of reported 

events in document collections. Incorporating semantics in spatiotemporal information 

retrieval provides insight into facts that cannot be directly retrieved from texts, for example, 

what kinds of events were reported over a certain time window or in a certain region. The 

approach has been applied to two case studies of 20 CNN news reports on Tornadoes in 

the Midwest in April 2012 and 50 CNN news reports on Hurricane Sandy from October to 

early November 2012. The spatial and temporal characteristics associated with the hazard-

related events described in texts can be directly visualized without going through each 

individual document. The results also provide new details about the kinds of events 

occurring during the hazard, patterns of change, and spatiotemporal trends for hazard 

events as well as an understanding of events at multiple spatial and temporal granularities. 

The approach presented in this chapter shows the series of steps that can be 

followed to integrate gazetteers and ontologies in order to contribute to semantic 

information retrieval of hazard information. Ontologies developed in this research provides 

semantic information about natural hazards that supports a GIR process. Mapping semantic 

information associated with hazard events contributes to an understanding of event 

dynamics from different perspectives (human-related activities vs natural phenomena). 

Online news articles have been useful to develop and test this research and this 

approach may be especially promising for obtaining information about local dynamics 

where text-based descriptions may be one of the few available sources of information about 
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events that are happening in a local area. The next chapter develops an extension of the 

research applied to twitter feeds that adds real-time spatiotemporal semantic information. 
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CHAPTER 4  

 EXTRACTING SPATIOTEMPORAL EVENTS FROM TWEETS 

4.1 Introduction 

Twitter, one of the most prevalent social networking and micro-blogging services, 

enables 140 maximum characters for each tweet and allows more than 250 million users to 

send out or share real-time events happening around the world every day (Ozdikis et al. 

2013). Twitter is designed  to  work  as  a  “micro”  version  of  blogs  or  news  reports.  One  of  

the most important advantages of Twitter is the rapid information transmission via the 

Internet (Signorini et al. 2011; Lau et al. 2014). Research results indicate that outbreak 

news is often disseminated on Twitter first before being reported by public media (Kaplan 

and Haenlein 2011). As the major social networking platform nowadays, Twitter becomes 

a valuable and rich revenue for mining  the  “real-time  Web” (MacEachren et al. 2011; Pak 

and Paroubek 2012; Schuurman 2013; Leetaru et al. 2013; Wang 2013; Tsou and Leitner 

2013). 

News, especially about natural hazards (e.g., Hurricane Sandy in October 2012, 

blizzards of February 2013 in the eastern US, or dust storms in Utah in March 2014) 

tweeted by individual users or official agencies (e.g., FEMA) draws immediate attention 

to a great number of web users around the world. Unexpected events, particularly hazard-

related events, often do not provide people with enough time to prepare. Quick response 

and rescue plays a major role in preventing even more serious hazard impacts. To this end, 

the real-time information spread by Twitter is critical for many applications, including the 

hazard response (Sakaki et al. 2010; Crooks et al. 2013). Real-time tweets can be used to 

extract not only temporal information, but also the spatial and semantic information about 

hazards for better understanding of hazard-related events. More importantly, hazard 

responses can be organized more efficiently using the extracted information (Goodchild 

and Glennon 2010, Sakaki et al. 2010; Vieweg et al. 2010; Crooks et al. 2013). 
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Figure 4.1 A tweet about an event 

Tweets commonly portray spatial and temporal information about events (Figure 

4.1). The spatial, temporal, and semantic data in tweets are helpful for event pattern 

detection and spatiotemporal queries. In this chapter, an approach for automatically 

extracting hazard-related spatial, temporal and semantic information from tweets is 

presented (Figure 4.2). Spatial information is detected by analyzing three input signatures 

of a tweet: 1) attached geographic coordinates (longitude, latitude) from GPS-enabled 

mobile phones or tablets; 2) user profile locations, and 3) embedded locations in the text 

content of tweets. Temporal information is associated with the tweeting time, as well as 

the possible temporal expressions presented in tweet contents. Semantic information, as 

we defined in Chapter 3, refers to the kinds of hazard events and their associated meanings, 

for example, airport closed, winter weather advisory, or power shortage, and their general 

abstractions (modeled as upper level classes) that are not explicitly described in text 

documents, such as hazard alert, hazard impact, response, or hazard recovery. An 

important contribution of this research is the approach for combining the features from 

Twitter (GPS, user profiles, tweeting time, and tweet content) to automatically assign 

appropriate spatial and temporal information to semantic information, for which the details 

will be discussed later in this chapter. 

This chapter focuses on developing a new approach for automatically extracting 

spatial, temporal and semantic information from tweets that is implemented in a Java 

environment with an open source toolkit and API: Twitter POS Tagger 
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(https://gate.ac.uk/wiki/twitter-postagger.html) and GATE API (http://jenkins.gate.ac.uk-

/job/GATE-Nightly/javadoc/index.html). The research provides an overview of the 

emerging opportunities for harvesting spatiotemporal and semantic content. Several related 

data handling topics, such as spatial filtering, and data normalization, are discussed during 

the information analyzing process. For this approach, the analyzed results from tweets are 

combined with the results from processing Web news reports by employing the information  

 

 
 

Figure 4.2 Spatial information, temporal information, and semantic information from 
Twitter utilized in this research 

extraction approaches in Chapter 2 and Chapter 3. The  research  questions  addressed  in  this  

chapter  are: 

Spatial Information

GPS coordinates

User profile 
location

Spatial locations 
in the text 

content

Temporal 
information

Tweeting time

Temporal 
expressions in 

the text content

Senmatic 
Information

Hazard events
in the text 

content

Semantics in the 
text content



 

 

 

64 

x Can the same methods for spatial, temporal and semantic information extraction 

developed for Web news reports, be applied to tweets? What additional 

processing approaches are needed? 

x What is the potential role of data extracted through processing Twitter feeds 

with respect to the results already achieved from processing Web news reports? 

A case study of snowstorms that occurred in the southeastern United States during 

January 2014, is used to examine the key issues of applying the approach discussed in this 

chapter to tweets and the potential role of the approach for extracting information about 

hazard dynamics. In order to evaluate the approach, a data set of 27, 0000 tweets for three 

days, Jan 27, 28, and 29, 2014 were collected using the Twitter Streaming API and Python 

procedures. Although the case study is based on a winter storm scenario, it is possible to 

apply the approach for other hazard events, such as hurricanes, tornadoes, or flooding. 

4.2 Related Work 

Research on mining Twitter data is rapidly expanding. Common research topics 

based on Twitter include news topic detection (Sankaranarayanan et al. 2009; Yang and 

Rim 2014), sentiment analysis (Liu 2010; Pak and Paroubek 2010; Nielsen 2011; Bollen 

et al. 2011), disease spreading estimation (Aramaki et al. 2011; Dredze et al. 2013), and 

natural hazard detection (Goodchild and Glennon 2010; Crook et al. 2013; Chen et al. 

2014). The main challenge for Twitter data analysis is the high ratio of noises (i.e., 

abbreviations, slang and spelling errors) contained in the unstructured text (Ritter et al. 

2011; Neubig et al. 2011; Saif et al. 2012). Therefore, the traditional NLP techniques, such 

as named entity recognition (NER) and part-of-speech (POS) tagging, needed to be 

improved to apply on the complex text content of Twitter (Corvey et al. 2010; Neubig et 

al. 2011). 

TwitterStand is a web-based news processing system that aims to identify breaking 

news through Twitter and visualize their geographic locations on map (Sankaranarayanan 
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et al. 2009; Jackoway et al. 2011; Teitler et al. 2014). In TwitterStand, tweets are collected 

using Twitter Services, such as Seeders and Search, and are separated into news and junk 

through training a Naive Bayes classifier, a machine learning based approach for 

classifying text documents into two different categories (Mitchell 1997). Identified news-

related tweets published in recent three days are clustered in groups based on different 

topics. NER and POS approaches are combined to extract geographic information from 

Twitter messages (Sankaranarayanan et al. 2009).  

Sentiment analysis is another common Twitter research topic that captures the level 

of public interest and topics that involve strong sentiments by Twitter users (Liu 2010; Pak 

and Paroubek 2010; Nielsen 2011; Bollen et al. 2011; Saif et al. 2012). Semantics contained 

in tweets are an important component for sentiment analysis (Saif et al. 2012). By 

analyzing  semantic  information  contained  in  the  tweet  messages,  Twitter  users’  emotions  

are monitored through sentiment analysis. A corpus with positive, neutral, and negative 

sentiment references is used as a sentiment classifier with supervised machine learning 

techniques including Naive Bayesian, Maximum Entropy, Support Vector Machine, and 

NLP techniques, such as POS tagging, to determine the emotion for each tweet (Pak and 

Paroubek  2010;;  Nielsen  2011).     Twitter  users’  sentiments  can  be  traced  and  tracked  for  

political election results estimation (Tumasjan et al. 2011; Tsou et al. 2013), or stock 

market trend prediction (Bollen et al. 2009). 

In public health studies, researchers are interested in retrieving geographic location 

information from Twitter for disease tracking (Lamb et al. 2013; Dredze et al. 2013). 

Garmen, a system to obtain structured location information (e.g., country, state, county, 

and city) from Twitter, is applied in public health to improve influenza surveillance 

(Dredze et al. 2013). The spatial information that Garmen detects from Twitter are based 

on GPS coordinates from mobile and user profile information. Various models are utilized 

in epidemics research on Twitter to measure risk factors and track diseases, for example, a 
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linear regression model (Culotta 2010), a terms co-occurrence model (Quincey and 

Kostkova 2010), and a topic aspect model (Paul and Dredze 2011). 

Research shows that analyzing Twitter for hazards events is faster than analyzing 

other official announcements because of its real-time nature (Hughes and Palen 2009).  The 

earthquake events in Japan 2010 were detected from Twitter, and locations associated with 

the earthquake were estimated (Sakaki et al. 2010). Each Twitter user who tweeted an 

earthquake-related event is treated as a sensor. The time and geolocation information 

provided by the sensor were assigned with a higher probability to reduce the noise and 

uncertainty that caused by Twitter data. To estimate the locations of the earthquake, 

Bayesian filters, such as Kalman and Particle filters, were applied. In addition, semantic 

analysis was conducted to classify tweets into a positive class and a negative class, based 

on the content (Sakaki et al. 2010). The final results were sent as immediate alerts to 

communities to provide the local people more time to response to the hazard impact. 

Similar to this research, Twitter can be treated as a distributed sensor system to support 

monitoring of natural events (Crooks et al. 2013). Each Twitter user is considered as a 

mobile sensor for detecting the relevant geographic events (e.g., an earthquake that 

occurred on the east coast of the US on August 23, 2011) through an analysis of the content 

of their tweets.  

Effectively extracting spatiotemporal and semantic information from Twitter is a 

challenging task. Currently, most studies focused on hazard-related tweets choose 

geographic coordinates from GPS-enabled devices (Fuchs et al. 2013; Li et al. 2013) as 

their  inputs  for  events  detection,  for  example,  latitude  and  longitude  “34.06824,  -81.1569”,  

however, only 2% of tweets have GPS coordinates (Dredze et al. 2013).  In addition, the 

accuracy of location estimation should not be dependent only on the coordinates. For 

example,   it’s  possible  that  a  user  who  attached  his/her  current   location  to  a  tweet  could 

refer to an event that happens in a different area. Besides the coordinates, locations can be 

detected from user profiles (Crooks et al. 2013). Twitter users usually register their 
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residential locations in the user profile (Sakaki et al. 2010). However, research shows 30% 

users enter valid geographic locations for their user profiles (Cheng et al. 2013). The spatial 

information in user profiles is associated with different granularities, where 20% are 

restricted to major cities. 70% of users either leave the profile location blank or enter 

nongeographic information (Cheng et al. 2013). Our work in this chapter will extend the 

research in this dissertation by automatically analyzing the spatiotemporal and semantic 

characteristics of hazard events expressed in tweets, and to extend previous work that 

focused solely on extractions from Web new reports to a media where real-time tweeted 

information is also available.  

 
 

Figure 4.3 A framework for processing four features of Twitter 

4.3 Processing Tweets using NLP and GIR 

This research presents a framework to process Twitter for detecting spatial, 

temporal and semantic information. The key components of the framework are shown in 
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Figure 4.3 and include 1) crawling the tweets on the Web and parsing features of the tweets; 

2) analyzing the spatial, temporal, and semantic information from the content of tweet 

messages using NLP techniques; 3) extracting spatial and temporal information in the 

tweets that are directly related to the semantic information by following a set of rules 

developed for this research. 

4.3.1 Crawling tweets and parsing features of the tweets 

Tweets are crawled from the data provider (Twitter server) for a continuous time 

period (e.g., 3 days) by applying the Twitter Streaming API 

(https://dev.twitter.com/docs/api/streaming).  A retrieving request is submitted to the 

HTTP server to establish a connection between the Twitter server and front-end Twitter 

users (Figure 4.4). The streaming connection process is responsible for handling the 

retrieving requests. Once the connection is built and a request is received, the Twitter server 

opens a streaming connection to receive streamed tweets from the front-end Twitter users. 

Each tweet is stored in a local user database with JavaScript Object Notation (JSON) 

format. In this research, we are interested in certain features including the content of tweet 

messages, tweeting time, user profile locations, and any attached GPS data from Twitter. 

Rules are created to parse these four features, and the parsed elements of each tweet are 

stored in the local database with the following pattern: 

{"Text Content":  “University  will  be  closed  Wednesday due  to  winter  weather.”, 

"Time":“Tue Jan 29 04:24:45 +0000 2014",  

"Profile Location”: "Georgia Tech ",  

“GPS”:"X":33.74362,"Y":-84.374}, 

As discussed in the previous section, Twitter users can enter geographic 

information   at   different   granularities   in   their   profiles,   for   example,   “Wisconsin”,  

“Greenville,  NC”,   “Central Texas”,   “US”,   or   “\u00dcT: 36.72517 -76.33804”.   It’s   also  

possible to find non-geographic information, such as user ID, a Web link, or a brief  
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Figure 4.4 Crawling Tweets using Twitter Streaming API 

biography,  in  the  users’  profiles.  However,  some  of  the  profile  information  is  not  relevant,  

for example,   “chasing   dream   in   the   clouds”   or   “Six feet under the stars”.  Therefore,   a  

filtering procedure is applied to exclude any non-geographic information that exists in the 

users’   profiles.   Since   our   study   is   focused   on   events   in   the  United   States, any profile 

locations outside the United States are filtered during Twitter crawling.  

In addition, data normalization is an important step for information retrieval from 

tweets. Since larger cities  contain  populations  with  high  densities,  it’s  possible  for  more 

Twitter activities to occur in these cities, rather than other (smaller) locations. Also re-

tweeted tweets leads to a large redundancy of the same spatiotemporal and semantic results, 

as well as ambiguities when the assignment of spatial and temporal information to the 

appropriate hazard events is undertaken. In order to exclude the spatial pattern that is 

correlated with larger population densities and high numbers of re-tweeted tweets, data 
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normalization is conducted to minimize dependency and redundancy of results from tweets 

using population and numbers of retweets.  

4.3.2 Extracting spatial, temporal, and semantic  

information from the text content of tweets 

In the previous subsection, it was stated that four features of tweets are parsed, 

including the text messages, tweeting   time,  users’  profiles  and  GPS  coordinates.   In   this  

section, an approach for automatically extracting spatial, temporal, and semantic 

information from the text content of tweets through the application of a set of NLP 

techniques will be illustrated.  

In order to handle the text content of tweets, the spatial, temporal, and semantic 

gazetteers developed in Chapter 2 and Chapter 3 will be used to annotate the tweets with 

respect to spatiotemporal information as well as the hazard-related semantics. In addition, 

the hazard ontology from Chapter 3 is once again linked with the semantic gazetteer to 

assign various semantic meanings to the extracted hazard-related events. In this way, the 

events can be clustered into different higher-level classes, e.g., HazardImpact, 

HazardWarning, HazardResponse, and HazardRecovery, for hazard pattern detection 

according to the needs of the users.  

However, the irregular structure of tweets and noise contained in tweet messages 

pose challenges for information extraction (Ritter et al. 2011; Andrienko et al. 2013). 

Available research shows that the traditional NLP annotating accuracy drops significantly 

in tweets, because  gazetteers  with  formal  references  cannot  solve  Twitter’s  wide  range of 

named entity types, such as misspelling, slang, and jargon (Ritter et al. 2011; Derczynski 

et al. 2013). Lacking large annotated text sources based on tweets might result in poor 

extraction performance results (with very low precision and recall values). The 

performance of the extraction is likely to be improved by reducing the proportion of 

“noisy”  and  “unknown”  vocabulary or terms that exist in tweets. A machine learning-based 
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POS tagger can be used for applying the extraction tasks to new data with labeled training 

through supervised learning (Derczynski et al. 2013). Consequently, a GATE twitter POS 

tagger is adopted in this research for enhancing the performance of the extraction tasks and 

handling, for example, slang and noise. In addition to this adopted tagger, an additional 

Twitter semantic gazetteer is created to specifically support the extraction of hazard-related 

events from Twitter. To create this gazetteer, a data corpus of tweets with 20k tokens is 

collected from November 2013 to March 2014 based on a set of keywords, for example, 

“snowstorm”, “blizzard”,   “hurricane”,   and   “tornado”.   The   hazard   events   (e.g.,   storm 

brewing, delay opening, no school, curfew, and postpone game) from this data corpus are 

manually annotated, and stored in a set of .lst files as a twitter semantic gazetteer. The 

contents of this gazetteer corresponds with the different classes in the hazard ontology, e.g., 

utilityimpact.lst, hydrologicalhazard.lst, communityresponse.lst, etc. Each list file contains 

different hazard-related topics events as identified in the tweets during training. Finally, 

rules have been implemented in Java using the GATE API to support spatial, temporal, and 

semantic references matching from the gazetteers and extraction from the tweets text 

content. 

The approach used to process the content of tweets, includes several steps: 

linguistic processing involving tweet tokenization, sentence splitting, applying gazetteers 

and ontologies, and tagging using a twitter part-of-speech tagger. Then, our method stores 

the extracted spatial, temporal and semantic information in a local database (Figure 4.5). 

4.3.3 Rules for extracting spatial information  

Locations detected correctly from tweets determine the accuracy of the analysis 

results. As we claimed in section 4.3.1, spatial information may exist in tweet contents, 

attached GPS coordinates, or user profiles. However, not all the spatial information given 

in the tweets are directly related to the hazard events. It is not trivial to extract the useful  
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Figure 4.5 Parse the spatial, temporal and semantic content of tweets 

and accurate location information from the raw tweets. To this end, a routine is derived 

that combines the GPS data, user profiles, and spatial information in the tweet contents 

together for better representation of location information.  

The following cases illustrate how spatial information is systematically assigned to 

a related hazard event when: 

1) only the spatial information in the text content is available; 

2) only the GPS data is available; 

3) only the user profile location is available; 

4) both the GPS data and the user profile location are available; 

5) both the GPS data and spatial information in the text content are available; 

6) both the spatial information in the text content and the user profile location are 

available; 

7) the GPS data, user profile location, and spatial information in the text content are 

available. 



 

 

 

73 

An algorithm is developed for each of cases above to determine how the spatial 

information is assigned to the hazard event in a tweet. Concerning the best spatial 

information candidate, we order the three features according to their priorities: the explicit 

spatial information present in the tweet content > GPS coordinates > the user profile 

location. 

1. When spatial information is explicit in the text content  

This is the situation in which the spatial information is provided solely in the text 

content, for example,  

{"Text Content":  “Flight delays at Detroit Metro Airport. “, 

"Time": “Wed  Jan 29 09:46:02 +0000 2014",  

"Profile  Location”: null,  

"GPS":"X": null, "Y": null}. 

We assign the available spatial information in the text content to the hazard event. In this 

example, Detroit Metro Airport is assigned to the Flight delays. 

2.When only the GPS data is available  

When the GPS data are available for a tweet, this information is assigned to the 

detected event directly. For example,  

{"Text Content": "Due to the Winter Storm school canceled this evening! Be safe! " 

 "Time": "Tue Jan 28 13:36:35", 

"Profile Location": null, 

"GPS":"X": 32.51861071, "Y": -87.83853678}. 

In this example, the hazard event of school canceled is assigned to geographic coordinates 

directly. 
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3. When only the user profile location is available  

In this case, the user profile contains the only spatial information available and 

this information is assigned to the event. For example,  

{"Text Content": "Winter weather causes two fatalities", 

  "Time": “Wed  Jan  29  14:45:18  +0000  2014",   

  "Profile Location”: “Montgomery Alabama”,  

   "GPS":"X": null, "Y": null}. 

In this example, no spatial information is contained in the text content, and no coordinates 

are attached. Therefore, the user profile location is treated as the only spatial information 

associated with the event. In the user profiles, locations can be associated with different 

granularities (e.g., geographic coordinates, schools, airports, rivers, street names, cities, 

counties, or states) including explicit references (e.g., Charleston, South Carolina) or vague 

reference (e.g., south GA). For this study, we only consider profile spatial information 

designated with the granularity at city level (e.g., Austin TX) or finer than the city level 

(e.g., x, y coordinates, airports, street addresses, etc.). Spatial information with coarser 

granularity than city level or vague information, such as US, West Michigan, will be 

filtered. In this case, Montgomery Alabama is assigned to the event of two fatalities. 

4.When both of GPS coordinates and spatial information in the text content are available  

This case is more complicated than the previous cases especially if more than one 

kind of information is available in a tweet contains different information. GPS coordinates 

are point-based geographic locations. The spatial information contained in the text content, 

similar to the user profile locations, might be associated with different granularities (e.g., 

geographic coordinates, street names, cities, counties, states, etc.) and explicit or vague 

reference (e.g., Detroit Metro Airport or south GA). We need to first obtain the spatial 

relationships between the two features (i.e., where the GPS data is regarded as a point 
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feature A, and the spatial reference in the text content is regarded as geometry B), and then 

determine which spatial information should be assigned to the hazard event. 

If the GPS data equals to the spatial reference (i.e., geographic coordinates) 

extracted from the text content (the two features are completely coincident), the GPS 

coordinates are assigned to the hazard event. Otherwise, the spatial relationships (e.g., 

within) between these two features are needed to determine which feature should be 

considered as a better candidate.  If the geometry B is a polygon-based feature (e.g., cities), 

and the point A is contained within the boundary region of B, the GPS data is assigned to 

the event (Berke and Shi 2009). If the point A is not contained within the boundary region 

of B (i.e., the two geographic features refer to two different places), the spatial information 

in the text content is regarded the mostly related geographic feature to the hazard event, 

and the spatial information in the text content will be assigned to the event. If the geometry 

B is a line-based feature (e.g., streets or rivers) and point feature A is on geometry B, A is 

assigned to the event. If A is not on B, B is assigned to the event. For example, 

{"Text Content": "Who woulda thought class would get cancelled in Atlanta for winter 

weather? ", 

"Time": "Tue Jan 29 04:24:45 +0000 2014",  

"Profile Location": null,  

"GPS":"X": 39.73617,"Y": -84.1751}. 

In this case, Atlanta and 39.73617, -84.1751 are parsed as spatial information. Comparing 

Atlanta and the GPS coordinates, it is found that the GPS coordinates (located in Dayton, 

OH) are not contained in Atlanta. The spatial reference in the text content will be 

considered as a candidate to be assigned to the hazard event. Therefore, Atlanta is assigned 

to the event class would get cancelled.  
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5.When both of GPS data and profile location are available  

It is possible for both the GPS data and user profile location to be available in a 

tweet. In this case, the GPS data will always be selected as the candidate for assigning to 

the event. For example, 

{"Text Content":  “Trying to stay home during this snow\/ice storm.", 

       "Time": "Jan 29 04:27:12 +0000 2014",  

       "Profile Location": "North Carolina", 

        "GPS":"X": 35.62556,"Y": -78.3286}. 

In this case, the geographic coordinates are contained in North Carolina. Therefore, 

the geographic coordinates are determined as the candidate for this tweet. 

6.When both spatial information in the text content and profile location are available 

In this case, no matter if these two kinds of spatial information are identical or not, 

the spatial information in the text content is always selected as the candidate. In the case 

where the two kinds are not identical, the profile location can be considered when the 

spatial information in the text content is ambiguous (e.g., one geographic name can be 

referred to difference places). In this case, if the spatial information in the text content is 

contained within the location in the user profile, then the profile location can be added to 

the spatial information in the content to assign to the event. The profile location provides 

a  “boundary  region”  for  reducing  the  ambiguity  caused  by  the  vague spatial information. 

For example, if Springfield is the only spatial information detected in the tweet content, 

and Illinois is  detected   in   the  user’s  profile,   then Illinois can be used as a reference for 

distinguishing Springfield, Illinois than the other 32 Springfield around the United States. 

For example, 

{"Text   Content":   “Winter Weather NO SCHOOL TOMORROW (Thursday) at Fox 

Creek", 

 "Time": "Wed Jan 29 20:03:13 +0000 2014", 
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"Profile Location": "North Augusta", 

"GPS":"X": null, "Y": null}. 

Fox Creek and North Augusta are annotated as spatial information in this example. 

There are four different places and eight different rivers named as Fox Creek in the US. 

With  the  lack  of  other  geographic  references  in  the  tweet  content,  the  user’s  profile  location  

is considered. Combining Fox Creek and North Augusta, the geographic location (Fox 

Creek, North Augusta) is assigned to the event NO SCHOOL. 

7.When GPS coordinates, profile location, and spatial information in the text content are 

available 

This is the most challenging case. The spatial information in the text content is 

compared with the GPS coordinates first. If they are identical, the GPS information is 

assigned to the hazard event. If not, the spatial relationship between these two features need 

to be identified by the system to determine which feature should be considered as a better 

candidate (similar to Case 4). If the GPS coordinates are not contained within (polygon 

geometry) or not on the spatial reference (line geometry), the spatial information in the 

content is compared with the profile location, and the rules discussed in Case 6 can be 

applied to select the best candidate. For this case, it’s common to see the situation where 

two features or all the three features refer to the same place. For example, 

{"Text Content": "Winter weather update: # Birmingham main Library will be CLOSED 

on Wed.  Jan. 29", 

 "Time": "Jan 29 04:28:09+0000 2014", 

"Profile  Location”:  "Birmingham ", 

"GPS":"X": 33.52042343, "Y": -86.80743526} 

In this example, the GPS data is contained in Birmingham, so GPS is assigned to 

the event Library will be CLOSED.  For another example, 

{"Text Content": "Atlanta was upgraded to a winter storm warning at 3:38am Tuesday", 
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 "Time": "Wed Jan 29 04:29:10 +0000 2014", 

"Profile Location": "Atlanta", 

"GPS":"X": 40.40250900, "Y": -79.98393819}, 

In this example, Atlanta annotated in the tweet content is compared with the GPS 

coordinates 40.40250900, -79.98393819 (located at Pittsburgh, PA). It is found that the 

coordinates are not contained within Atlanta. The profile location is identical to the spatial 

information in the text content, and then Atlanta is   chosen   as   the   candidate.   It’s   also 

possible that all the three features refer to different places, respectively. For example, 

{"Text  Content":  “Some students in GA still stranded in schools after tonight's #snowstorm. 

National Guard called in to rescue drivers. http:\/\/t.co\/9VG5yneW86", 

 "Time": " Wed Jan 29 04:28:18 +0000 2014", 

"Profile Location": "Austin TX", 

"GPS":"X": 37.15973206, "Y": -84.1103043900}. 

In this example, GA, Austin TX, and 37.15973206, -84.1103043900 are annotated 

as the spatial information. The GPS data is not contained in GA, so the profile location 

Austin TX is compared with GA. It is found that they also belong to different states. 

Therefore, the spatial information of the text content, GA, is selected as the candidate for 

assigning to the hazard event.  

Since the spatial information in the tweet is given priority, the algorithm is used to 

assign appropriate spatial information to the related events (summarized in Figure 4.6). We 

discuss how well these rules perform in an evaluation in Section 4.5. In the next section, 

we discuss how to assign temporal information to the hazard events. 

4.3.4 Rules of extracting temporal information  

Two types of temporal data are considered in this research: 1) the tweet timestamp, 

and 2) the temporal expressions contained in tweet contents.  If no temporal information is  
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Figure 4.6 Algorithm of assigning spatial information 

found in the tweet text contents, the timestamp associated with a tweet is assigned to the 

hazard event. If any temporal information has been detected from the text content, we 

compare it with the tweeting time to determine which temporal information is more closely 

related to the hazard events.  

Algorithms developed in Chapter 2 and Chapter 3 are applied to this research for 

handling the temporal information. For example, 
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{"Text Content": "Due to the Winter Weather Storm our library will be closed tomorrow! 

Be safe! " 

"Time": "Tue Jan 28 10:30:35", 

"Profile Location": null, 

"GPS":"X": 30.34566798, "Y": -89.16351993}, 

Tomorrow and Tue Jan 28 10:30:35 are parsed as different temporal expressions 

and tomorrow is assigned to the event library will be closed. The timestamp of the tweet 

serves as a criterion to compare temporal expressions (e.g., Thursday, tomorrow, the next 

day) in the text content. In this way, these expressions may be ordered temporally and 

assigned with appropriate dates. In this case, tomorrow is assigned with a period between 

12:00 am and 11:59 pm on Wednesday. All temporal information needs to be converted to 

a standard time format (i.e., YYYY-MM-DD hh: mm: ss) in the geodatabase for being 

further processed.  

 With the heuristics developed in this section, spatiotemporal and semantic 

information from hazard-related tweets are automatically extracted. In the next section, 

these rules are illustrated through a case study of severe winter weather for the eastern US 

in January 2014. A set of analyses will be conducted based on the extracted results to 

interpret the geographic dynamics (underlying hazard patterns over space and time) in a 

GIS environment. 

4.4 Case Study-Snowstorm in January 2014 

In this section, a case study using snowstorm-related tweets is presented. The goal 

of the case study is to understand: (1) how spatiotemporal and semantic information can 

be extracted from a set of tweets using the process and rules described above and what can 

be learned about hazard event dynamics? (2) How can information from news reports be 

combined with information from Twitter to represent hazard dynamics? 
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4.4.1 Tweet data 

The dataset in this study includes 270,000 tweets about winter storms that occurred 

in Southeastern of the United States during the week of January 27, 2014. Each tweet is 

time-stamped, and covers the time period from January 27 to January 29, 2014.  Figure 4.7 

shows an overview of locations that are related to the snowstorms in the dataset. The 

frequency of the locations mentioned in the tweets is represented by graduated symbols. In 

the data set, 1% of users attached GPS coordinates, and 64% of users listed location 

information in their profiles. Applying the spatial filtering to the profile information, it is 

found that 87% of the profiles were associated with geographic information. Among the 

profile locations, 68% of the data are restricted to major cities or even at finer spatial 

granularity (e.g., street level). After processing the text of the tweets, it was found that 30% 

of the tweets contain spatial information in their text content. 

 

 

Figure 4.7An overview of the spatial distribution of the snow storm-related tweets from 
Jan 27-29, 2014 
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4.4.2 Spatiotemporal clustering of tweets 

In order to detect the hazard patterns that are embedded in the extracted 

spatiotemporal and semantic information from Twitter, kernel density analysis is 

conducted, and the information extracted from Web news reports for this time period are 

integrated with the extracted information from tweets. 

To better explore patterns of geographic dynamics from Twitter, a kernel density-

based clustering analysis is conducted on the set of snow storm-related tweets using the 

geocoded locations at different times (Jan 27, 28, and 29, 2014). Kernel density analysis is 

a way of estimating the intensity of points by generating a smooth surface using a quadratic 

kernel function (Silverman 1986). The kernel density analysis used two parameters: a 

kernel search radius (bandwidth) of 110 km to calculate density, given the shorter of the 

width or height of the results extent in the output spatial reference divided by 30, and the 

cell size of 13 km for the output raster data given the shorter of the width or height of the 

results extent in the output spatial reference, divided by 250.  The kernel search radius of 

110 km is to avoid creating a map that is too smooth or too fuzzy to interpret. The cell size 

of 13 km was used to show fine detail. The patterns of events vary spatially per day (Figure 

4.8a-c). The areas with highest density of events are represented with the darkest hue of 

red. Figure 4.8a shows a map with two major clusters, located primarily in the southern 

gulf coast region of the US, such as New Orleans, LA, Houston, Edinburg, and Austin, TX, 

and also, Birmingham and Tuscaloosa, AL, and Atlanta, GA, on Jan 27th 2014. As shown 

in Figure 4.8b, the area with high density shifts to the main cities along the east coast on 

Jan 28th, 2014, such as Columbia, SC, Charlotte, Clayton and Greenville, NC, Washington 

DC, and parts of Pennsylvania. In Figure 4.8c, there are four main clusters of high density 

along the east coast extending to the northeastern corner of the US. One cluster is located 

in the Great Lakes region, such as Fairmont and Mankato, MN, and Amery, WI, and another 

cluster is located in Los Angeles, CA. 
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(a) 

 
(b) 

 
(c) 

Figure 4.8 Kernel density clustering based on snowstorm related events extracted from 
tweets (a) on Jan 27, 2013; (b) Jan 28, 2013; and (c) Jan 29, 2013 
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4.4.3 Interpreting spatiotemporal hazard patterns based  

on semantics from tweets 

Applying ontologies as part of the information extraction process allows us to 

represent the extraction results according to the different kinds of events (Andrienko et al. 

2013). In this research, the hazard ontology developed in Chapter 3 is used to categorize 

or classify the event-related terms from tweets according to the different upper-level 

classes in the hazard ontology. These events can be represented on maps at different levels 

of abstraction, such as severe weather, power outage, school closed or airline canceled. 

Modeling at multiple granularities offers supports for better summarization and 

representation of spatiotemporal patterns on maps. Making sense of spatiotemporal 

information through extracted semantic information reveals details about the dynamic 

aspects of hazards for users. For example, the spatiotemporal pattern of terms is used to 

understand more about the dynamic hazard impact-related events across space (Figure 4.9). 

Text terms related to hazard impact events, for example, flights canceled, school is closed, 

accidents, icy roads and classes canceled, can be mapped over the three days (Figure 4.9). 

The map reveals that hazard impact-related events that are associated with parts of the 

southern states along the gulf coast, western side of the US, the Great Lakes region, as well 

as the cities on the east coast. Schools were impacted by snowstorms, for example, many 

schools in Maryland, Washington DC, New York and New Jersey were closed. 

4.4.4 Integrating extracted information from news reports  

with tweeted information 

In the previous subsection, it was demonstrated that events in tweets can be 

abstracted to different upper-level classes (e.g., hazard impact) using the hazard ontology. 

Twitter provides a real-time data source associated with individuals reporting about their 

local events and provides more detailed temporal information as contributed by individual 

users (on-the-ground eyewitnesses) who are actually experiencing the hazard events. This  
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Figure 4.9 Text terms from tweets about snow storms impact events that struck 
the eastern US from Jan 27-29, 2014;  

is in contrast to the information extracted from news reports that provide a more overall 

understanding of hazard events, possibly for an extent that is broader. Twitter becomes an 

important resource for possibly helping to augment the coarser spatiotemporal information 

provided in the traditional media, for example, Web news articles. Web news reports 

provide hazard-related information from a more macroscopic perspective. For Web news 

documents, hazard-related events can be summarized with less noise contained in the text 

documents, but potentially at a lower level of granularity. In addition, web news articles 

may not appear until some hours after an event while tweets could well be sent during the 

onset of a hazard. For this reason, Web news reports becomes a useful resource for 

verifying and reducing the noise impacts within a large amount of tweets. The combination 

of the two results provides a formal and rich data source to support hazard patterns 
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detection. The two different sources can be merged to complement each other, and this can 

be viewed as a step towards accessing the value of better harvesting information from 

social media feeds for event detection and analysis. With this approach, extracted 

information from tweets and news reports can be combined and utilized by stakeholders or 

users with an interest in the hazards. The inherent patterns of extracted results can be 

analyzed for better understanding the hazard dynamics. 

Events (represented as spatiotemporal points) can be aggregated with density-based 

clustering techniques according to their locations. In addition to the hazard patterns 

detected from Twitter, a corpus of news reports from CNN is analyzed using the 

approaches discussed in Chapters 2 and 3 for augmenting the Twitter results. In this 

research, five news reports, collected from the CNN Web site about the same severe 

snowstorms from Jan 28th-30th, 2014, are processed to obtain spatiotemporal and semantic 

information using the approaches developed in Chapter 3. Analysis shows that 69% of the 

events extracted from these reports are HazardImpact, 13% of the events refer to 

HazardResponse, and 18% are associated with HazardWeather. Hazard impact events 

from the news reports, e.g., airport closed, flights canceled, bus abandoned, and vehicle 

stranded, are clustered on the map based on their locations (Figure 4.10). The highest 

density of hazard impact events is primarily concentrated in cities, such as Atlanta, 

Brookhaven, Dunwoody, and Snellville in Georgia and Birmingham and Leeds in Alabama 

during these days. Hazard impact events from Web news, and overlapping areas are located 

near Gulf Coast, and the Great Lakes region. There are more locations provided by tweets 

that are affected by snowstorm events (Figure 4.10). The tweets provide more fine-level 

spatial information and additional kinds of events being experienced by individuals that 

would not have been documented in the Web news reports. The event information retrieved 

from Twitter is used in combination with information extracted from news reports to 

enhance the understanding of hazard events from different spatiotemporal granularities 
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(e.g., macro-level and micro-level). For example, to estimate earliest occurring time and 

major impacted areas in association with different hazard impact events.  

 

Figure 4.10 Clustering of hazard-events from CNN news reports and tweets 

Integrating data from tweet data sources and also online news articles and 

exploiting GIS query functions supports the discovery of information that is not explicitly 

described in texts, but can be derived through spatiotemporal queries, for example, “find 

all snowstorm response-related events in Raleigh, North Carolina on early Friday 

morning, January 30th”. Another example is, “find all airports affected by the snow storm 

on January 29th”. The query results return 8 airports, including Hartsfield-Jackson Atlanta 

International Airport, Louis Armstrong New Orleans International Airport, Houston Bush 

News Reports 

Tweets 
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Intercontinental Airport, Cleveland Hopkins International Airport, Chicago O'Hare 

Airport, Detroit Metro Airport, William P. Hobby Airport and Johnston County Airport.  

4.5 Evaluation 

In this chapter, the approach shows how spatiotemporal and semantic information 

can be automatically extracted from Twitter. To assess how well the system performs, 

evaluations have been undertaken both qualitatively and quantitatively. The dataset for the 

evaluation for the system was based on a collection of 18,869 tweets about a New York 

building explosion that occurred in the morning of March 21st.  A smaller set of 200 tweets 

was analyzed atomically by system and manually by human evaluators. 

As a first step, a criterion for the evaluation of spatiotemporal semantic extraction 

of events is adopted to calculate the STSprecision and STSrecall values described in 

Chapter 3.  

x STSPrecision = the number of correctly assigned spatiotemporal semantic 

references / the number of spatiotemporal semantic references that the 

system or users attempt to assign; 

x STSRecall = the number of correctly assigned spatiotemporal semantic 

references / the number of all such references.  

 For this evaluation, automatically processed results by the system are compared 

with a golden standard in order to acquire the numbers of correctly resolved spatiotemporal 

semantic references, incorrectly resolved spatiotemporal semantic references (combination 

set of spatial, temporal and semantic), and missing spatiotemporal semantic references 

from tweets. Five volunteers were used to provide a golden standard for this evaluation. 

All volunteer were trained to manually process spatiotemporal and semantic information 

from randomly selected 200 tweets by providing instructions and seven examples. The 

seven examples correspond to the cases discussed in section of this chapter. Each volunteer 
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manually annotated spatial, temporal, and semantic references and assigned the annotated 

terms to events based on the context in the evaluation data. The results were stored in a 

.csv database file. To obtain the golden standard, the results from each volunteer were 

compared. An acceptable standard for assessing the results obtained from the manual test 

is whether the results by all volunteers agree, or whether four out of five of the results 

agree. Results that correspond to three out of five or two out of five are required to be 

rechecked and discussed with the tester, to decide whether they should be included or 

excluded from the .csv file. Results with 0% agreement are excluded. Manually derived 

spatiotemporal semantic information sets, and the results obtained from automatically 

processing the tweets are each compared with the standard. The number of correct 

references, incorrect references, and missed references for the users and the system are 

determined.  

The results of precision and recall are calculated based on human performance and 

the system performance using our algorithms (Table 4.1). The average results annotated by 

human subjects are shown in this table. These results are based on 200 processed 

spatiotemporal semantic references in the tweets. For this evaluation, the average numbers 

were 191 correct references, 9 incorrect references, and 8 missed references. This results 

in precision and recall values of 0.96 and 0.96 respectively. For the same 200 processed 

spatiotemporal semantic references, the system performed with 172 correct references, 28 

incorrect references, and 38 missed spatiotemporal and semantic references. Based on this 

performance, precision and recall are calculated as 0.86 and 0.81 respectively. Compared 

to the human performance, the recall value of the system is relatively low because of 

Twitter’s  wide  range  of  named entity types, such as misspelling, slang, and jargon, that 

gazetteers with formal references cannot solve (Ritter et al. 2011; Derczynski et al. 2013). 

The irregular structure of tweets and noises contained in tweet messages pose challenges 

for this information extraction task (Ritter et al. 2011; Andrienko et al. 2013). With respect 
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to precision and recall results, further work is still required to improve the quality of 

spatiotemporal and semantic information extraction. For example, research on 

disambiguation and noise reduction in tweets. Methods are needed to reduce the ambiguity 

of the semantic information in tweet text contents. 

Table 4.1 Manually annotated and automatically processed precision and recall 
results based on numbers of solved spatiotemporal semantic references from Tweets 

Tweets Correct 
References 

Incorrect 
References 

Missed 
References 

Precision Recall 

Manual Auto Manual Auto Manual Auto Manual Auto Manual Auto 

200 191 172 9 28 8 38 0.96 0.86 0.96 0.81 

To further evaluate the performance of our methods for spatiotemporal semantic 

assignments, another evaluation is conducted to check the quality of extracted results. In 

this data set, 40 tweets are attached with GPS coordinates. We generate two maps to 

investigate the regions that are associated with the explosion event based on the 40-

geotagged tweets. Figure 4.11a shows the spatial distribution only based on the 40 GPS 

coordinates. The events are scattered over the US.  Figure 4.11b illustrates the clustering 

of locations that are directly associated with the explosion events based on the approach 

discussed in this chapter (rules of assigning appropriate spatial information to the event 

based on tweet feeds, GPS locations and user profile locations). In Figure 4.11a, while in 

Figure 4.11b, the events are concentrated in Manhattan, NY, which reveals the ground truth 

of the events more accurately. The results show our extracted results overcome some noise 

caused by the process of assigning spatial and temporal information to the hazard events, 

which improves the results of analyses for exploring the patterns of hazards. 
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(a) 

 
(b) 

Figure 4.11 Spatiotemporal clustering of explosion events (a) spatiotemporal clustering 
of geotagged tweets using GPS coordinates; (b) spatiotemporal clustering of same data 

using the approach proposed in this chapter 

4.6 Discussions and Conclusions 

This work investigates how the retrieval of data from Twitter is processed and a set 

of methods for automatically extracting spatial, temporal and semantic information from 

tweets. First, the use of Twitter Streaming API for parsing four features of hazard-related 

tweets from the Web including GPS, user profile locations, tweeting timestamp, and text 

of tweet messages is discussed,. During the process of parsing, a filter is applied to exclude 

the non-geographic information from the profiles. Then we demonstrated our methods to 

automatically process spatial, temporal and semantic information from the text of tweets 
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by applying NLP techniques and GATE. The results show that the same methods for 

spatial, temporal and semantic information extraction developed for Web news reports are 

useful for tweets. Spatial, temporal and semantic information detected from the tweet text 

messages are combined with other three features, with algorithms developed in this 

research to assign appropriate spatial information and temporal information to the hazard 

events. Seven cases were discussed for determining spatial information based on how the 

spatial and temporal information is presented in the four features of a tweet.  

Data normalization and density analysis are applied on the extracted results to show 

the inherent spatiotemporal patterns of the retrieved hazard-related events from Twitter to 

exclude the spatial autocorrelation patterns. Events associated with upper level classes in 

the hazard ontology are mapped over space and time. Patterns of hazard-related events 

were detected through clustering the spatiotemporal information into groups based on 

semantics, revealing the evolution of the severe weather events monitored over time. 

The method demonstrated through this work supports multi-scale, spatiotemporal 

event analysis of hazards, in this case, snowstorm, extracting information on severe 

weather, hazard warnings, house damage, cancelled flights, and emergency response, from 

tweets. In addition, this research also demonstrate the benefits of augmenting the results 

from processing Web news reports with data extracted through processing Twitter posts. 

Specifically, event information extracted from Web news reports can be integrated with 

analyzed results of tweets about the same events to enhance the understanding of hazards 

that is implicitly described in the texts, for example, identification of the impact area of the 

hazard-related events. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Discussion and conclusions 

This dissertation explores three broad research topics related to representing 

geographic dynamics, the study of change or movement events with spatial and temporal 

characteristics based on an understanding of the principle functions of relevant forces and 

their relationships over space and time (Yuan and Stewart Hornsby 2008). This work centers 

on automated spatiotemporal and semantic information extraction about hazard events 

from Web news reports. Chapters 2, 3 and 4 can be regarded as three standalone journal 

papers. The research topics covered by the three chapters are related to each other, and are 

presented in a sequential way. This dissertation makes a unique contribution of bridging 

GIScience, geographic information retrieval, and natural language processing. This 

research applies geographic information retrieval and natural language processing 

techniques to extract spatiotemporal and semantic information automatically from Web 

documents, to retrieve information about patterns of hazard events that are not explicitly 

described in the texts.  

The research begins with an investigation of methods for automatically  extracting  

spatial  and  temporal  information  about  hazards,  for  example,  tornadoes,  from  Web  news  

reports.  A   set   of   rules   is   developed   to   combine   the   spatial   and   temporal   information  

contained   in   the   reports   based   on   how   this   information   is   presented   in   text   in   order   to  

capture   the   dynamics   of   hazard   events   (e.g.,   changes   in   event   locations,   new   events  

occurring)  as  they  occur  over  space  and  time.  The  methods  provide  a  systematic  way  to  

process   spatial   and   temporal   information   from  Web   documents.   Spatial   and   temporal  

gazetteers  are  introduced  as  key  elements  for  spatial  and  temporal  information  annotation.  

A  case  study  using  CNN  web  news  reports  about  tornadoes that hit the US Midwest, during 

April 2012 is presented in Chapter 2 to illustrate the steps discussed in this chapter.  The  



 

 

 

94 

results  of  an  evaluation  comparing  the  results  of  volunteers  with  the  results  from  the  system  

processing  show that the heuristics used for combining spatial and temporal information 

automatically lead to appropriate spatiotemporal assignments for the hazard events in the 

five cases.  This  research  demonstrate  that   the  capability  of   information  extraction  of  an  

NLP  system.  GATE  can  be  extended  for  GIR  tasks  through  the  use  of  spatial  and  temporal  

gazetteers,   and   presents   a   set   of   rules   for   assigning   appropriate   spatial   and   temporal  

information  to  events,  based  on  the  context  of  the  text  documents   instead  of  processing  

spatial  and  temporal  information  in  isolation.  This  work  demonstrates  that  it  is  possible  to 

retrieve a temporal ordering of extracted hazard events and correctly assign locations and 

times to these events. 

Chapter  3  presents  methods  for  retrieving  semantic  information  about  hazard  events  

from documents.  This  work  supports   the  understanding  of  hazard  phenomena   from two 

perspectives. One perspective relates to natural phenomena associated with hazards (e.g., 

drought, dust storms, earthquakes, and landslides) and the other relates to human activities 

associated with hazards (e.g., transportation response, facility recovery, and donations). 

This   research   develops   and   integrates   a   hazard   ontology   with   a   semantic   gazetteer   to  

support  semantic  information  extraction  from  Web  text  documents.  Two  case  studies  using  

CNN  reports  on  tornadoes in the Midwest in April, 2012 and Hurricane Sandy  in November 

2012 are   undertaken.   The   major   contributions   presented   in   Chapter   3   are:   creating   a  

semantic  gazetteer  and  hazard  ontology  for  automated  semantic  information  extraction  of  

hazard  events;;  integrating  a semantic gazetteer and the hazard ontology in order to perform 

semantic information retrieval over multiple granularities of hazard information,  including  

domain-­related  events   (e.g.,  power  outage)  as  well  as  higher   level  classes   to  which   the  

events  belong  (e.g.,  hazard  impact  or  hazard  response);;  and  demonstrating how mapping 

semantic information associated with events contributes to an understanding of the nature 

of geographic dynamics of hazard events. 
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Using   the  methods  presented   in  Chapter  2  and  3, an approach for automatically 

extracting spatial, temporal, and semantic information from Twitter messages (tweets) is 

introduced in Chapter 4. Since tweets represent shorter, but more current information about 

hazards and how they are impacting a local area, key information about hazards can be 

retrieved through extracted spatiotemporal and semantic information from tweets. In this 

chapter, a set of rules for assigning appropriate spatial and temporal information to hazard 

events in tweets are presented using four features (text content of tweets, tweeting time, 

GPS data, and user profile locations). This work also investigates how hazard information 

extracted from tweets can be integrated with the information extracted from news reports 

and what the result of this combination offers. Web news reports become a resource for 

verifying and reducing the noise impacts within a large amount of tweets. On the other 

hand, Twitter provides a real-time data source associated with possibly finer-scale 

geographic locations and more accurate temporal information from individual users who 

are discussing the hazard events as they occur. In this way, the two different sources are 

merged to complement each other, and this is a step towards a more integrated approach 

for harvesting information from social media feeds for event detection and analysis. The 

case study for this work is a collection of 270,000 tweets about snowstorms in Southeastern 

of the United States from the week of January 27, 2014. The results show that the same 

methods for spatial, temporal and semantic information extraction developed for Web news 

reports are useful for tweet messages along with some additional processing such as 

assigning spatial information to the events based on the 7 cases discussed in this chapter.  

Evaluations have been undertaken both qualitatively and quantitatively to assess the 

performance of the system as compared to volunteers who manually process the tweets 

using the approaches presented in this chapter. The system performed to 86% for precision 

and 81% recall during these evaluations. The major contributions of this chapter are: a  new  

framework  for automatically extracting spatial, temporal and semantic information from 

tweets; algorithms for assigning appropriate spatial information and temporal information 
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to the hazard events in tweets; and augmenting the results from processing Web news 

reports with data extracted through processing Twitter posts to enhance the understanding 

of hazards that is implicitly described in the texts. 

5.2 Future Work 

Future efforts will be directed toward improving and extending the gazetteers. The 

spatial gazetteer can be extended in future studies to handle complex spatial expressions 

and different (e.g., topological) relationships among geographic locations, for example, 

“fuzzy”  regions  and  intra-urban place names, e.g., along the Mississippi river, or in and 

around Iowa City. Extracting the richness of temporal information is also considered a 

significant research challenge for temporal information extraction. More complex temporal 

expressions from the text documents, such as event-anchored temporal information, for 

example, two days before the flooding, need to be considered for extending the temporal 

gazetteer. Also, the size of gazetteers affects the quality of the extracted results (Pasley et 

al. 2007; Lieberman and Samet 2012). Small gazetteers may restrict the ability to parse 

references from text documents (missing references), while large gazetteers slow the 

parsing process and may result in increased ambiguity. Therefore, further research is 

necessary to improve gazetteers for geographic information retrieval. 

Some challenges with respect to geocoding also remain since generalized or vague 

locations are commonly included in text documents. New methods for translating these 

places into relevant event locations on a map are still needed. Geocoding not only relies 

on transforming addresses, place names, geographic entities, zip codes into x, y coordinates 

to benefit computer processing, but also includes identifying the spatial relationships 

between them. For the future research, more geocoding techniques, such as parcel 

geocoding and segmentation geocoding can be considered to represent line-based 

geographic features, such as the Iowa River, or generalized geographic features (polygon-

based), south of eastern Iowa. The improvement of geocoding techniques benefits the 
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precision of the visualization representing the extracted information from text 

documents. 

With respect to geographic information extraction based on tweets, future work is 

still required to improve the quality of spatiotemporal and semantic information extraction 

from tweets, for example, research on disambiguation and noise reduction in tweets. For 

example, the tweet “Both  my  nieces  are  sick.  I  swear  they're  taking  turns  coughing  up  a  

storm\n#nosleepforme” is not about natural hazards per se. Methods are needed to analyze 

contexts in tweets to reduce the ambiguity of the semantic information in the text content. 

Other social media, such as Facebook, Foursquare, and Google+ can also be considered for 

retrieving spatiotemporal and semantic information. In addition, although this research is 

mainly focused on hazard scenarios, the methods can be also extended and generalized to 

apply to other domain-related text documents, for example, criminal events with terrorists, 

political campaigns, and disease outbreak tracking. 
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APPENDIX  

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY rdfs2 "rdfs:" > 
    <!ENTITY owlim "http://gate.ac.uk/owlim#" > 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY psys "http://proton.semanticweb.org/protonsys#" > 
    <!ENTITY pext "http://proton.semanticweb.org/protonext#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
    <!ENTITY protont "http://proton.semanticweb.org/2005/04/protont#" > 
    <!ENTITY protonu "http://proton.semanticweb.org/2005/04/protonu#" > 
    <!ENTITY protons "http://proton.semanticweb.org/2005/04/protons#" > 

<!ENTITY protonkm "http://proton.semanticweb.org/2005/04/protonkm#" > 
]> 

<rdf:RDF xmlns="http://www.w3.org/2000/01/rdf-schema#" 
     xml:base="http://www.w3.org/2000/01/rdf-schema" 
     xmlns:owlim="http://gate.ac.uk/owlim#" 
     xmlns:protons="http://proton.semanticweb.org/2005/04/protons#" 
     xmlns:protonu="http://proton.semanticweb.org/2005/04/protonu#" 
     xmlns:protont="http://proton.semanticweb.org/2005/04/protont#" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:psys="http://proton.semanticweb.org/protonsys#" 
     xmlns:rdfs2="rdfs:" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:pext="http://proton.semanticweb.org/protonext#" 
     xmlns:protonkm="http://proton.semanticweb.org/2005/04/protonkm#"> 
    <owl:Ontology rdf:about="http://www.owl-ontologies.com/unnamed.owl"/> 
    <!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Annotation properties 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
    <!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Object Properties 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
    <!-- http://gate.ac.uk/owlim#Dispatch --> 
    <owl:ObjectProperty rdf:about="&owlim;Dispatch"> 
        <label>Dispatch</label> 
    </owl:ObjectProperty> 
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   <!-- http://www.w3.org/2000/01/rdf-schema#DevelopsInto --> 
 
    <owl:ObjectProperty rdf:about="&rdfs;DevelopsInto"/> 
 
    <!-- http://www.w3.org/2000/01/rdf-schema#Partof --> 
    <owl:ObjectProperty rdf:about="&rdfs;Partof"> 
        <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
        <range rdf:resource="&rdfs;HazardManagement"/> 
        <domain rdf:resource="&rdfs;HazardManagement"/> 
        <range rdf:resource="&rdfs;NaturalHazard"/> 
        <domain rdf:resource="&rdfs;NaturalHazard"/> 
    </owl:ObjectPropert 
    <!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Classes 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
    <!-- http://gate.ac.uk/owlim#Drought --> 
    <owl:Class rdf:about="&owlim;Drought"> 
        <label>Drought</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Earthquake --> 
    <owl:Class rdf:about="&owlim;Earthquake"> 
        <label>Earthquake</label> 
        <subClassOf rdf:resource="&rdfs;GeologicHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Flood --> 
    <owl:Class rdf:about="&owlim;Flood"> 
        <label>Flood</label> 
        <subClassOf rdf:resource="&rdfs;HydrologicHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Happening --> 
    <owl:Class rdf:about="&owlim;Happening"/> 
    <!-- http://gate.ac.uk/owlim#IceStorm --> 
    <owl:Class rdf:about="&owlim;IceStorm"> 
        <label>Icestorm</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Landslide --> 
    <owl:Class rdf:about="&owlim;Landslide"> 
        <label>Landslide</label> 
        <subClassOf rdf:resource="&rdfs;GeologicHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Mudflow --> 
    <owl:Class rdf:about="&owlim;Mudflow"> 
        <label>Mudflow</label> 
        <subClassOf rdf:resource="&owlim;Landslide"/> 
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    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Mudslide --> 
    <owl:Class rdf:about="&owlim;Mudslide"> 
        <label>Mudslide</label> 
        <subClassOf rdf:resource="&owlim;Landslide"/> 
    </owl:Class>  
    <!-- http://gate.ac.uk/owlim#Object --> 
    <owl:Class rdf:about="&owlim;Object"/> 
    <!-- http://gate.ac.uk/owlim#Rockslide --> 
    <owl:Class rdf:about="&owlim;Rockslide"> 
        <label>Rockslide</label> 
        <subClassOf rdf:resource="&owlim;Landslide"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Tornado --> 
    <owl:Class rdf:about="&owlim;Tornado"> 
        <label>Tornado</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Tsunami --> 
    <owl:Class rdf:about="&owlim;Tsunami"> 
        <label>Tsunami</label> 
        <subClassOf rdf:resource="&rdfs;HydrologicHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Volcanic_eruption --> 
    <owl:Class rdf:about="&owlim;Volcanic_eruption"> 
        <label>Volcanic_eruption</label> 
        <subClassOf rdf:resource="&rdfs;GeologicHazard"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#Weather --> 
    <owl:Class rdf:about="&owlim;Weather"> 
        <label>Weather</label> 
        <subClassOf rdf:resource="&owlim;Happening"/> 
    </owl:Class> 
    <!-- http://gate.ac.uk/owlim#volcanic_gas_release --> 
    <owl:Class rdf:about="&owlim;volcanic_gas_release"> 
        <label>volcanic_gas_release</label> 
        <subClassOf rdf:resource="&owlim;Volcanic_eruption"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema# --> 
    <owl:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#"> 
        <subClassOf rdf:resource="&rdfs;Precipitation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Agent --> 
    <owl:Class rdf:about="&rdfs;Agent"> 
        <subClassOf rdf:resource="&owlim;Object"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Airline --> 
    <owl:Class rdf:about="&rdfs;Airline"> 
        <subClassOf rdf:resource="&rdfs;Company"/> 
    </owl:Class> 
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    <!-- http://www.w3.org/2000/01/rdf-schema#Airplane --> 
    <owl:Class rdf:about="&rdfs;Airplane"> 
        <subClassOf rdf:resource="&rdfs;Vehicle"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Airport --> 
    <owl:Class rdf:about="&rdfs;Airport"> 
        <subClassOf rdf:resource="&rdfs;Airline"/> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#AirportClosure --> 
    <owl:Class rdf:about="&rdfs;AirportClosure"> 
        <subClassOf rdf:resource="&rdfs;Closure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#AirportReopen --> 
    <owl:Class rdf:about="&rdfs;AirportReopen"> 
        <subClassOf rdf:resource="&rdfs;TranportationRecovery"/> 
        <seeAlso>airports reopen</seeAlso> 
        <seeAlso>airport reopens</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#AmusementPark --> 
    <owl:Class rdf:about="&rdfs;AmusementPark"> 
        <subClassOf rdf:resource="&rdfs;RecreationalFacility"/> 
    </owl:Class>     
    <!-- http://www.w3.org/2000/01/rdf-schema#AnabaticWind --> 
    <owl:Class rdf:about="&rdfs;AnabaticWind"> 
        <label>anabatic_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Apartment --> 
    <owl:Class rdf:about="&rdfs;Apartment"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Bank --> 
    <owl:Class rdf:about="&rdfs;Bank"> 
        <subClassOf rdf:resource="&rdfs;Company"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#BankDamage --> 
    <owl:Class rdf:about="&rdfs;BankDamage"> 
        <subClassOf rdf:resource="&rdfs;CommercialDamage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Bay --> 
    <owl:Class rdf:about="&rdfs;Bay"> 
        <subClassOf rdf:resource="&rdfs;WaterRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Beach --> 
    <owl:Class rdf:about="&rdfs;Beach"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Blizzard --> 
    <owl:Class rdf:about="&rdfs;Blizzard"> 
        <subClassOf rdf:resource="&rdfs;Snow"/> 
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        <subClassOf rdf:resource="&rdfs;SnowStorm"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#Breeze --> 
    <owl:Class rdf:about="&rdfs;Breeze"> 
        <label>breeze</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class>    
    <!-- http://www.w3.org/2000/01/rdf-schema#Bridge --> 
    <owl:Class rdf:about="&rdfs;Bridge"> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#BridgeClosure --> 
    <owl:Class rdf:about="&rdfs;BridgeClosure"> 
        <subClassOf rdf:resource="&rdfs;Closure"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#Building --> 
    <owl:Class rdf:about="&rdfs;Building"> 
        <subClassOf rdf:resource="&rdfs;Facility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#BuildingReconstruction --> 
    <owl:Class rdf:about="&rdfs;BuildingReconstruction"> 
        <subClassOf rdf:resource="&rdfs;ResidentialRecovery"/> 
    </owl:Class>     
    <!-- http://www.w3.org/2000/01/rdf-schema#BuredHome --> 
    <owl:Class rdf:about="&rdfs;BuredHome"> 
        <subClassOf rdf:resource="&rdfs;ResidentialDamage"/> 
        <seeAlso>burned homes</seeAlso> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Bus --> 
    <owl:Class rdf:about="&rdfs;Bus"> 
        <subClassOf rdf:resource="&rdfs;Vehicle"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#BusCancellation --> 
    <owl:Class rdf:about="&rdfs;BusCancellation"> 
        <subClassOf rdf:resource="&rdfs;Cancellation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#BusDelay --> 
    <owl:Class rdf:about="&rdfs;BusDelay"> 
        <subClassOf rdf:resource="&rdfs;Delay"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#BusStation --> 
    <owl:Class rdf:about="&rdfs;BusStation"> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Camp --> 
    <owl:Class rdf:about="&rdfs;Camp"> 
        <subClassOf rdf:resource="&rdfs;RecreationalFacility"/> 

</owl:Class> 
 <!-- http://www.w3.org/2000/01/rdf-schema#Canal --> 

    <owl:Class rdf:about="&rdfs;Canal"> 
        <subClassOf rdf:resource="&rdfs;HydrographicStructure"/> 
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    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Cancellation --> 
    <owl:Class rdf:about="&rdfs;Cancellation"> 
        <subClassOf rdf:resource="&rdfs;TranportationImpact"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#Canyon --> 
    <owl:Class rdf:about="&rdfs;Canyon"> 
        <subClassOf rdf:resource="&rdfs;Valley"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Cape --> 
    <owl:Class rdf:about="&rdfs;Cape"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Cave --> 
    <owl:Class rdf:about="&rdfs;Cave"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Channel --> 
    <owl:Class rdf:about="&rdfs;Channel"> 
        <subClassOf rdf:resource="&rdfs;WaterRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Charity --> 
    <owl:Class rdf:about="&rdfs;Charity"> 
        <subClassOf rdf:resource="&rdfs;Organization"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#City --> 
    <owl:Class rdf:about="&rdfs;City"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#CleanUp --> 
    <owl:Class rdf:about="&rdfs;CleanUp"> 
        <subClassOf rdf:resource="&rdfs;ResidentialRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ClimateHazard --> 
    <owl:Class rdf:about="&rdfs;ClimateHazard"> 
        <label>Meteorological_event</label> 
        <subClassOf rdf:resource="&rdfs;NaturalHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Closure --> 
    <owl:Class rdf:about="&rdfs;Closure"> 
        <subClassOf rdf:resource="&rdfs;FacilityImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Coast --> 
    <owl:Class rdf:about="&rdfs;Coast"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#CommercialDamage --> 
    <owl:Class rdf:about="&rdfs;CommercialDamage"> 
        <subClassOf rdf:resource="&rdfs;CommercialImpact"/> 
    </owl:Class> 
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    <!-- http://www.w3.org/2000/01/rdf-schema#CommercialImpact --> 
    <owl:Class rdf:about="&rdfs;CommercialImpact"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#CommercialRecovery --> 
    <owl:Class rdf:about="&rdfs;CommercialRecovery"> 
        <subClassOf rdf:resource="&rdfs;HazardRecovery"/> 
    </owl:Class>    
    <!-- http://www.w3.org/2000/01/rdf-schema#CommunityResponse --> 
    <owl:Class rdf:about="&rdfs;CommunityResponse"> 
        <subClassOf rdf:resource="&rdfs;HazardResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Company --> 
    <owl:Class rdf:about="&rdfs;Company"> 
        <subClassOf rdf:resource="&rdfs;Organization"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Continent --> 
    <owl:Class rdf:about="&rdfs;Continent"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class>     
    <!-- http://www.w3.org/2000/01/rdf-schema#Country --> 
    <owl:Class rdf:about="&rdfs;Country"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#County --> 
    <owl:Class rdf:about="&rdfs;County"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class>     
    <!-- http://www.w3.org/2000/01/rdf-schema#Creek --> 
    <owl:Class rdf:about="&rdfs;Creek"> 
        <subClassOf rdf:resource="&rdfs;WaterRegion"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Dealer --> 
    <owl:Class rdf:about="&rdfs;Dealer"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Delay --> 
    <owl:Class rdf:about="&rdfs;Delay"> 
        <subClassOf rdf:resource="&rdfs;TranportationImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Delta --> 
    <owl:Class rdf:about="&rdfs;Delta"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Desert --> 
    <owl:Class rdf:about="&rdfs;Desert"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Donation --> 
    <owl:Class rdf:about="&rdfs;Donation"> 
        <subClassOf rdf:resource="&rdfs;HazardRecovery"/> 
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    </owl:Class>    
    <!-- http://www.w3.org/2000/01/rdf-schema#Drizzle --> 
    <owl:Class rdf:about="&rdfs;Drizzle"> 
        <subClassOf rdf:resource="&rdfs;Rain"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#DustStorm --> 
    <owl:Class rdf:about="&rdfs;DustStorm"> 
        <label>dust_storm</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#EastWind --> 
    <owl:Class rdf:about="&rdfs;EastWind"> 
        <label>east_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#EducationalOrganization --> 
    <owl:Class rdf:about="&rdfs;EducationalOrganization"> 
        <subClassOf rdf:resource="&rdfs;Organization"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ElementaryClosure --> 
    <owl:Class rdf:about="&rdfs;ElementaryClosure"> 
        <subClassOf rdf:resource="&rdfs;SchoolClosure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#EmergencyResponse --> 
    <owl:Class rdf:about="&rdfs;EmergencyResponse"> 
        <subClassOf rdf:resource="&rdfs;HazardResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Evacuation --> 
    <owl:Class rdf:about="&rdfs;Evacuation"> 
        <subClassOf rdf:resource="&rdfs;CommunityResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Facility --> 
    <owl:Class rdf:about="&rdfs;Facility"> 
        <subClassOf rdf:resource="&rdfs;Place"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FacilityImpact --> 
    <owl:Class rdf:about="&rdfs;FacilityImpact"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FacilityRecovery --> 
    <owl:Class rdf:about="&rdfs;FacilityRecovery"> 
        <subClassOf rdf:resource="&rdfs;HazardRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Fatality --> 
    <owl:Class rdf:about="&rdfs;Fatality"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
        <seeAlso>die</seeAlso> 
        <seeAlso>kill</seeAlso> 
        <seeAlso>dead</seeAlso> 
        <seeAlso>killed</seeAlso> 
        <seeAlso>death</seeAlso> 



 

 

 

117 

        <seeAlso>death roll</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FireFighter --> 
    <owl:Class rdf:about="&rdfs;FireFighter"> 
        <subClassOf rdf:resource="&rdfs;EmergencyResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FlightCancellation --> 
    <owl:Class rdf:about="&rdfs;FlightCancellation"> 
        <subClassOf rdf:resource="&rdfs;Cancellation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FlightDelay --> 
    <owl:Class rdf:about="&rdfs;FlightDelay"> 
        <subClassOf rdf:resource="&rdfs;Delay"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FloodedArea --> 
    <owl:Class rdf:about="&rdfs;FloodedArea"> 
        <subClassOf rdf:resource="&rdfs;UtilityDamage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FoodSupply --> 
    <owl:Class rdf:about="&rdfs;FoodSupply"> 
        <subClassOf rdf:resource="&rdfs;CommunityResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FoodtruckDelivery --> 
    <owl:Class rdf:about="&rdfs;FoodtruckDelivery"> 
        <subClassOf rdf:resource="&rdfs;TransportationResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Forecast --> 
    <owl:Class rdf:about="&rdfs;Forecast"> 
        <subClassOf rdf:resource="&rdfs;HazardPrediction"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Forest --> 
    <owl:Class rdf:about="&rdfs;Forest"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ForestWildfire --> 
    <owl:Class rdf:about="&rdfs;ForestWildfire"> 
        <label>alert</label> 
        <subClassOf rdf:resource="&rdfs;WildfireHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#FuelShortage --> 
    <owl:Class rdf:about="&rdfs;FuelShortage"> 
        <subClassOf rdf:resource="&rdfs;UtilityShortage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#GasLeak --> 
    <owl:Class rdf:about="&rdfs;GasLeak"> 
        <subClassOf rdf:resource="&rdfs;UtilityDamage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#GeologicHazard --> 
    <owl:Class rdf:about="&rdfs;GeologicHazard"> 
        <label>Geological_hazard</label> 
        <subClassOf rdf:resource="&rdfs;NaturalHazard"/> 
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    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Government --> 
    <owl:Class rdf:about="&rdfs;Government"> 
        <subClassOf rdf:resource="&rdfs;Organization"/> 
    </owl:Class>     
    <!-- http://www.w3.org/2000/01/rdf-schema#Group --> 
    <owl:Class rdf:about="&rdfs;Group"> 
        <subClassOf rdf:resource="&rdfs;Agent"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Gulf --> 
    <owl:Class rdf:about="&rdfs;Gulf"> 
        <subClassOf rdf:resource="&rdfs;WaterRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Gust --> 
    <owl:Class rdf:about="&rdfs;Gust"> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Hail --> 
    <owl:Class rdf:about="&rdfs;Hail"> 
        <subClassOf rdf:resource="&rdfs;Ice"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HailStorm --> 
    <owl:Class rdf:about="&rdfs;HailStorm"> 
        <label>hailstorm</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Harbor --> 
    <owl:Class rdf:about="&rdfs;Harbor"> 
        <subClassOf rdf:resource="&rdfs;HydrographicStructure"/> 
        <subClassOf rdf:resource="&rdfs;WaterRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HazardImpact --> 
    <owl:Class rdf:about="&rdfs;HazardImpact"> 
        <subClassOf rdf:resource="&rdfs;HazardManagement"/> 
        <subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="rdfs:Partof"/> 
                <owl:someValuesFrom rdf:resource="&owl;Thing"/> 
            </owl:Restriction> 
        </subClassOf> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HazardManagement --> 
    <owl:Class rdf:about="&rdfs;HazardManagement"> 
        <subClassOf rdf:resource="&owlim;Happening"/> 
        <subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="rdfs:Partof"/> 
                <owl:someValuesFrom rdf:resource="&rdfs;NaturalHazard"/> 
            </owl:Restriction> 
        </subClassOf> 
    </owl:Class> 



 

 

 

119 

 
    <!-- http://www.w3.org/2000/01/rdf-schema#HazardPrediction --> 
    <owl:Class rdf:about="&rdfs;HazardPrediction"> 
        <subClassOf rdf:resource="&rdfs;HazardManagement"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HazardRecovery --> 
    <owl:Class rdf:about="&rdfs;HazardRecovery"> 
        <subClassOf rdf:resource="&rdfs;HazardManagement"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HazardResponse --> 
    <owl:Class rdf:about="&rdfs;HazardResponse"> 
        <subClassOf rdf:resource="&rdfs;HazardManagement"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HeavyRain --> 
    <owl:Class rdf:about="&rdfs;HeavyRain"> 
        <subClassOf rdf:resource="&rdfs;Rain"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HeavySnow --> 
    <owl:Class rdf:about="&rdfs;HeavySnow"> 
        <subClassOf rdf:resource="&rdfs;Snow"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HeavyWind --> 
    <owl:Class rdf:about="&rdfs;HeavyWind"> 
        <label>heavy_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HighSchool --> 
    <owl:Class rdf:about="&rdfs;HighSchool"> 
        <subClassOf rdf:resource="&rdfs;School"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HighSchoolClosure --> 
    <owl:Class rdf:about="&rdfs;HighSchoolClosure"> 
        <subClassOf rdf:resource="&rdfs;SchoolClosure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HighwayClosure --> 
    <owl:Class rdf:about="&rdfs;HighwayClosure"> 
        <subClassOf rdf:resource="&rdfs;RoadClosure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HomeReconstruction --> 
    <owl:Class rdf:about="&rdfs;HomeReconstruction"> 
        <subClassOf rdf:resource="&rdfs;ResidentialRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Hospital --> 
    <owl:Class rdf:about="&rdfs;Hospital"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
        <subClassOf rdf:resource="&rdfs;Organization"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Hotel --> 
    <owl:Class rdf:about="&rdfs;Hotel"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
    </owl:Class> 
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    <!-- http://www.w3.org/2000/01/rdf-schema#Hour --> 
    <owl:Class rdf:about="&rdfs;Hour"> 
        <subClassOf rdf:resource="&rdfs;TemporalUnite"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Hurricane --> 
    <owl:Class rdf:about="&rdfs;Hurricane"> 
        <label>hurricane</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#HydrographicStructure --> 
    <owl:Class rdf:about="&rdfs;HydrographicStructure"> 
        <subClassOf rdf:resource="&rdfs;Facility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#HydrologicHazard --> 
    <owl:Class rdf:about="&rdfs;HydrologicHazard"> 
        <label>Hydrological_hazard</label> 
        <subClassOf rdf:resource="&rdfs;NaturalHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Ice --> 
    <owl:Class rdf:about="&rdfs;Ice"> 
        <subClassOf rdf:resource="&rdfs;Precipitation"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Injury --> 
    <owl:Class rdf:about="&rdfs;Injury"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#InsuranceCompany --> 
    <owl:Class rdf:about="&rdfs;InsuranceCompany"> 
        <subClassOf rdf:resource="&rdfs;Company"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Island --> 
    <owl:Class rdf:about="&rdfs;Island"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Jungle --> 
    <owl:Class rdf:about="&rdfs;Jungle"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#KatabaticWind --> 
    <owl:Class rdf:about="&rdfs;KatabaticWind"> 
        <label>Katabatic_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#KindergartenClosure --> 
    <owl:Class rdf:about="&rdfs;KindergartenClosure"> 
        <subClassOf rdf:resource="&rdfs;SchoolClosure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Lake --> 
    <owl:Class rdf:about="&rdfs;Lake"> 
        <subClassOf rdf:resource="&rdfs;WaterRegion"/> 
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    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#LandRegion --> 
    <owl:Class rdf:about="&rdfs;LandRegion"> 
        <subClassOf rdf:resource="&rdfs;Place"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#LightSnow --> 
    <owl:Class rdf:about="&rdfs;LightSnow"> 
        <subClassOf rdf:resource="&rdfs;Snow"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Lightning --> 
    <owl:Class rdf:about="&rdfs;Lightning"> 
        <subClassOf rdf:resource="&rdfs;ThurnderStorm"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Lock --> 
    <owl:Class rdf:about="&rdfs;Lock"> 
        <subClassOf rdf:resource="&rdfs;HydrographicStructure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#MedicalCare --> 
    <owl:Class rdf:about="&rdfs;MedicalCare"> 
        <subClassOf rdf:resource="&rdfs;EmergencyResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#MedicalCompany --> 
    <owl:Class rdf:about="&rdfs;MedicalCompany"> 
        <subClassOf rdf:resource="&rdfs;Company"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#MiddleSchool --> 
    <owl:Class rdf:about="&rdfs;MiddleSchool"> 
        <subClassOf rdf:resource="&rdfs;School"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#MiddleSchoolClosure --> 
    <owl:Class rdf:about="&rdfs;MiddleSchoolClosure"> 
        <subClassOf rdf:resource="&rdfs;SchoolClosure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#MilltaryArea --> 
    <owl:Class rdf:about="&rdfs;MilltaryArea"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Minute --> 
    <owl:Class rdf:about="&rdfs;Minute"> 
        <subClassOf rdf:resource="&rdfs;TemporalUnite"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Montain --> 
    <owl:Class rdf:about="&rdfs;Montain"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#NaturalHazard --> 
    <owl:Class rdf:about="&rdfs;NaturalHazard"> 
        <label>Natural_hazard</label> 
        <subClassOf rdf:resource="&owlim;Happening"/> 
        <subClassOf> 
            <owl:Restriction> 
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                <owl:onProperty rdf:resource="rdfs:Partof"/> 
                <owl:someValuesFrom rdf:resource="&owl;Thing"/> 
            </owl:Restriction> 
        </subClassOf> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#NorthWind --> 
    <owl:Class rdf:about="&rdfs;NorthWind"> 
        <label>north_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Oasis --> 
    <owl:Class rdf:about="&rdfs;Oasis"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Ocean --> 
    <owl:Class rdf:about="&rdfs;Ocean"> 
        <subClassOf rdf:resource="&rdfs;Sea"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#OffShoreWind --> 
    <owl:Class rdf:about="&rdfs;OffShoreWind"> 
        <label>off-shore_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#OnShoreWind --> 
    <owl:Class rdf:about="&rdfs;OnShoreWind"> 
        <label>on-shore_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Organization --> 
    <owl:Class rdf:about="&rdfs;Organization"> 
        <subClassOf rdf:resource="&rdfs;Group"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Outage --> 
    <owl:Class rdf:about="&rdfs;Outage"> 
        <subClassOf rdf:resource="&rdfs;UtilityDamage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Peninsula --> 
    <owl:Class rdf:about="&rdfs;Peninsula"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#Person --> 
    <owl:Class rdf:about="&rdfs;Person"> 
        <subClassOf rdf:resource="&rdfs;Agent"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Pipeline --> 
    <owl:Class rdf:about="&rdfs;Pipeline"> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Place --> 
    <owl:Class rdf:about="&rdfs;Place"> 
        <subClassOf rdf:resource="&owlim;Object"/> 
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    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Plain --> 
    <owl:Class rdf:about="&rdfs;Plain"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Plane --> 
    <owl:Class rdf:about="&rdfs;Plane"> 
        <subClassOf rdf:resource="&rdfs;TransportationResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Plateau --> 
    <owl:Class rdf:about="&rdfs;Plateau"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Police --> 
    <owl:Class rdf:about="&rdfs;Police"> 
        <subClassOf rdf:resource="&rdfs;EmergencyResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#PoliticalRegion --> 
    <owl:Class rdf:about="&rdfs;PoliticalRegion"> 
        <subClassOf rdf:resource="&rdfs;Place"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#PowerRestore --> 
    <owl:Class rdf:about="&rdfs;PowerRestore"> 
        <subClassOf rdf:resource="&rdfs;UtilityRecovery"/> 
        <seeAlso>restore power</seeAlso> 
        <seeAlso>backup power</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#PowerShortage --> 
    <owl:Class rdf:about="&rdfs;PowerShortage"> 
        <subClassOf rdf:resource="&rdfs;UtilityShortage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Precipitation --> 
    <owl:Class rdf:about="&rdfs;Precipitation"> 
        <label>precipitation_process</label> 
        <subClassOf rdf:resource="&owlim;Weather"/> 
        <seeAlso></seeAlso> 
        <seeAlso>precipitation</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Province --> 
    <owl:Class rdf:about="&rdfs;Province"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RailCancellation --> 
    <owl:Class rdf:about="&rdfs;RailCancellation"> 
        <subClassOf rdf:resource="&rdfs;Cancellation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RailDamage --> 
    <owl:Class rdf:about="&rdfs;RailDamage"> 
        <subClassOf rdf:resource="&rdfs;TranportationDamage"/> 
    </owl:Class> 
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    <!-- http://www.w3.org/2000/01/rdf-schema#Railway --> 
    <owl:Class rdf:about="&rdfs;Railway"> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Rain --> 
    <owl:Class rdf:about="&rdfs;Rain"> 
        <subClassOf rdf:resource="&rdfs;Precipitation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RainStorm --> 
    <owl:Class rdf:about="&rdfs;RainStorm"> 
        <label>rain_storm</label> 
        <subClassOf rdf:resource="&rdfs;Storm"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RecreationalFacility --> 
    <owl:Class rdf:about="&rdfs;RecreationalFacility"> 
        <subClassOf rdf:resource="&rdfs;Facility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Relief --> 
    <owl:Class rdf:about="&rdfs;Relief"> 
        <subClassOf rdf:resource="&rdfs;EmergencyResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RemoveDebris --> 
    <owl:Class rdf:about="&rdfs;RemoveDebris"> 
        <subClassOf rdf:resource="&rdfs;CommunityResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Rescue --> 
    <owl:Class rdf:about="&rdfs;Rescue"> 
        <subClassOf rdf:resource="&rdfs;EmergencyResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Reservoir --> 
    <owl:Class rdf:about="&rdfs;Reservoir"> 
        <subClassOf rdf:resource="&rdfs;HydrographicStructure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ResidentialDamage --> 
    <owl:Class rdf:about="&rdfs;ResidentialDamage"> 
        <subClassOf rdf:resource="&rdfs;ResidentialImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ResidentialImpact --> 
    <owl:Class rdf:about="&rdfs;ResidentialImpact"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ResidentialRecovery --> 
    <owl:Class rdf:about="&rdfs;ResidentialRecovery"> 
        <subClassOf rdf:resource="&rdfs;HazardRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RestaurantDamage --> 
    <owl:Class rdf:about="&rdfs;RestaurantDamage"> 
        <subClassOf rdf:resource="&rdfs;CommercialDamage"/> 
    </owl:Class> 
 
    <!-- http://www.w3.org/2000/01/rdf-schema#RestoreBus --> 
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    <owl:Class rdf:about="&rdfs;RestoreBus"> 
        <subClassOf rdf:resource="&rdfs;TranportationRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RestoreRail --> 
    <owl:Class rdf:about="&rdfs;RestoreRail"> 
        <subClassOf rdf:resource="&rdfs;TranportationRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#River --> 
    <owl:Class rdf:about="&rdfs;River"> 
        <subClassOf rdf:resource="&rdfs;Stream"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RoadClosure --> 
    <owl:Class rdf:about="&rdfs;RoadClosure"> 
        <subClassOf rdf:resource="&rdfs;Closure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RoadDamage --> 
    <owl:Class rdf:about="&rdfs;RoadDamage"> 
        <subClassOf rdf:resource="&rdfs;TranportationDamage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RoadReconstruction --> 
    <owl:Class rdf:about="&rdfs;RoadReconstruction"> 
        <subClassOf rdf:resource="&rdfs;FacilityRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#RoofDamage --> 
    <owl:Class rdf:about="&rdfs;RoofDamage"> 
        <subClassOf rdf:resource="&rdfs;ResidentialDamage"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SandStorm --> 
    <owl:Class rdf:about="&rdfs;SandStorm"> 
        <label>sandstorm</label> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#School --> 
    <owl:Class rdf:about="&rdfs;School"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
        <subClassOf rdf:resource="&rdfs;EducationalOrganization"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SchoolClosure --> 
    <owl:Class rdf:about="&rdfs;SchoolClosure"> 
        <subClassOf rdf:resource="&rdfs;Closure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SchoolReopen --> 
    <owl:Class rdf:about="&rdfs;SchoolReopen"> 
        <subClassOf rdf:resource="&rdfs;FacilityRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Sea --> 
    <owl:Class rdf:about="&rdfs;Sea"> 
        <subClassOf rdf:resource="&rdfs;HydrographicStructure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Second --> 
    <owl:Class rdf:about="&rdfs;Second"> 
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        <subClassOf rdf:resource="&rdfs;TemporalUnite"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Shelter --> 
    <owl:Class rdf:about="&rdfs;Shelter"> 
        <subClassOf rdf:resource="&rdfs;CommunityResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Sleet --> 
    <owl:Class rdf:about="&rdfs;Sleet"> 
        <subClassOf rdf:resource="&rdfs;Ice"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Snow --> 
    <owl:Class rdf:about="&rdfs;Snow"> 
        <subClassOf rdf:resource="&rdfs;Precipitation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SnowStorm --> 
    <owl:Class rdf:about="&rdfs;SnowStorm"> 
        <subClassOf rdf:resource="&rdfs;ClimateHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SouthWind --> 
    <owl:Class rdf:about="&rdfs;SouthWind"> 
        <label>south_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Spring --> 
    <owl:Class rdf:about="&rdfs;Spring"> 
        <subClassOf rdf:resource="&rdfs;Stream"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Stadium --> 
    <owl:Class rdf:about="&rdfs;Stadium"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#State --> 
    <owl:Class rdf:about="&rdfs;State"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Storm --> 
    <owl:Class rdf:about="&rdfs;Storm"> 
        <label>storm</label> 
        <subClassOf rdf:resource="&owlim;Weather"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Stream --> 
    <owl:Class rdf:about="&rdfs;Stream"> 
        <subClassOf rdf:resource="&rdfs;HydrographicStructure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Street --> 
    <owl:Class rdf:about="&rdfs;Street"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#StreetClosure --> 
    <owl:Class rdf:about="&rdfs;StreetClosure"> 
        <subClassOf rdf:resource="&rdfs;RoadClosure"/> 
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    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#StrongWind --> 
    <owl:Class rdf:about="&rdfs;StrongWind"> 
        <label>strong_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SubwayCancellation --> 
    <owl:Class rdf:about="&rdfs;SubwayCancellation"> 
        <subClassOf rdf:resource="&rdfs;Cancellation"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#SubwayRunning --> 
    <owl:Class rdf:about="&rdfs;SubwayRunning"> 
        <subClassOf rdf:resource="&rdfs;TranportationRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Supercell --> 
    <owl:Class rdf:about="&rdfs;Supercell"> 
        <subClassOf rdf:resource="&rdfs;ThurnderStorm"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#TemporalUnite --> 
    <owl:Class rdf:about="&rdfs;TemporalUnite"> 
        <subClassOf rdf:resource="&rdfs;Time"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#ThurnderStorm --> 
    <owl:Class rdf:about="&rdfs;ThurnderStorm"> 
        <subClassOf rdf:resource="&rdfs;Storm"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Time --> 
    <owl:Class rdf:about="&rdfs;Time"> 
        <subClassOf rdf:resource="&owlim;Object"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#TimeZone --> 
    <owl:Class rdf:about="&rdfs;TimeZone"> 
        <subClassOf rdf:resource="&rdfs;Time"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Tower --> 
    <owl:Class rdf:about="&rdfs;Tower"> 
        <subClassOf rdf:resource="&rdfs;Building"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Train --> 
    <owl:Class rdf:about="&rdfs;Train"> 
        <subClassOf rdf:resource="&rdfs;Vehicle"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#TranportationDamage --> 
    <owl:Class rdf:about="&rdfs;TranportationDamage"> 
        <subClassOf rdf:resource="&rdfs;TranportationImpact"/> 
        <seeAlso>destroy</seeAlso> 
        <seeAlso>Destroyed</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#TranportationImpact --> 
    <owl:Class rdf:about="&rdfs;TranportationImpact"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
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    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#TranportationRecovery --> 
    <owl:Class rdf:about="&rdfs;TranportationRecovery"> 
        <subClassOf rdf:resource="&rdfs;HazardRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#TransportFacility --> 
    <owl:Class rdf:about="&rdfs;TransportFacility"> 
        <subClassOf rdf:resource="&rdfs;Facility"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#TransportationResponse --> 
    <owl:Class rdf:about="&rdfs;TransportationResponse"> 
        <subClassOf rdf:resource="&rdfs;HazardResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Transtation --> 
    <owl:Class rdf:about="&rdfs;Transtation"> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Truck --> 
    <owl:Class rdf:about="&rdfs;Truck"> 
        <subClassOf rdf:resource="&rdfs;Vehicle"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Tundra --> 
    <owl:Class rdf:about="&rdfs;Tundra"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class>   
    <!-- http://www.w3.org/2000/01/rdf-schema#Tunnel --> 
    <owl:Class rdf:about="&rdfs;Tunnel"> 
        <subClassOf rdf:resource="&rdfs;TransportFacility"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#University --> 
    <owl:Class rdf:about="&rdfs;University"> 
        <subClassOf rdf:resource="&rdfs;School"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#UniversityClosure --> 
    <owl:Class rdf:about="&rdfs;UniversityClosure"> 
        <subClassOf rdf:resource="&rdfs;SchoolClosure"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#UrbanDistrict --> 
    <owl:Class rdf:about="&rdfs;UrbanDistrict"> 
        <subClassOf rdf:resource="&rdfs;PoliticalRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#UtilityDamage --> 
    <owl:Class rdf:about="&rdfs;UtilityDamage"> 
        <subClassOf rdf:resource="&rdfs;UtilityImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#UtilityImpact --> 
    <owl:Class rdf:about="&rdfs;UtilityImpact"> 
        <subClassOf rdf:resource="&rdfs;HazardImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#UtilityRecovery --> 
    <owl:Class rdf:about="&rdfs;UtilityRecovery"> 
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        <subClassOf rdf:resource="&rdfs;HazardRecovery"/> 
        <seeAlso>Restoration</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#UtilityShortage --> 
    <owl:Class rdf:about="&rdfs;UtilityShortage"> 
        <subClassOf rdf:resource="&rdfs;UtilityImpact"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Valley --> 
    <owl:Class rdf:about="&rdfs;Valley"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Vehicle --> 
    <owl:Class rdf:about="&rdfs;Vehicle"> 
        <subClassOf rdf:resource="&owlim;Object"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Victim --> 
    <owl:Class rdf:about="&rdfs;Victim"> 
        <subClassOf rdf:resource="&rdfs;Person"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Volcano --> 
    <owl:Class rdf:about="&rdfs;Volcano"> 
        <subClassOf rdf:resource="&rdfs;Montain"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Volunteer --> 
    <owl:Class rdf:about="&rdfs;Volunteer"> 
        <subClassOf rdf:resource="&rdfs;CommunityResponse"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Voluntteer --> 
    <owl:Class rdf:about="&rdfs;Voluntteer"> 
        <subClassOf rdf:resource="&rdfs;Person"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#WanterFall --> 
    <owl:Class rdf:about="&rdfs;WanterFall"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Warning --> 
    <owl:Class rdf:about="&rdfs;Warning"> 
        <subClassOf rdf:resource="&rdfs;HazardPrediction"/> 
        <seeAlso>alarms</seeAlso> 
        <seeAlso>alert</seeAlso> 
        <seeAlso>alarm</seeAlso> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#WaterBank --> 
    <owl:Class rdf:about="&rdfs;WaterBank"> 
        <subClassOf rdf:resource="&rdfs;LandRegion"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#WaterPump --> 
    <owl:Class rdf:about="&rdfs;WaterPump"> 
        <subClassOf rdf:resource="&rdfs;UtilityDamage"/> 
    </owl:Class> 
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    <!-- http://www.w3.org/2000/01/rdf-schema#WaterRegion --> 
    <owl:Class rdf:about="&rdfs;WaterRegion"> 
        <subClassOf rdf:resource="&rdfs;Place"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#WaterRestore --> 
    <owl:Class rdf:about="&rdfs;WaterRestore"> 
        <subClassOf rdf:resource="&rdfs;UtilityRecovery"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#WaterShortage --> 
    <owl:Class rdf:about="&rdfs;WaterShortage"> 
        <subClassOf rdf:resource="&rdfs;UtilityShortage"/> 
    </owl:Class>  
    <!-- http://www.w3.org/2000/01/rdf-schema#WestWind --> 
    <owl:Class rdf:about="&rdfs;WestWind"> 
        <label>west_wind</label> 
        <subClassOf rdf:resource="&rdfs;Wind"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#WildfireHazard --> 
    <owl:Class rdf:about="&rdfs;WildfireHazard"> 
        <label>Wildfire_hazard</label> 
        <subClassOf rdf:resource="&rdfs;NaturalHazard"/> 
    </owl:Class> 
    <!-- http://www.w3.org/2000/01/rdf-schema#Wind --> 
    <owl:Class rdf:about="&rdfs;Wind"> 
        <label>wind</label> 
        <subClassOf rdf:resource="&owlim;Weather"/> 
    </owl:Class>  
    <!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Annotations 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
    <rdf:Description rdf:about="&owlim;Time"> 
        <label>Time</label> 
    </rdf:Description> 
    <rdf:Description rdf:about="&owlim;Hazard_level"> 
        <label>Hazard_level</label> 
    </rdf:Description> 
    <rdf:Description rdf:about="&owlim;Area"> 
        <label>Area</label> 
    </rdf:Description> 
</rdf:RDF> 
<!-- Generated by the OWL API (version 3.2.0.1502) http://owlapi.sourceforge.net --> 
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