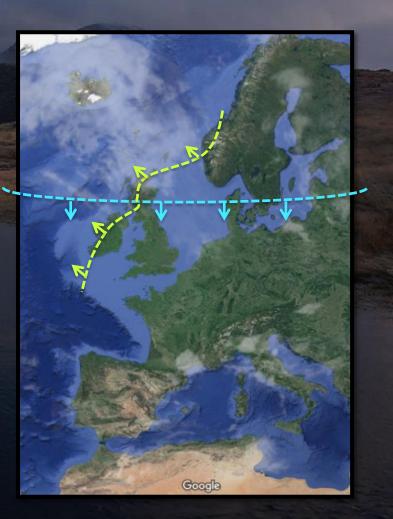
High-montane habitats: the sharp end

Dave Genney Bryophytes, Fungi and Lichens Adviser



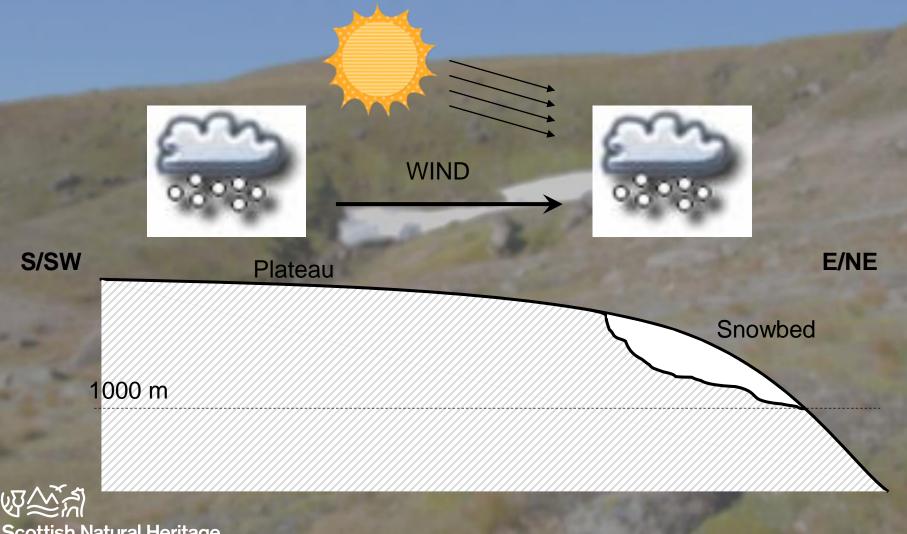
University of Bergen

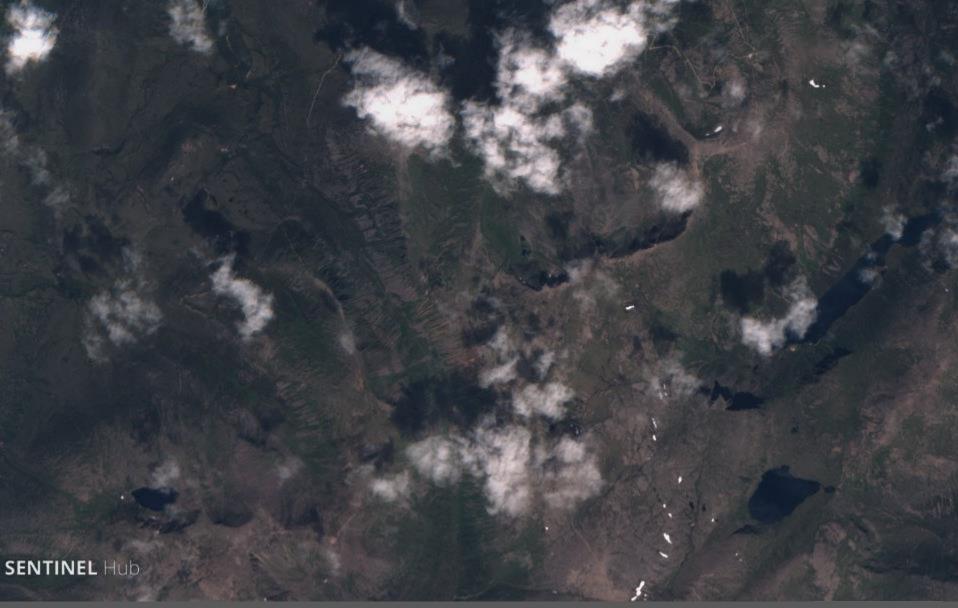
Scottish mountains

- At the front-line of climate change impacts
- Southern extent of arctic species
- Western/altitudinal extent of alpine species
- Decreasing snow-cover UKCP09 scenarios project decline in snowfall of 65-80% by the 2080s

A focus on bryophytes and lichens

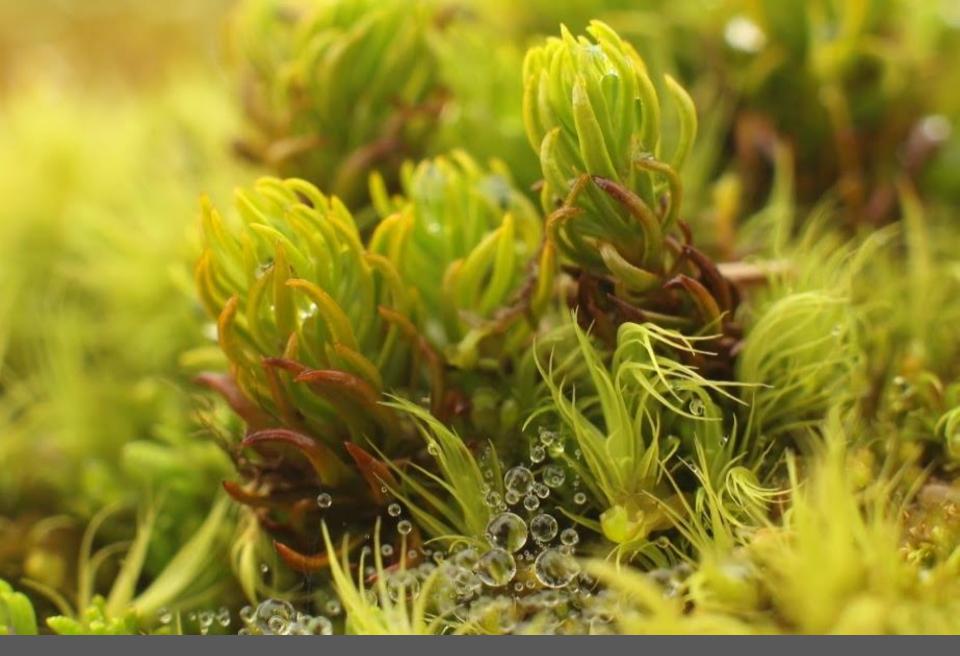
- A large component of Scotland's biodiversity
- Strongly regulated by climate
- Respond to small-scale/micro-climatic variation
- Occupy a diverse range of niches
- Immobile poor adaptation capacity?

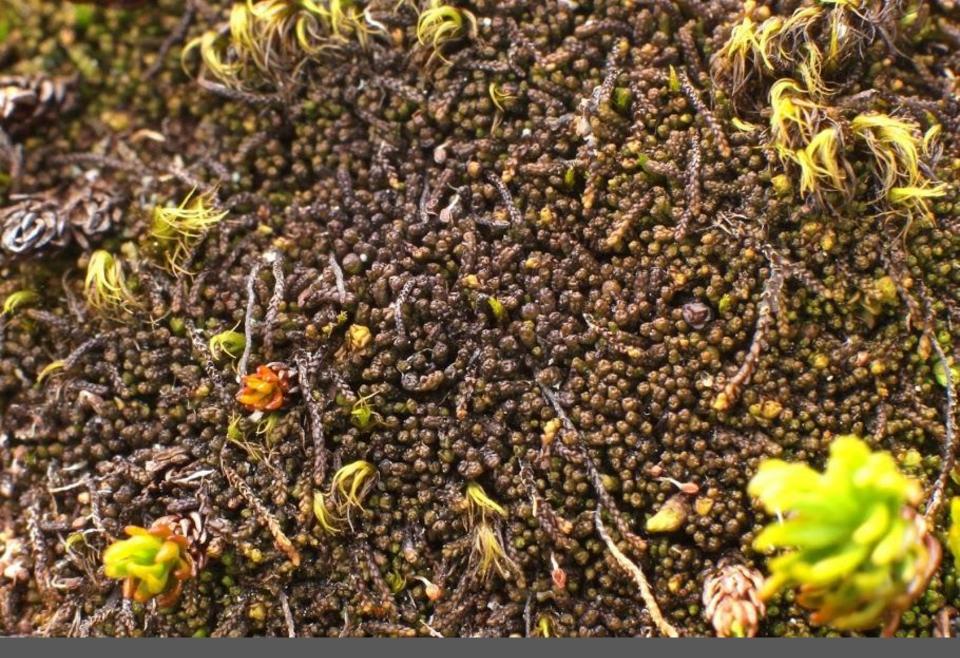

Some key questions


- How do we monitor climate change impacts?
- Are there any management options to help species adapt?

Scottish Snowbed Vegetation Monitoring Network Assisted Colonisation of immobile species

Factors contributing to snowbed formation


Nardia scalaris (Ladder Flapwort)



Conostomum tetragonum (Helmet-moss)

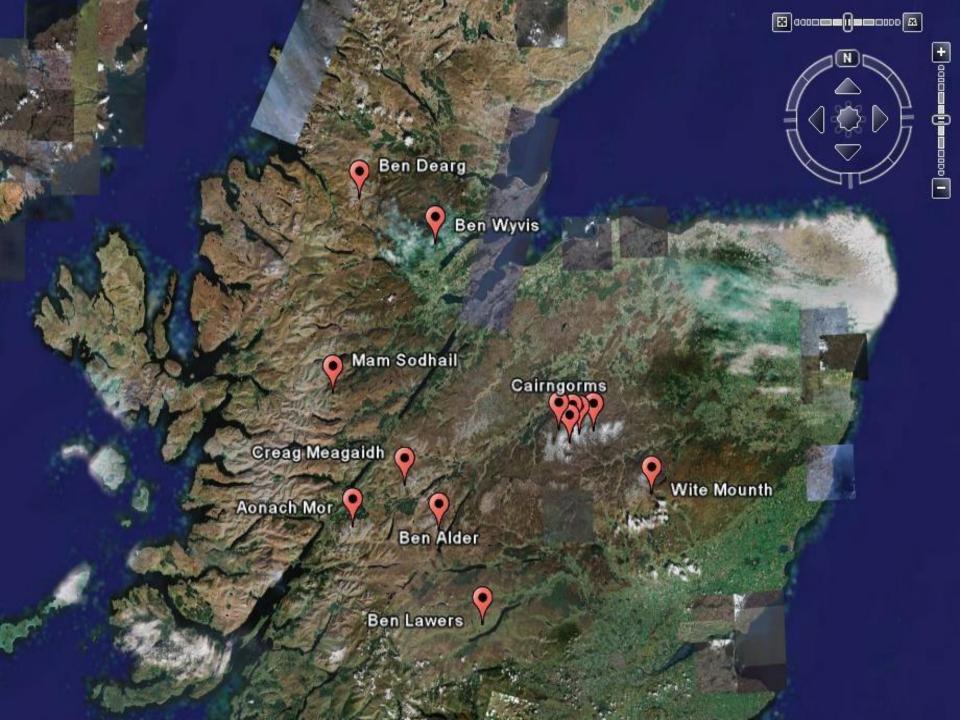
Polytrichum sexangulare (Northern Haircap)

Marsupella brevissima (Snow Rustwort)

Pohlia Iudwigii (Ludwig's Thread-moss)

Scottish Snowbed Vegetation Monitoring Network

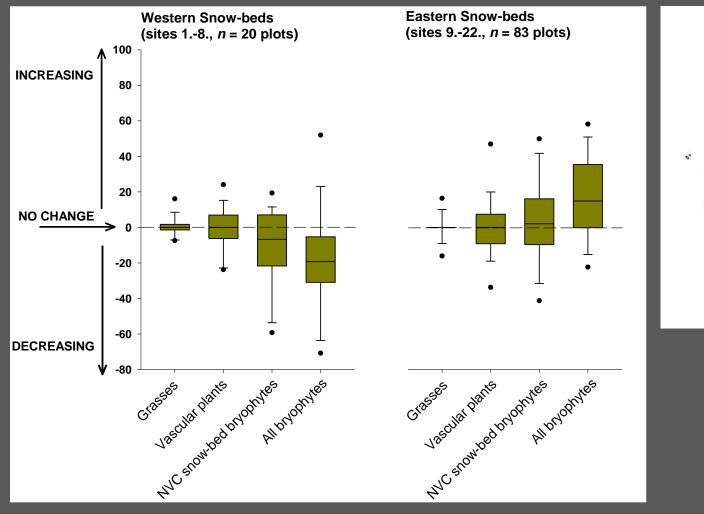
c. 18 years

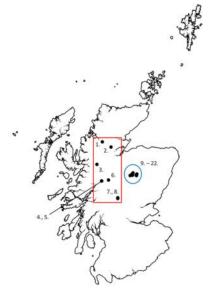

2007/8 second snowbed survey (22 sites, 115 plots)

必必が Scottish Natural Heritage Dualchas Nàdair na h-Alba **Nature.Scot**

University of Bergen

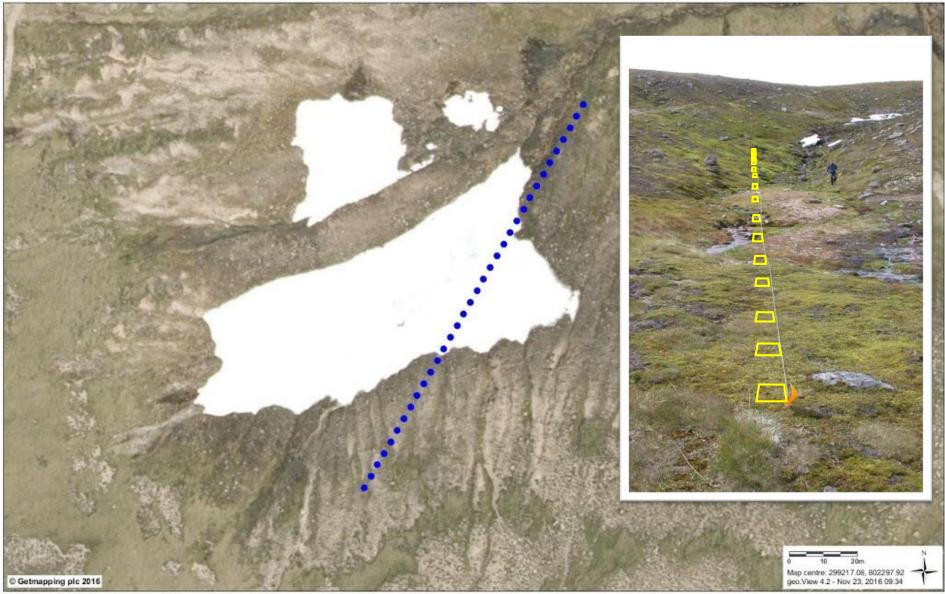
	Difference in		Difference in	
Species	frequency	p-value	\overline{x} abundance	p-value
Oligotrichum hercynicum	25	0.001	1.80	0.003
Pohlia nutans	23	0.002	0.36	0.092
Ditrichum zonatum	18	0.004	0.71	< 0.001
Juncus trifidus #	17	0.002	0.69	0.008
Kiaeria falcata	17	0.008	1.34	0.118
Saxifraga stellaris #	16	0.002	0.15	0.054
Racomitrium lanuginosum	15	0.016	0.29	0.092
Lophozia sudetica	11	0.111	1.30	0.036
Scapania uliginosa	10	0.006	0.74	0.016


Diplophyllum albicans
Pleurocladula albescens
Polytrichum albinum
A STORY ON A STORY OF A STORY OF A
Huperzia selago #
Gnaphalium supinum #


-9 -13 0.099

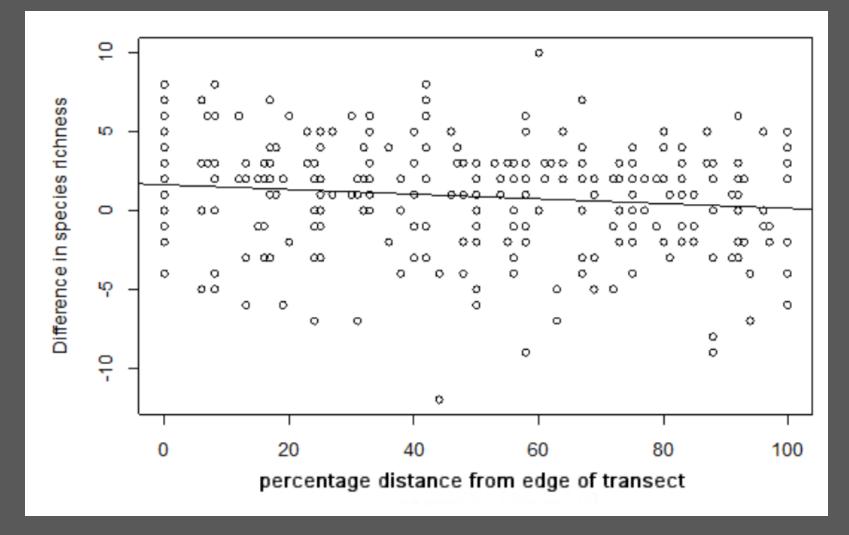
0.10 0.497 -0.06 0.610 -0.11 0.762 -2.40 0.020

Salix herbacea #
Gymnomitrion concinr


Scottish Snowbed Vegetation Monitoring Network

1989/90 first snowbed survey (58 sites)

2007/8 second snowbed survey (22 sites) (10 permanent transects set up) 2014/15/16 Second transect survey (training apprentices)



Transect 3 - Coire Domhain

© Scottish Natural Heritage, © Scottish Office, © Scottish Executive, © General Register Office (Scotland), © Scottish Rights of Way Society, © Forest Eneterprise, © Forestry Commission, SSNWI © Highland Birchwoods, Some features of this map are based on digital spatial data licensed from the Centre for Ecology and Hydrology © NERC (CEH) Defra and Met Office © Crown Copyright, © The James Hutton Institute, Ordnance Survey, © Copyright The GeoInformation Group

Practical challenges

- Unpredictable weather
- Long-term funding
- Continuity of EXPERTS!

Can we help species adapt to climate change?

Management options:

- 1. In-situ conservation
- 2. Allow/enable species range shifts
- 3. Active translocation

Increasing intervention and controversy

- Ethical debate
- Is it even possible, especially for mountain species?

Can we predict where to put species now?

Flavocetraria nivalis

- Easily identified
- Distinct altitudinal distribution
- Arctic/alpine species— (relatively) limited biotic interactions

The approach

- Large-scale field survey and modelling of current distribution
- Translocations to an independent site within current range
- Test ability of the model to predict translocation success

Field survey

Recorded:

- Vegetation composition
- Vegetation height
- Aspect, slope

Added from extrapolated climate data:

- Altitude
- Climate parameters (e.g. max/min T; precipitation)

Training model based on field survey data

Parameter	Field survey data
Intercept	*
Minimum temperature, February	*
Minimum temperature, July	*
Minimum temperature, February*Minimum temperature, July	NS
Aspect	***
Altitude	**
Vegetation height	†
% of total deviance explained	27.2%

Reasonable fit of model to field survey distribution (abiotic parameters are key)

Translocation trials

- Placed out from 650 m to 1100 m in range of vegetation types . 'Good' and 'bad' locations
- Recorded same data as per wider survey + iButton loggers
- Recorded survival 2011 and 2015

Predicting transplant success

Parameter	2010-2011 interpolated
Alititude	0.008
Vegetation Height	0.005
Slope	NS
T Average 01/12	N.A.
T Average 04/12	N.A.
T Average 05/12	N.A.
T Average 06/12	N.A.
T Average 07/12	N.A.
% of total deviance explained	10.7%

- Poor predictive power for first year survival of transplants
- Inclusion of microclimatic data did not improve model fit
- Model still poor after five years with interpolated climate
- Model greatly improved with microclimate data

Key results

- Survey data alone poor initial fit
- Fit improves with time lichens die slowly!
- Fit improves with introduction of microclimatic data
- There remains a substantial amount of unexplained variation

Conclusions

The slow mortality of lichens emphasises the need for long-term monitoring when assessing the success of translocations.

Conclusions

Location, location, location

Micro-climate can be extremely important with a few centimetres perhaps making the difference between survival and death.

Options

Very detailed survey of a species' microclimate niche at recipient sites. Very time-consuming and expensive.

Combine coarse-scale predictive models with expertled judgement on the ground. Another case for investing in specialist fieldecologists.

Accept a high-level of transplant mortality The minimum number of transplants may be much higher than we currently expect – early intervention required.

The Scottish Code for Conservation Translocations

Best Practice Guidelines for Conservation Translocations in Scotland

Scottish Code for Conservation Translocations

Thank you

RESEARCH

- Rob Brooker
- Chris Ellis
- Gordon Rothero
- Rebecca Yahr
- John-Arvid Grytnes
- Mark Brewer
- Alessandro Gimona
- Andrea Britton
- Antonia Eastwood
- Laura Poggio
- Neil Bell
- John Birks

- Julie Smith
- Rory Whytock
- Oliver Moore
- Sharon Yardley
- Clare Rickerby

FUNDING

- SNH
- Rural and Environment Science and Analysis Service

ACCESS

- Glen Tanar Estate,
- Cairngorm Mountain Limited
- National Trust for Scotland Mar Lodge Estate.
- Invercauld Estate
- RSPB Abernethy

Scottish Natural Heritage Dualchas Nàdair na h-Alba **Nature.Scot**

University of Bergen

N slope of Ben Macdui

nature.scot

≦dit ⊻iew History <u>B</u> o	ookmarks <u>T</u> ools	Help											0	×
ClimateXChange :: RISK	: Ge × +													
Www.climatexch	hange.org.uk/adap	ting-to-clima	ite-change/	indicators-a	nd-trends/g	eneralist-sp	ecies-more-a	to-cc 🖾 🔻 🛛 🧟 Search		☆ 🛍	9	+ 1	9	≡
	clim	ate	×	cha	ange	Э		Scotland's centre of expertise connecting climate change research and policy	contact us sign up for our newsletter follow us on twitter					
	A	About us			All topic	s		Reducing emissions	٩	earch				
	Home / Ad	apting to clim	ate change	/Indicators	and trends /	RISK: Gene	ralist species i	able to cope than specialist species - snow-bed spec	ies					
	N2: Suppo			verse flat		pportuni		Level of confidence:	Upward Downward No No tre trend trend significant possil trend The colour of icon indicates whether the trend is positiv	ile				74
	2020s	High	Med	Low	Low	Med	High	Medium	(desirable), negative (undesirable) or neutral (neither desirable or undesirable) as follows:					
	2050s	High	Med	Low	Low	Med	High	High						
	2080s	High	Med	Low	Low	Med	High		Positive Negative Neutral					
	This table show associated con Assessment fo	fidence in tho	se assessmen						The level of need for improved data is shown as follows	:				
	Adaptatio	on at a glai	nce:						Low (L) Medium (M) High (H)					
	Scottish m	nountains , in Scotlar	are a con nd, are fo	servation und at the	n priority. e edge of	They are their nat	e specialise ural area o	Ith late-lying snow -snow beds – in or the kind of conditions found in these ccurrence. This means they are not anges.	Downloads: O Indicator Card Snow-bed species 713.03 KB (Method Statement snow-bed specialists	odf 者				

Ellis, C & Genney, D.R. Climate change adaptation in Scotland Programme. Indicator Card 2014 - Generalist species more able to cope with climate change than specialist species