Chapter

# Cytotoxicity and Antitumor Action of Lignans and Neolignans

Ana Laura Esquivel-Campos, Salud Pérez-Gutiérrez, Leonor Sánchez-Pérez, Nimsi Campos-Xolalpa and Julia Pérez-Ramos

## Abstract

Lignans and neolignans are plant's secondary metabolites, widely distributed in the plant kingdom, and have been identified in more than 70 plant families. These compounds are mainly localized in lignified tissues, seeds, and roots. Lignans and neolignans present a great variety of biological activities, such as antioxidant, antiinflammatory, antineurodegenerative, antiviral, antimicrobial, and antitumor. By 2040, it is estimated that the number of new cancer cases per year will rise to 29.5 million; therefore, the development of new anticancer agents and adjuvants is essential. Lignans and neolignans have also indicated a reduction in the risk of cancer at different stages. The objective of this review is to search and analyze the cytotoxic and antitumor activity of lignans and neolignans that can be an important source of new antitumor drugs. We have made a comprehensive summary of 113 lignans and neolignans, obtained from 44 plants and divided between 34 families, which demonstrated cytotoxic activity in several human cancer cell lines evaluated through various in vitro studies and other in vivo models, by inducing mitochondrial apoptosis and cell cycle arrest, inhibiting NF- $\kappa\beta$  activity and activation of metalloproteinases (MMPs), among other processes. Overall, 13 compounds, methoxypinoresinol, arctigenin, trachelogenin, 4-O-methylhonokiol, honokiol, bifidenone, (–)-trachelogeninit, deoxypodophyllotoxin, matairesinol, bejolghotin G, H, and I, and hedyotol-B, showed the best anticancer activity.

Keywords: Neolignans, cytotoxic activity, cancer, natural products

### 1. Introduction

Cancer produces uncontrolled cell proliferation, and one of the treatments used to stop it is chemotherapy. However, although these therapies have advanced over the years, they not only destroy cancer cells but also healthy cells, causing adverse effects in people suffering from this disease. A great variety of tumors are the cause of death in the population; the World Health Organization (WHO) reports that cancer causes approximately 10 million deaths each year, with one out of every six deaths



Figure 1. Shikimic acid pathway for lignan and neolignan biosynthesis.

worldwide due to some type of cancer [1]. The main problem of this disease is that it is often detected at an advanced stage, and the lack of access to health services and the high cost of treatment are common, particularly in developing countries. The WHO suggests that 90% of the population in developed countries has access to treatment for this disease, while only 15% of the population in developing countries has access to treatment [2].

At present, the search for new chemotherapy drugs continues, with the purpose of having a wide range of compounds that help improve the quality of life of people with cancer. For many years, plants have played a very important role, as a source of compounds with biological activity. As a treatment alternative, multiple plant genera and species have demonstrated their cytotoxic potential in cancer cells and have been

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method                                                                                                 |                                                                             | Results                                                                                                                                                                                   | Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <ol> <li>3-(1, 3-benzodioxol-5- yl methyl)-4-<br/>[(3, 4-dimethoxyphenyl)methyl]<br/>dihydro-, (3S-cis)-2(3H)- furanone</li> <li>4-[(R)-1, 3-benzodioxol-5-<br/>ylhydroxymethyl]-3-(1, 3-benzodioxol-<br/>5-ylmethyl)dihydro-, (3S, 4R)-2(3H)-<br/>furanone</li> <li>(-)-Dihydrosesamin</li> <li>Phenol, 4, 4'-(2R, 3S, 4S)-tetrahydro2-<br/>methoxy-3, 4-furandiyl]bis(methylene)]<br/>bis[2-methoxy</li> <li>4, 4'-dihydroxy-3, 3', 9-trimethoxy-9,<br/>9'-epoxylignan</li> <li>(+)-1-hydroxypinoresinol</li> </ol> | MTT assay<br>HL-60<br>SMMC-7721<br>A549<br>MCF-7<br>SW480                                              |                                                                             | IC <sub>50</sub> µМ<br>> 40                                                                                                                                                               | [11]      |
| 7. (+)-Nortrachelogenin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MTT assay                                                                                              |                                                                             | $IC_{50}\mu M$                                                                                                                                                                            | [12]      |
| 8(3"-methoxy-4"-hydroxybenzyl)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | (7)                                                                         | (8)                                                                                                                                                                                       |           |
| butyrolactone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A549                                                                                                   | 19.6                                                                        | 17.0                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HepG2                                                                                                  | 17.6                                                                        | 15.1                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U251                                                                                                   | 39.1                                                                        | 23.9                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bcap-37                                                                                                | 51.6                                                                        | 50.3                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MCF-7                                                                                                  | 45.6                                                                        | 25.3                                                                                                                                                                                      |           |
| 9. Sesamin (SE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTT assay                                                                                              | Cytotoxicity %                                                              |                                                                                                                                                                                           | [13]      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MCF-7                                                                                                  |                                                                             | 23                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caco-2                                                                                                 |                                                                             | 15                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCK-8 assay in<br>EL4<br>Cell apoptosis<br>assay in EL4<br>lymphoma (EL4)<br>induced in<br>BALB/c mice | % V<br>50 to<br>SE Ind<br>increased<br>apoptoti<br>2) and<br>SE dec<br>tumo | iability (40 μM)<br>80 (48, 72 y 96 h)<br>luced apoptosis by<br>d expression levels of<br>c markers (Bax/Bcl-<br>cleaved-Caspase 3<br>creased the size of<br>or (10 mg/kg for<br>21 days) | [14]      |
| <b>10.</b> Methoxypinoresinol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MTT assay<br>PANC-1                                                                                    |                                                                             | IC <sub>50</sub> μM<br>3.7                                                                                                                                                                | [15]      |
| 11. Erythro-austrobailignan-6 (EA6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTT assay<br>4 T-1<br>MCF-7                                                                            | IC                                                                          | C <sub>50</sub> μM (24 h)<br>4.3<br>12.6                                                                                                                                                  | [16]      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Western blot                                                                                           | EA6 inc<br>p38 MA<br>4 7                                                    | ereased the levels of<br>PK and caspase-3, in<br>Γ-1 and MCF-7                                                                                                                            |           |
| 12. Mappiodoinin A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Western blot<br>MTT assay                                                                              | EA6 ind<br>p38 MA<br>4 T                                                    | reased the levels of<br>PK and caspase-3, in<br>Γ-1 and MCF-7<br>IC <sub>50</sub> μM                                                                                                      | [9]       |
| <ol> <li>Mappiodoinin A</li> <li>Mappiodoinin B</li> <li>Manpiodoinin C</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                    | Western blot<br>MTT assay<br>HL-60                                                                     | EA6 inc<br>p38 MA<br>4 T                                                    | creased the levels of PK and caspase-3, in $\Gamma$ -1 and MCF-7<br>$IC_{50} \mu M$<br>0.8-5.8                                                                                            | [9]       |
| <ol> <li>Mappiodoinin A</li> <li>Mappiodoinin B</li> <li>Mappiodoinin C</li> <li>Conocarpan</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                | Western blot<br>MTT assay<br>HL-60<br>SMMC-7721                                                        | EA6 inc<br>p38 MA<br>4 T                                                    | $\frac{1.00}{1.00} = 0.000 \text{ cm}^{-1} \text{ and } \text{MCF-7}$                                                                                                                     | [9]       |
| <ol> <li>Mappiodoinin A</li> <li>Mappiodoinin B</li> <li>Mappiodoinin C</li> <li>Conocarpan</li> <li>Odoratisol A</li> <li>Trichobenzolignan</li> </ol>                                                                                                                                                                                                                                                                                                                                                               | Western blot<br>MTT assay<br>HL-60<br>SMMC-7721<br>A-549                                               | EA6 ind<br>p38 MA<br>4 7                                                    | creased the levels of<br>PK and caspase-3, in<br>Γ-1 and MCF-7<br>IC <sub>50</sub> μM<br>0.8–5.8<br>1.8–8.8<br>2.2–16.2                                                                   | [9]       |
| <ol> <li>Mappiodoinin A</li> <li>Mappiodoinin B</li> <li>Mappiodoinin C</li> <li>Conocarpan</li> <li>Odoratisol A</li> <li>Trichobenzolignan</li> <li>Prunustosanan AI</li> </ol>                                                                                                                                                                                                                                                                                                                                     | Western blot<br>MTT assay<br>HL-60<br>SMMC-7721<br>A-549<br>MCF-7                                      | EA6 ind<br>p38 MA<br>4 7                                                    | creased the levels of<br>PK and caspase-3, in<br>Γ-1 and MCF-7<br>IC <sub>50</sub> μM<br>0.8–5.8<br>1.8–8.8<br>2.2–16.2<br>1.3–15.9                                                       | [9]       |

| Compound                  | Method                                                                                          | Results                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | Reference |  |
|---------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| <b>21.</b> Noralashinol B | MTT assay IC <sub>50</sub> µM                                                                   |                                                                                                                                                                                                                                                                 | [17]                                                                                                                                                                                           |           |  |
| <b>22.</b> Noralashinol C | HepG2                                                                                           | 21                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                             |           |  |
|                           |                                                                                                 | 31.7                                                                                                                                                                                                                                                            | 15.8                                                                                                                                                                                           |           |  |
| 23. Arctigenin (ATN)      | MTT assay                                                                                       | IC                                                                                                                                                                                                                                                              | С <sub>50</sub> µМ                                                                                                                                                                             | [18]      |  |
|                           | MCF-7                                                                                           | MCF-7 4                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | [19]      |  |
|                           | MCF-10A                                                                                         |                                                                                                                                                                                                                                                                 | 24.1                                                                                                                                                                                           |           |  |
|                           | SK-BR-3                                                                                         |                                                                                                                                                                                                                                                                 | 20.7                                                                                                                                                                                           |           |  |
|                           | MDA-MB-435S                                                                                     |                                                                                                                                                                                                                                                                 | 3.8                                                                                                                                                                                            |           |  |
|                           | MDA-MB-453                                                                                      |                                                                                                                                                                                                                                                                 | 2.9                                                                                                                                                                                            |           |  |
|                           | MDA-MB-231                                                                                      |                                                                                                                                                                                                                                                                 | 0.8                                                                                                                                                                                            |           |  |
|                           | MDA-MB-468                                                                                      |                                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                            |           |  |
|                           | SRB assay in<br>MCF-7<br>Colony formation<br>assay.<br>Cell cycle analysis<br>by flow cytometry | At 200 μM arctigenin<br>inhibited cell viability around<br>50%.<br>ATN induced autophagy in<br>MCF-7cells.<br>The lignan might inhibit<br>downstream effector<br>molecules of the TOR<br>resulting in a decreased<br>expression of Erα in ER-<br>positive MCF-7 |                                                                                                                                                                                                |           |  |
|                           | Cell Count                                                                                      | СС <sub>50</sub> µМ                                                                                                                                                                                                                                             |                                                                                                                                                                                                | [20]      |  |
|                           | Reagent<br>Western blot.                                                                        | BC3                                                                                                                                                                                                                                                             | BCBL1                                                                                                                                                                                          |           |  |
|                           | JC-1                                                                                            | 2.8                                                                                                                                                                                                                                                             | 2.3                                                                                                                                                                                            |           |  |
|                           | mitochondrial<br>membrane<br>potential                                                          | ATN induce<br>mediated<br>glucose-sta<br>(1)<br>ATN induce<br>disruption in<br>BC3 cells by<br>levels and<br>mitochond<br>and suppress<br>MAPR                                                                                                                  | d the caspase-9-<br>l apoptosis of<br>arved PEL cells<br>BC3).<br>d mitochondrial<br>a glucose-starved<br>decreasing ATP<br>disrupting the<br>rial membrane,<br>sed ERK and p38<br>& signaling |           |  |
| 24. Honokiol (HNK)        | CCK-8 assay<br>OC2<br>OCSL<br>Apoptosis by<br>annexin<br>Xenograft nude<br>mice model           | GI <sub>50</sub> µ<br>This comp<br>apoptos<br>HNK had and                                                                                                                                                                                                       | M at 48 h<br>22<br>13<br>yound induced<br>is cell death<br>titumour activity                                                                                                                   | [21]      |  |
|                           | MTT assav                                                                                       | IC <sub>50</sub>                                                                                                                                                                                                                                                | μg/mL                                                                                                                                                                                          | [22]      |  |

| Compound                                                                                                | Method                                                                                                                                                   | R                                                                                                                                                                       | esults                                                                                                                                                                                                                                      | Referen |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                         | KKU-213 L5                                                                                                                                               | 24 (h)                                                                                                                                                                  | 48 (h)                                                                                                                                                                                                                                      |         |
|                                                                                                         | Apoptosis by                                                                                                                                             | 50.0                                                                                                                                                                    | 26.3                                                                                                                                                                                                                                        |         |
|                                                                                                         | Analyzer                                                                                                                                                 | % a                                                                                                                                                                     | poptosis                                                                                                                                                                                                                                    |         |
|                                                                                                         | Western blot<br>Flow cytometer                                                                                                                           | 50 µM                                                                                                                                                                   | 70 µM                                                                                                                                                                                                                                       |         |
|                                                                                                         | analysis                                                                                                                                                 | 30.4                                                                                                                                                                    | 52.0                                                                                                                                                                                                                                        |         |
|                                                                                                         |                                                                                                                                                          | HNK increa<br>decrease of<br>whereas cle<br>inc<br>The antitu<br>dendritic<br>increased<br>derived fi<br>(KKU-2113<br>HNK incre<br>activity of<br>with cell lyss<br>KKU | sed apoptosis by<br>intact caspase-3,<br>eaved caspase-3<br>rreased<br>mor activity of<br>cells (DC) is<br>using a lysate<br>com a cell line<br>L5) treated with<br>HNK<br>ased antitumor<br>DCs stimulated<br>tes derived from<br>J-213 L5 |         |
| <b>25.</b> 1-(2'.6'-dimethoxy-7'.8'-                                                                    | MTT assav                                                                                                                                                | IC                                                                                                                                                                      | C <sub>50</sub> uM                                                                                                                                                                                                                          | [23]    |
| peroxyphenylpropyl)-2,10-                                                                               | HL-60                                                                                                                                                    | 25 26                                                                                                                                                                   | 27 28 29                                                                                                                                                                                                                                    | [-0]    |
| dimethoxybibenzyl-6,9′-diol<br>26. Aloifol I<br>27. Moscatilin<br>28. Moniliformine<br>29. Balanophonin |                                                                                                                                                          | 4.5 4.5                                                                                                                                                                 | 5.1 10.7 11.0                                                                                                                                                                                                                               |         |
| <b>30.</b> (–)-Trachelogenin (TA)                                                                       | MTT assay<br>HL-60<br>OVCAR-8<br>HCT-116<br>HCT-8<br>PC-3<br>SF-295<br>Membrane<br>integrity and<br>viability by the<br>exclusion of<br>propidium iodide | TA did not i<br>but it wa<br>autophagic<br>by the in<br>activation.<br>changes in t<br>Becli                                                                            | 2 <sub>50</sub> μM<br>32.4<br>3.5<br>1.9<br>5.2<br>15.0<br>0.8<br>nduce apoptosis,<br>s induced by<br>death mediated<br>crease of LC3<br>Also promoted<br>he expression of<br>n-1 levels                                                    | [24]    |
| <b>31.</b> 4-O-methylhonokiol (MH)                                                                      | MTT assay<br>OSCC PE/CA-<br>PJ41                                                                                                                         | IC                                                                                                                                                                      | 2 <sub>50</sub> μM<br>1.3                                                                                                                                                                                                                   | [25]    |
| <b>32.</b> Bifidenone (BF)                                                                              | Sequoia Sciences<br>Assay<br>NCI-H460<br>Caspase-Glo 3/7<br>assay<br>LDH assay<br>Tubulin<br>Polymerization                                              | IC<br>BF increas<br>caspase<br>BF increas<br>LDH<br>BF inhi<br>polymerizz<br>denend                                                                                     | 2 <sub>50</sub> μM<br>0.26<br>ed the levels of<br>e (2.5-fold)<br>wed the level of<br>released<br>bits tubulin<br>ation in a dose-                                                                                                          | [26]    |

| Compound                                                    | Method                              | Results                                                               | Reference |
|-------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----------|
|                                                             | competition assay<br>PC-3<br>SF-295 | disrupting the microtubule<br>dynamics necessary for cell<br>division |           |
|                                                             | ACHN                                | IC <sub>50</sub> μM                                                   |           |
|                                                             |                                     | 0.49                                                                  |           |
|                                                             |                                     | 0.36                                                                  |           |
|                                                             | M14                                 | 0.064                                                                 |           |
|                                                             | AS/S                                | 0.075                                                                 |           |
|                                                             | SKMEL-2                             | 0.095                                                                 |           |
|                                                             | HCC-2998                            | 1.41                                                                  |           |
| <b>33.</b> (+)-Hinokinin                                    | WST-8 Assay                         | PC <sub>50</sub> μM                                                   | [27]      |
|                                                             | PANC-1                              | 64.1                                                                  |           |
|                                                             | MIA-PaCa2                           | 21.3                                                                  |           |
|                                                             | CAPAN-1                             | 50.1                                                                  |           |
|                                                             | SN-1                                | 60.1                                                                  |           |
|                                                             | KLM-1                               | 92.5                                                                  |           |
| <b>34.</b> (–)-Deoxypodophyllotoxin (DPT)                   | MTT assay<br>U2OS                   | IC <sub>50</sub> nM<br>40                                             | [28]      |
|                                                             | Annexin-V/                          | DPT induced apoptosis                                                 |           |
|                                                             | propidium iodide                    | related with proteins                                                 |           |
|                                                             | (PI) assay                          | Annexin-V positive cells                                              |           |
|                                                             | Acridine orange                     | were increased in DPT-                                                |           |
|                                                             | assay                               | treated cells, compared with                                          |           |
|                                                             |                                     | control group.                                                        |           |
|                                                             |                                     | Formation of acidic vesicular                                         |           |
|                                                             |                                     | significantly increased in                                            |           |
|                                                             |                                     | DPT-treated cells in a dose-                                          |           |
|                                                             |                                     | dependent manner                                                      |           |
| 35. Lariciresinol (LA)                                      | CCK-8 assay                         | IC <sub>50</sub> μg/mL                                                | [29]      |
|                                                             | HepG2                               | 208 after 48 h                                                        |           |
|                                                             | Flow cytometry                      | LA exhibited an apoptosis-                                            |           |
|                                                             | Immuno-                             | Inducing effect                                                       |           |
|                                                             | staining                            | expression and induced                                                |           |
|                                                             | Annexin V/PI                        | apoptosis                                                             |           |
|                                                             | double-staining                     | LA was a concentration- and                                           |           |
|                                                             | assay                               | time-dependent manner                                                 |           |
|                                                             | Mitochondrial                       | resulted in an                                                        |           |
|                                                             | membrane                            | increasing percentage of                                              |           |
|                                                             | potential ( $\Delta \Psi m$ )       | apoptosis, which might result                                         |           |
|                                                             |                                     | in the cytotoxic activity of                                          |           |
|                                                             |                                     | LA on HepG2 cells                                                     |           |
|                                                             |                                     | LA might induce HepG2 cell                                            |           |
|                                                             |                                     | apoptosis through the                                                 |           |
|                                                             |                                     | initocnondrial-mediated                                               |           |
| 26 Dumannin                                                 |                                     | apoptosis pathway                                                     | [20]      |
| <ul><li>30. Burserain</li><li>37. Picropolygamain</li></ul> | MTT assay<br>HeLa                   | IC <sub>50</sub> μM                                                   | [30]      |
|                                                             |                                     | 36 3/                                                                 |           |
|                                                             |                                     | 21.7 9.1                                                              |           |
|                                                             |                                     |                                                                       |           |

| Compound                                                               | Method                |                     | Results                     |                 | Reference |
|------------------------------------------------------------------------|-----------------------|---------------------|-----------------------------|-----------------|-----------|
| <b>38.</b> Heilaohulignan C                                            | MTT assay             | IC <sub>50</sub> μM |                             |                 | [31]      |
| <b>39.</b> Kadsuralignan I<br><b>40.</b> Longinedunin B                |                       |                     | 38 39 40                    |                 |           |
| 40. Longipedunin B                                                     | HepG2                 | 9.9                 | 21.7                        | 18.7            |           |
|                                                                        | BGC-823               | 16.6                | _                           | _               |           |
|                                                                        | HCT-116               | 16.7                | _                           | _               |           |
| <b>41.</b> (–)-(7′S,8S,8′R)- 4,4′-dihydroxy-                           | MMP-9 assay           |                     | IC <sub>50</sub> μM         |                 | [32]      |
| 3,3',5,5'-tetramethoxy-7',9-epoxylignan-                               |                       | 41                  | 42                          | 43              |           |
| 9'-ol-/-one<br><b>42.</b> Burseneolignan                               |                       | 16.5                | 18.8                        | 8.7             |           |
| <b>43.</b> (8R)-3,5'-dimethoxy-8,3'-neoligna-                          |                       |                     |                             |                 |           |
| <b>44.</b> Orvzativol C                                                | Ez-Cvtox cell kit     |                     | IC <sub>50</sub> μM         |                 | [33]      |
| ·                                                                      | MDA -MB -231          |                     | 24.8                        |                 |           |
| <b>45.</b> (–)-Asarinin                                                | MTT assay             |                     | IC <sub>50</sub> μM         |                 | [34]      |
|                                                                        | A2780<br>SKoV3        |                     | 38.4<br>60.9                |                 |           |
|                                                                        | Annexin V-FITC/       | This com            | pound mig                   | ght induce      |           |
|                                                                        | PI Double<br>Staining | apopt<br>human o    | otic cell de<br>ovarian cai | ncer cells      |           |
| <b>46.</b> Balanophonin                                                | MTT assay             |                     | IC <sub>50</sub> μM         |                 | [35]      |
| <b>47.</b> Dehydrodiconiferyl (DDI)<br><b>48</b> Methoxyl-balanonhonin |                       | 46                  | 47                          | 48              |           |
| or rectionly bunneprotini                                              | HepG2                 | 36.5                | 78.6                        | 80.5            |           |
|                                                                        | Hep3B                 | 29.3                | 65.5                        | 76.8            |           |
|                                                                        | Flow cytometry        |                     |                             |                 |           |
|                                                                        |                       | DDI ii              | nduced ap                   | optosis         |           |
| <b>49.</b> Dehydrodieugenol B                                          | MTT assay             | ay IC <sub>50</sub> |                             | L               | [36]      |
| <b>50.</b> Methyldehydrodieugenol B (MEB)                              |                       | 50                  |                             | 51              |           |
|                                                                        | SKMEL-147             | 4.4                 |                             | 43.6            |           |
|                                                                        | Comet Assay           | 100% o              | f 2                         | 5% of           |           |
|                                                                        | SKMEL-29              | apoptosis apoptosis |                             | optosis         |           |
|                                                                        |                       | MEB incr            | eased DN                    | A damage<br>sis |           |
| <b>51.</b> (–)-Rabdosiin                                               | MTT assay             | ]                   | IC <sub>50</sub> μg/m       | L               | [37].     |
|                                                                        | MCF-7                 |                     | 75                          |                 |           |
|                                                                        | SKBR3<br>HCT-116      |                     | 83.0<br>84.0                |                 |           |
|                                                                        | Flow Cytometry        | %                   | of apopto                   | sis             |           |
|                                                                        | MCF-7                 | 70                  | 44.9                        | 010             |           |
|                                                                        | SKBR3                 |                     | 40.1                        |                 |           |
|                                                                        | HCT-116               |                     | 43.1                        |                 |           |
| <b>52.</b> Kalshiolin A                                                | SRB assay             | 1                   | IC <sub>50</sub> μg/ml      | L<br>3          | [38]      |
|                                                                        | MDA-MB-231            | -                   | 55.7 10 43.                 | J               |           |
|                                                                        | MCF-7                 |                     |                             |                 |           |
|                                                                        | KB-VIN                |                     |                             |                 |           |

| Compound                                                               | Method                                              |                                 | Results                                          |                                     | Reference |
|------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------|-----------|
| <b>34.</b> (–)-Deoxy podophyllotoxin                                   | SRB assay                                           |                                 | IC <sub>50</sub>                                 |                                     | [39]      |
| 53. (–)-Matairesinol                                                   | NB                                                  | 34                              |                                                  | 53                                  |           |
|                                                                        |                                                     | 1.7 ng/n                        | nL                                               | 3.7 μg/mL                           |           |
| 54. Phengustifols A                                                    | CCK-8 assay<br>A375                                 |                                 | IC <sub>50</sub> µ<br>12.1                       | ιM<br>L                             | [40]      |
| 55. Hedyotol-B                                                         | MTT assay<br>SGC7901<br>A549<br>MDA-MB-231<br>HepG2 |                                 | IC <sub>50</sub> µ<br>1.7<br>6.1<br>24.0<br>26.0 | ıM<br>)                             | [41]      |
| <b>56.</b> Heilaohusus C                                               | MTT assay<br>HepG2                                  |                                 | IC <sub>50</sub>                                 | ıM                                  | [42]      |
|                                                                        |                                                     |                                 | 13.0                                             | )                                   | [ (0]     |
| 57. Zijusesquilignan A<br>58. Zijusesquilignan B                       | MTT assay                                           |                                 | IC <sub>50</sub> µ                               | IM ===                              | [43]      |
| 59. Zijusesquilignan C                                                 | MOE 7                                               | 57                              | 58                                               | 59                                  |           |
|                                                                        | MCF-/                                               | 9.8                             | 8.8                                              | 8.4                                 |           |
|                                                                        | HL-60                                               | 11                              | _                                                |                                     |           |
| <b>50, 61.</b> Crataegifin B (enantiomers)<br>5 <b>2.</b> CrataegifinC | MTT assay                                           |                                 | IC <sub>50</sub> µ                               | ιM                                  | [44]      |
|                                                                        |                                                     | 60                              | 61                                               | 62                                  |           |
|                                                                        | Hep3B                                               | 25.5 5                          | 9.4                                              |                                     |           |
|                                                                        | HepG2                                               |                                 |                                                  | 34.3                                |           |
|                                                                        | Flow cytometry                                      | Comp<br>induced                 | oound 6<br>l apopto<br>cell in 10                | 1 at 25 μM<br>sis in Hep3B<br>).76% |           |
| <b>63.</b> Bejolghotin A                                               | MTT assay                                           | IC <sub>50</sub> μM<br>0.8–39.9 |                                                  | [45]                                |           |
| <b>64.</b> Bejolghotin B<br><b>65.</b> Bejolghotin C                   | HCT-116                                             |                                 |                                                  |                                     |           |
| <b>66.</b> Bejolghotin G                                               | A549                                                | 0.9–39.9                        |                                                  |                                     |           |
| <ul><li>67. Bejolghotin H</li><li>68. Bejolghotin I</li></ul>          | MDA-MB-231                                          |                                 | 0.8–4                                            | 5.6                                 |           |
| 54. (–)-Matairesinol                                                   | MTT assay                                           |                                 | IC <sub>50</sub> μg                              | /mL                                 | [46]      |
| <ul><li>23. Arctigenin</li><li>34. (-)-Deoxypodophyllotoxin</li></ul>  |                                                     | 54                              | 23                                               | 34                                  |           |
|                                                                        | MDA-MB-231b                                         |                                 | 1.1                                              | 0.07                                |           |
|                                                                        | A549                                                | _                               | 0.8                                              | 0.004                               |           |
|                                                                        | HepG2                                               | 15.1                            | 2.8                                              | _                                   |           |
| <b>69.</b> Niranthin                                                   | MTT assay                                           |                                 | IC <sub>50</sub> µ                               | ιM                                  | [47]      |
| 70. 7-hydroxy- hinokinin                                               | HepG2                                               | 69                              |                                                  | 70                                  |           |
|                                                                        |                                                     | 7.2                             |                                                  | 8.5                                 |           |
| <b>71.</b> Cleistonkinin A                                             | MTT assay                                           |                                 | IC <sub>50</sub> J                               | ιM                                  | [48]      |
| <b>73.</b> Cleistonkinin C                                             | A549                                                |                                 | >20                                              | )                                   |           |
| 74. Cleistonkinin D<br>75. Cleistonkinin F                             | PANC-1                                              |                                 | >20                                              | )                                   |           |
| 75. Geistonkinni E                                                     | HeLa                                                |                                 | >20                                              | )                                   |           |

| Compound                                                                                                                                                                                                      | Method                                                            |                               | Results                                                                        |                                                          | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|-----------|
| 76. Cleistonkiside A                                                                                                                                                                                          | Hep3B                                                             | >20                           |                                                                                |                                                          |           |
| 77. Cleistonkiside B                                                                                                                                                                                          | MCF-7                                                             | >20                           |                                                                                |                                                          |           |
| 78. Crataegusal A                                                                                                                                                                                             | MTT assay                                                         | ssay IC <sub>50</sub> μM      |                                                                                |                                                          | [49]      |
| <b>79.</b> Crataegusal A                                                                                                                                                                                      | Hep3B                                                             | 78                            |                                                                                | 79                                                       |           |
|                                                                                                                                                                                                               |                                                                   | 34.97                         | ,                                                                              | 17.42                                                    |           |
| 80. Miliusin A                                                                                                                                                                                                | MTT assay                                                         |                               | IC <sub>50</sub> (μΜ                                                           | )                                                        | [50]      |
| 81. Miliusin B                                                                                                                                                                                                | HeLa                                                              |                               | 0.2–18                                                                         |                                                          |           |
| 82. Miliusin /R,88<br>83. Miliusin C                                                                                                                                                                          | HN22                                                              |                               | 0.2-43.1                                                                       |                                                          |           |
| 84. Miliusin D                                                                                                                                                                                                | HepG2                                                             |                               | 2.9-88.5                                                                       |                                                          |           |
| 85. Miliusin E<br>86. Miliusin F                                                                                                                                                                              | HCT116                                                            |                               | 4.5–107.                                                                       | 5                                                        |           |
| 87. Pleiocarpumlignan B                                                                                                                                                                                       | MTS assav                                                         |                               | IC50 µM                                                                        |                                                          | [51]      |
| r                                                                                                                                                                                                             | MCF-7                                                             |                               | 18.2                                                                           |                                                          | [0-]      |
| 88. Officinalioside (OFD)                                                                                                                                                                                     | MTT assay<br>HepG2                                                | OFD sho<br>at 50 μm           | owed cytot<br>10l/L and 1                                                      | oxic effect<br>.00 μmol/L                                | [52]      |
| <b>89.</b> 5-((E)-2-carboxyvinyl)-7-methoxy-                                                                                                                                                                  | MTT assay                                                         |                               | IC <sub>50</sub> μM                                                            |                                                          | [53]      |
| 2-(3',4'-methylenedioxyphenyl)                                                                                                                                                                                |                                                                   | 89                            | 90                                                                             | 91                                                       |           |
| 90. Egonol                                                                                                                                                                                                    | KB                                                                | 96.0                          | 22.1                                                                           | 33.5                                                     |           |
| <b>91.</b> (–)-Machicendiol                                                                                                                                                                                   | HepG2                                                             | 86.6                          | 18.1                                                                           | 31.5                                                     |           |
|                                                                                                                                                                                                               | Lu                                                                | 106.9                         | 21.5                                                                           | 22.2                                                     |           |
| 92. Schisphenlignan M<br>93. Schisphenlignan N<br>94. Gomisin G<br>95. Schisantherin D<br>96. Schisantherin A<br>97. Epigomisin O<br>98. (+)-omisin K3 (Schisanhenol)<br>99. Schisanhenol B<br>100. Gomisin A | MTT assay<br>A549<br>HCT116<br>SW620                              |                               | IC <sub>50</sub> μM<br>13.5 to >5                                              | 0                                                        | [54]      |
| <b>101.</b> Glalignin B                                                                                                                                                                                       | MTT assay                                                         |                               | IC <sub>50</sub> μM                                                            |                                                          | [55]      |
| 102. Glalignin C<br>103. Glalignin E                                                                                                                                                                          | A549                                                              |                               | 13.5–100                                                                       | )                                                        |           |
| <b>104.</b> Glaneolignin A                                                                                                                                                                                    | HeLa                                                              |                               | 20.1–79.                                                                       | Э                                                        |           |
| <ul><li><b>105.</b> Dihydrodehydro diconiferyl alcohol</li><li><b>106.</b> Tribulusamide A</li></ul>                                                                                                          | MCF-7                                                             |                               | 11.4–100                                                                       | )                                                        |           |
| <b>107.</b> Pinoresinol monomethyl ether-β-D-<br>glucoside (PMG)                                                                                                                                              | MTT assay<br>HeLa<br>MDA-MB-231                                   | 10.1 (2<br>>25                | IC <sub>50</sub> μg/m<br>4 h) and 3<br>50 (24 and                              | nL<br>.54(48 h)<br>48 h)                                 | [56]      |
| 108. Methylcubebin (MB)<br>109. Cubebin (CB)<br>110. Dyhydrocubebin (DB)<br>111. Ethylcubebin (EB)                                                                                                            | MTT assay<br>HEp-2<br>SCC-25<br>Transwell cell<br>migration assay | MB an<br>p<br>conce<br>DB, EB | d CB decre<br>roliferatio<br>ntrations c<br>50 μg/m<br>, and MB<br>cell migrat | eased cell<br>n at<br>of 10 and<br>L<br>decreased<br>ion | [57]      |
| <b>112.</b> (1S,2S)-1-(4-hydroxy-3-<br>methoxyphenyl)-2-[2-methoxy-4-<br>[(2S,3R,                                                                                                                             | MTT assay<br>HL-60<br>A549                                        |                               | IC <sub>50</sub> μM<br>8.2<br>15.1                                             |                                                          | [58]      |

| Compound                            | Method         | Results                | Reference |
|-------------------------------------|----------------|------------------------|-----------|
| 4R)-tetrahydro-4-[(4-hydroxy-3-     | SMMC-7721      | 10.6                   |           |
| methoxyphenyl)methyl]-3-            | MCF-7          | 4.4                    |           |
| (hydroxymethyl)-                    | SW480          | 16.1                   |           |
| 2-furanyl] phenoxy]-1,3-propanediol | Flow cytometry | MFP induced dose-      |           |
| (MFP)                               |                | dependent apoptosis in |           |
|                                     |                | MCF-7 cells            |           |

Abbreviations: PC50: Preferential cytotoxicity mean Concentration; IC50 Inhibitory mean Concentration; CC50: cytotoxic effects; GI50:Growth inhibition; LDH deshidrogenase lac tate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide; SRB: Sulforhodamine B; CCK-8: The Cell Counting Kit 8 assay; CBMNCyt: cytokinesis block micronucleus; MMP-9: Matrix metalloproteinase 9; LC3: a process that involved the bulk degradation of cytoplasmic components (positive structures are prominent in autophagy-deficient); MAPK: protein kinase; ERK: extracellular signal-regulated kinase; MYCN: proto-oncogene; MYCN2: human neuroblastoma cell with MYCN amplification; pCNA nuclear antigen of cell proliferation; STATs: Signal transducers and activators of transcription; JC-1: mitochondrial membrane assay.

Human cancer cell lines: A2780, SKOV3, OVCAR-8: ovarian; A549, NCI-H460: lung; BGC-823, SGC7901: gastric cancer; Caco-2, HCC-2998, HCT-16, HCT-116, HCT-8, SW480, SW620: colon cancer; HeLa: human cervical uterine cancer; KB, KBVIN: papillomavirus; Bcap-37: endocervical adenocarcinoma; Hep3B, HepG2, SMMC 7721: hepatocellular carcinoma; KKU-213 L5: cholangiocarcinoma; HEp-2: laryngeal cancer; HL-60: promyelocytic leukemia; SN-1: leukemia; HN22: head and neck squamous cell carcinoma; TNBC, MCF-10A, MCF-7, MDA-MB-468, MDA-MB-453, MDAMB-231, SK-BR-3: breast cancer; NB: neuroblastoma; SKMEL-147: wild-type human melanoma; SKMEL-29: human melanoma; acarrying the B-Raf mutation-V600E; SKMEL-2, A375: malignant melanoma skin; M14, UACC-62: melanoma; OC2, SCC-25, OSCC: squamous cell carcinoma; Lu carcinoma; MIA-PaCa2, CAPAN-1, KLM-1PANC-1: pancreatic cancer; PC-3: prostate cancer; SF-295, U251: glioblastoma; ACHN: renal cancer; U2OS: osteosarcoma; BCBL1: lymphoma cells; muscular cancer cell lines 4 T-1.

#### Table 1.

Anticancer activity of lignans and neolignan isolated of different plants.

used in traditional medicine in many countries as anti-inflammatory and antirheumatic agents, among others, as well as antirhythmic and antitumor agents, since they inhibit cell proliferation and induce cytotoxicity in a large number of cell lines, as demonstrated through research [3].

Lignans are a group of secondary metabolites found in different plant and animal species. Lignans are biologically synthesized from the shikimic acid pathway [4] and through different reactions (**Figure 1**). Despite their structural variety, lignans are dimers of phenylpropanoid units that are linked via their  $\beta$ -carbon atoms [5]. Dimers of phenylpropanoid units that are coupled via other linkages are named neolignans [6]. The lignan family is classified into the following eight classes, based on how oxygen is incorporated into the skeleton and the cyclization pattern: furofuran, furan, dibenzylbutane, dibenzylbutyrolactone, aryltetralin, arylnaphthalene, dibenzocy-clooctadiene, and dibenzylbutyrolactol. The neolignans have structural variety and are divided into more than 15 groups, some of them are: benzofuran, dihydrobenzofuran, diarylethane, benzodioxine, alkyl aryl ether, and bicycloctane derivatives, among others [7]. These metabolites present different biological activities, such as cytotoxicity; as an example, podophyllotoxin is used in cancer treatments today [8].

In this sense, Jiang and col. [9] have suggested that this behavior is not the same with all cell lines, where tested, and that it depends on the type of lignan for its cytotoxicity. Multiple lignans are being studied, particularly for their effectiveness against breast cancer. Because they bind to cells where there are estrogen deposits, they have been shown to be effective against breast cancer [10]. The cytotoxic activity of various lignans has also been studied on colon, pancreatic, throat, and oral cancers,





| Wikstroemia scytophylla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bursera microphylla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     | Kadsura coccinea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | осн <sub>э</sub><br>37. Picropolygamain                                             | <b>38.</b> Heilachulignan C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kadsura coccinea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Selaginella moellendorffii                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\overrightarrow{R_{1}O} \xrightarrow{P_{1}O} \overrightarrow{P_{1}O} P_$ | 41. (-)-(7'S,8S,8'R)- 4,4'-dihydroxy-                                               | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{l} R_3 = R_5 = R_6 = CH_3;  R_7 = OH; \\ R_4 = OAng \\ \textbf{40. Longipedunin } BR_1 + R_2 = CH_2; \\ R_3 = R_5 = R_6 = CH_3;  R_4 = OH; \\ R_7 = OProp \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,3',5,5'-tetramethoxy-7',9-<br>epoxylignan-9'-ol-7-one                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Selaginella moellendorffii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oryza sativa                                                                        | Asarum sieboldii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| но (BR)-3,5'-dimethoxy-8,3'-<br>neoligna-4,4',9,9'-tetraol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44. Oryzativol C                                                                    | чын, состатор сост                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Picrasma quassioides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nectandra leucantha                                                                 | Ocimum sanctum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>49</b> . R = H Dehydroeugenol<br><b>50</b> . R = Me methyl                       | $H_{0} \xrightarrow{0} (O_{1} \cap O_{1} \cap O_{2} \cap $ |
| <ul><li>46. Balanophonin,</li><li>47. Dehydrodiconiferyl (DDI).</li><li>48. Methoxyl-balanophonin</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>49. Dehydrodieugenol B</li><li>50. Methyldehydrodieugenol B (MEB)</li></ul> | <b>51.</b> (–)-Rabdosiin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Wikstroemia scytophylla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E. hirta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cleistanthus tonkinensis                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 70. 7-hydroxy- hinokinin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r<br>r<br>r<br>r<br>r<br>r<br>r<br>r                                                                                                           | $ \begin{array}{c} \\ \\ + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}\\ - \\{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cleistanthus tonkinensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                | C. pinnatifida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                | HO<br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 76. Cleistonkiside A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77. Cleistonkiside B                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C. pinnatifida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Miliusa sessilis                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OHC Crataegusal A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>80.</b> Miliusin AR <sub>1</sub> = H, R <sub>2</sub> = AC<br><b>81.</b> Miliusin 7R,8SR <sub>1</sub> = CH <sub>3</sub> , R <sub>2</sub> = H | <b>6</b> CH <sub>3</sub><br><b>6</b> |
| Miliusa sessilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                | Piper pleiocarpum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | он с с с с с с с с с с с с с с с с с с с                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>84.</b> Miliusin D. $R_1 = R_2 = CH_3$ ,<br>$R_3 = R_4 = H$ , $R5 = Ac$<br><b>85.</b> Miliusin E $R_1 = R_2 = CH_3$ ,<br>$R_3 = R_4 = R_5 = H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                | <b>87.</b> Pleiocarpumlignan B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solanum lyratum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Styrax argentifolius                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO,<br>H,CO, | <b>89.</b> 5-((E)-2-carboxyvinyl)-7-<br>methoxy-2-(3',4'-<br>methylenedioxyphenyl)<br>Benzofuran                                               | 90. Egonol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Wikstroemia scytophylla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                            |                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Sigesbeckia glabrescens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jurinea macrocephala                                                                                                                                                                                                       | Piper cubeba                                                                                       |  |
| (a) = (a) | GICO                                                                                                                                                                                                                       | 108. $R_1 = MeO$<br>109. $R_1 = OH$<br>110. $R_1 = EtO$                                            |  |
| <b>106.</b> Tribulusamide A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>107.</b> Pinoresinol monomethyl ether-<br>b-D-glucoside (PMG)                                                                                                                                                           | <ul><li>108. Methylcubebin (MB)</li><li>109. Cubebin (CB)</li><li>110. Ethylcubebin (EB)</li></ul> |  |
| P. cubeba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solanum violaceum                                                                                                                                                                                                          |                                                                                                    |  |
| HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            | 2                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>112. (1S,2S)-1-(4-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-[(2S,3R,</li> <li>4R)-tetrahydro-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)-</li> <li>2-furanyl] phenoxy]-1,3-propanediol (MFP)</li> </ul> |                                                                                                    |  |

#### Table 2.

Lignans and neolignans structures.

among others, but the comparability of these studies depends on the type of assay with which the findings are reported. Therefore, the assay selection is of great importance in understanding the toxicity profile of lignans, as an approximation of their cytotoxic potential if used in humans.

The aim of this research was to present an overview of the anticancer activity of lignans *in vitro* and *in vivo* studies (**Table 1**), with the type of assay described in the international literature in the last 5 years, as well as their structures (**Table 2**).

#### 2. Discussion

Lignans act as antioxidants and play an important role in protection against herbivores, pathogenic fungi, and bacteria [59]. These lignans have positive effects on different diseases, such as cancer and type 2 diabetes.

The lignans present in the feed diet might be metabolized by the gut microbiota through deglycosylations, p-dehydroxylations, and m-demethylations, but there is no enantiomeric inversion, producing phytoestrogens (molecules with an estrogen-like

effect), but there is not enantiomeric inversion; these metabolites are called "mammalian lignans or enterolignans" [60], for example, aglycones of enterolactone and enterodiol, formed from matairesinol and secoisolariciresinol, respectively. Both of these aglycones have antitumor effects against breast, colon, and lung cancer [61].

In this review, we found 112 lignans and norlignans with cytotoxic activity, isolated from plants of 34 families, such as Magnolicea, Lauraceae, and Sauracea, among others. We found that 13 of these lignans have a high activity on several human cancer cell lines.

Only cytotoxicity activity was determined in 92 of these lignans and this effect was evaluated by MTT assay. The antitumor effect of sesamine and honokiol was determined on tumors induced with lymphoma cells and squamous cells carcinoma respectively.

In the treatment of cancer, there are used compounds that produce cell death in two ways: apoptosis and direct toxicity, then the new therapies are focused on substances to induce apoptotic cancer cell death [62]. In this review, we found 16 lignans that promote cell death by apoptosis.

The apoptotic cell death could occur by the disruption of the mitochondrial membrane, which is a crucial signaling pathway in the induction of apoptosis diminishing the levels of ATP, inhibiting ERK and p38 MAPK signaling. Bcl-2 (antiapoptotic protein) protein family control apoptosis by regulating mitochondrial membrane permeability while Bax is an inducer of apoptosis. Caspase-9 is activated, promoting the cleavage of caspase-3 and PARP, which contributes to apoptosis and ultimately cell death. Lignans 23 y 35 induced apoptosis by this route [29, 20].

MMP-9 is an overexpressed proteolytic enzyme in cancer cells that acts as a precursor to the action of other endopeptidases. This enzyme is a new target for cancer therapy owing to its pivotal role in metastatic tumors. Compounds 41, 42, and 43 inhibit the overexpression of MMP-9 [32].

*In vitro* test flow cytometry is used for the investigation and diagnosis of diseases such as cancer. In the different studies reported in this review, this technique was used to find out: the percentage of viable cancer cells, the characteristics of the cells such as size and shape, tumor markers, cell cycle analysis, and type of cell death [63]. In **Table 1**, it is shown that compounds 35, 47, 51, 61, and 112 induced apoptotic death of cancer cells by this technique.

Tubulin and its assembly product, microtubules, are among the most successful targets in cancer chemotherapy. It is currently known that podophyllotoxin and its commercial derivatives Etoposide and Teniposide exert their mechanism of action in cancer cells by altering Topoisomerase II and tubulin [64]. Williams et al. (2017) found that Bifidenone lignan also acts at the microtubule level of NCI-H460 cells, causing the inhibition of tubulin polymerization and therefore the arrest of the G2 / M phase of the cell cycle [32].

Arctigenin (ATN) is a dibenzylbutirolactone lignan isolated from the fruit of Arctium lappa and exhibited a cytotoxic effect on different breast cancer cell lines (MDA-MB-231, MDA-MB-435S, MDA-MB-453, and MDA-MB-468). In ER-positive MCF-7 cells, ATN inhibited downstream effector molecules of the target of rapamycin (TOR), decreasing the expression of estrogen receptor- $\alpha$  (Er $\alpha$ ) and inducing autophagy.

Another way for cell death: Autophagy is a self-degradative process, which involves the enzymatic breakdown of different cytoplasmatic components. This process promotes the elimination of damaged or harmful components [65].

In vitro, this lignan inhibited the migration and invasion of MDA-MB-231 by downregulation of MMP-2, MMP-9, and heparinase expression [66].

(–)-Trachelogenin (TA) belongs to the dibenzylbutyrolactone lignan class and has been isolated from different plants, such as Trachelospermi caulis, *T. asiaticum*, *T.* 

*Jasminoides, and Combretum fruticosum*. This lignan has different pharmacological activities, such as anti-inflammatory [67], antidepressant, and anticancer effects [68]. TA did not induce apoptosis but induced autophagic death, mediated by increased LC3; its possible mechanism of induced autophagic cell death involves cytoplasmic vacuolization and formation of autophagosomes mediated by increasing LC3 activation, promoting changes in the expression of Beclin-1 levels [24].

4-O-methylhonokiol (MH) is a neolignan, a type of phenolic compound. It is found in the bark of *Magnolia grandiflora*, *Magnolia virginiana* flowers, and *Magnolia officinalis*. MH induced cytotoxicity on human oral carcinoma cells (OSCC PE/CA-PJ41). Its anticancer activity is due to its capacity to induce ROS-mediated alteration of MMP, mitochondrial apoptosis, and cell cycle arrest [25], and to inhibit neuroinflammation, amyloidogenesis, and memory impairment [69]. MH protected against diabetic cardiomyopathy in type 2 diabetic mice [70]. It also inhibited NkKB activity on human colon cancer cells and cell cycle arrest, and induced apoptosis [71]. Additionally, MH induced apoptosis on oral squamous cancer cells (OSCC) via Sp1 [72].

Deoxypodophyllotoxin (DPT) was isolated from plants of the genus Podophyllum and has also been obtained from other species, such as *Athriscus sylvestris*, *Juniperus oblonga*, and *Cupressus macrocarpa*. DPT presented high toxicity and some side effects, so its use is limited [73]. In vitro, DPT reduced the cell proliferation of NB cells, MDA-MB-231, and A549 lines, induced apoptosis and cell cycle arrest, reduced the expression of pCNA, and increased intracellular free calcium levels that promoted NB cell death.

Matairesinol (MT) was isolated from *Juniperus oblonga* and exhibited antiinflammatory [74] and cytotoxic activity against neuroblastoma cell lines, with and without tetracycline-inducible MYCN over-expression, and induced apoptosis and cell cycle arrest [39]. MT ameliorated experimental autoimmune uveitis [75] and showed angiogenic activity in vivo and in vitro. This compound also inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) [76].

Other lignans with significant anticancer activity are: methoxypinoresinol, which is a furanoid lignan isolated from the leaves of *Calotropis gigantea*; honokiol was isolated from *Magnolia officinalis*; trachelogenin isolated from *Combretum fruticosum*; bifidenone, which is isolated from *Beilschmiedia* sp.; hedyotol-B, which was isolated from the stems of *Herpetospermum pedunculosum*; bejolghotin G, H, and I, which were isolated from the leaves and twigs of *Cinnamomum bejolghota*. These compounds have been isolated recently, and they are the subject of few pharmacological studies.

The most studied cancer cell lines were lung, hepatocellular carcinoma, colon, and breast. The cell lines diversity was colon cancer, breast cancer, human melanoma, and pancreatic cancer. These cell lines had the highest number of reports.

The lignans and neolignans with middle activity in lung cancer cells were: 12–20, 63–68, 112, colon cancer cells: 12–20, 63–68, 80–85,112, hepatocellular carcinoma cells: 12–20, 69, 70, 80–85, 112, and breast cancer cells: 11, 51, 63–68, 107,112.

In this review, we found that the less studied cancer cells were ovarian, gastric, endocervical adenocarcinoma cells, cholangiocarcinoma, laryngeal, leukemia, neuroblastoma, pancreatic cancer, prostate cancer, renal cancer, and osteosarcoma.

This review shows that various lignans and neolignans could be promising candidates for the treatment of different types of cancer.

### **Conflict of interest**

The authors declare that they have no competing interests.

Secondary Metabolites - Trends and Reviews

# Author details

Ana Laura Esquivel-Campos<sup>1</sup>, Salud Pérez-Gutiérrez<sup>1</sup>, Leonor Sánchez-Pérez<sup>2</sup>, Nimsi Campos-Xolalpa<sup>1</sup> and Julia Pérez-Ramos<sup>1\*</sup>

1 Biological Systems Department, Universidad Autonoma Metropolitana-Xochimilco, México City, México

2 Health Care Department, Universidad Autonoma Metropolitana-Xochimilco, México City, México

\*Address all correspondence to: jperez@correo.xoc.uam.mx

#### IntechOpen

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# References

[1] Ferlay J, Colombet M,

Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN. International Journal of Cancer. 2018;**144**:1941-1953. DOI: 10.1002/ijc.31937

[2] World Health Organization. Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey. 2020; Available from: https://apps.who.int/iris/ handle/10665/331452 [Accessed: November 16, 2021]

[3] Ji N, Jiang L, Deng P, Xu H, Chen F, Liu J, et al. Synergistic effect of honokiol and 5-fluorouracil on apoptosis of oral squamous cell carcinoma cells. Journal of Oral. 2017;**46**:201-207. DOI: 10.1111/ jop.12481

[4] Talapatra SK, Talapatra B. Shikimic acid pathway. In: Chemistry of Plant Natural Products. 1st ed. Berlin, Heidelberg: Springer; 2014. pp. 625-674. DOI: 10.1007/978-3-642-45410-3\_13

[5] Suzuki S, Umezawa T. Biosynthesis of lignans and norlignans. Journal of Wood Science. 2007;**53**(4):273-284. DOI: 10.1007/s10086-007-0892-x

[6] Moss GP. Nomenclature of lignans and neolignans (IUPAC Recommendations 2000). Pure and Applied Chemistry. 2000;**72**:1493-1523. DOI: 10.1351/pac200072081493

[7] Ríos JL, Giner RM, Prieto JM. New findings on the bioactivity of lignans.
Studies in Natural Products Chemistry.
2002;26:183-292. DOI: 10.1016/
S1572-5995(02)80008-4

[8] Dar AA, Arumugam N. Lignans of sesame: purification methods, biological

activities and biosynthesis–A review. Bioorganic Chemistry. 2013;**50**:1-10. DOI: 10.1016/j.bioorg.2013.06.009

[9] Jiang ZH, Liu YP, Huang ZH, Wang TT, Feng XY, Yue H, et al. Cytotoxic dihydrobenzofuran neolignans from *Mappianthus iodoies*. Bioorganic Chemistry. 2017;**75**:260-264. DOI: 10.1016/j.bioorg.2017.10.003

[10] Sung MK, Lautens M, Thompson LU. Mammalian lignans inhibit the growth of estrogenindependent human colon tumor cells. Anticancer Research. 1998;**18**:1405-1408 PMID: 9673348

[11] Lei JP, Yuan JJ, Pi SH, Wang R, Tan R, Ma CY, et al. Flavones and lignans from the stems of wikstroemia scytophylla Diels. Pharmacognosy Magazine. 2017;**13**:488. DOI: 10.4103/ pm.pm\_275\_16

[12] Li DQ, Wang D, Zhou L, Li LZ, Liu QB, Wu YY, et al. Antioxidant and cytotoxic lignans from the roots of *Bupleurum chinense*. Journal of Asian Natural Products Research. 2017;**19**: 519-527. DOI: 10.1080/ 10286020.2016.1234456

[13] Bodede O, Shaik S, Singh M, Moodley R. Phytochemical analysis with antioxidant and cytotoxicity studies of the bioactive principles from Zanthoxylum capense (Small knobwood). Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2017;**17**:627-634. DOI: 10.2174/ 1871520616666160627091939

[14] Meng Z, Liu H, Zhang J, Zheng Z, Wang Z, Zhang L, et al. Sesamin promotes apoptosis and pyroptosis via autophagy to enhance antitumour effects on murine T-cell lymphoma. Journal of Pharmacological Sciences. 2021;**147**: 260-270. DOI: 10.1016/j. jphs.2021.08.001

[15] Dang PH, Awale S, Nhan NT. Phytochemical and cytotoxic studies on the leaves of *Calotropis gigantea*.
Bioorganic & Medicinal Chemistry Letters. 2016;27:2902-2906. DOI: 10.1016/j.bmcl.2017.04.087

[16] Han JH, Jeong HJ, Lee HN, Kwon YJ, Shin HM, Choi Y, et al. Erythroaustrobailignan-6 down-regulates HER2/ EGFR/integrinβ3 expression via p38 activation in breast. cancer.
Phytomedicine. 2017;24:24-30. DOI: 10.1016/j.phymed.2016.11.009

[17] Zhang RF, Feng X, Su GZ, Yin X, Yang XY, Zhao YF, et al. Noralashinol B, a norlignan with cytotoxicity from stem barks of *Syringa pinnatifolia*. Journal of Asian Natural Products Research. 2017; **19**:416-422. DOI: 10.1080/ 10286020.2017.1307188

[18] Feng T, Cao W, Shen W, Zhang L, Gu X, Guo Y, et al. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget. 2017;8:329. DOI: 10.18632/oncotarget.13393

[19] Maxwell T, Lee KS, Kim S, Nam KS. Arctigenin inhibits the activation of the mTOR pathway, resulting in autophagic cell death and decreased ER expression in ER-positive human breast cancer cells. International Journal of Oncology. 2018; 52:1339-1349. DOI: 10.3892/ijo.2018.4271

[20] Baba Y, Shigemi Z, Hara N, Moriguchi M, Ikeda M, Watanabe T, et al. Arctigenin induces the apoptosis of primary effusion lymphoma cells under conditions of glucose deprivation. International Journal of Oncology. 2018; 52:505-517. DOI: 10.3892/ijo.2017.4215 [21] Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. Journal of Cellular and Molecular Medicine. 2018;**22**:1894-1908. DOI: 10.1111/jcmm.13474

[22] Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P, Pongcharoen S. Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damageassociated molecular patterns. World Journal of Gastroenterology. 2019;**25**: 3941. DOI: 10.3748/wjg.v25.i29.3941

[23] Yang M, Zhang Y, Chen L, Chen Y. A new (propylphenyl) bibenzyl derivative from *Dendrobium williamsonii*. Natural Product Research.
2018;32:1699-1705. DOI: 10.1080/ 14786419.2017.1396599

[24] Moura AF, Lima KSB, Sousa TS, Marinho-Filho JDB, Pessoa C, Silveira ER, et al. In vitro antitumor effect of a lignan isolated from *Combretum fruticosum*, trachelogenin, in HCT-116 human colon cancer cells. Toxicology In Vitro. 2018;**47**:129-136. DOI: 10.1016/j.tiv.2017.11.014

[25] Xiao S, Chen F, Gao C. Antitumor activity of 4-O-Methylhonokiol in human oral cancer cells is mediated via ROS generation, disruption of mitochondrial potential, cell cycle arrest and modulation of Bcl-2/Bax proteins. Journal of BUON. 2017;**22**:1577-1581 PMID: 29332355

[26] Williams RB, Martin SM, Lawrence JA, Norman VL, O'Neil-Johnson M, Eldridge GR, et al. Isolation and identification of the novel tubulin polymerization inhibitor bifidenone. Journal of Natural Products. 2017;**80**:

616-624. DOI: 10.1021/acs. jnatprod.6b00893

[27] Dibwe DF, Sun S, Ueda JY,
Balachandran C, Matsumoto K, Awale S.
Discovery of potential antiausterity agents from the Japanese cypress *Chamaecyparis obtusa*. Bioorganic &
Medicinal Chemistry Letters. 2017;27: 4898-4903. DOI: 10.1016/j.
bmcl.2017.09.034

[28] Kim SH, Son KM, Kim KY, Yu SN, Park SG, Kim YW, et al.
Deoxypodophyllotoxin induces cytoprotective autophagy against apoptosis via inhibition of PI3K/AKT/ mTOR pathway in osteosarcoma U2OS cells. Pharmacological Reports. 2017;69: 878-884. DOI: 10.1016/j. pharep.2017.04.007

[29] Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang ZL, et al. Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. European Journal of Pharmacology. 2018;**821**:1-10. DOI: 10.1016/j.ejphar.2017.12.027

[30] Gigliarelli G, Zadra C, Cossignani L, Robles Zepeda RE, Rascón-Valenzuela LA, Velázquez-Contreras CA, et al. Two new lignans from the resin of *Bursera microphylla* A. gray and their cytotoxic activity. Natural Product Research. 2018; **32**:2646-2651. DOI: 10.1080/ 14786419.2017.1375922

[31] Liu Y, Yang Y, Tasneem S, Hussain N, Daniyal M, Yuan H, et al. Lignans from Tujia ethnomedicine Heilaohu: Chemical characterization and evaluation of their cytotoxicity and antioxidant activities. Molecules. 2018;**23**: 2147. DOI: 10.3390/molecules23092147

[32] Zhu Y, Huang RZ, Wang CG, Ouyang XL, Jing XT, Liang D, et al. New inhibitors of matrix metalloproteinases 9 (MMP-9): Lignans from Selaginella moellendorffii. Fitoterapia. 2018;**130**: 281-289. DOI: 10.1016/j. fitote.2018.09.008

[33] Lee TK, Lee D, Yu JS, Jo MS, Baek SC, Shin MS, et al. Biological evaluation of a new lignan from the roots of rice (Oryza sativa). Chemistry & Biodiversity. 2018;**15**(11):e1800333. DOI: 10.1002/cbdv.201800333

[34] Jeong M, Kim HM, Lee JS, Choi JH, Jang DS. (–)-Asarinin from the roots of asarum sieboldii induces apoptotic cell death via caspase activation in human ovarian cancer cells. Molecules. 2018;23: 1849. DOI: 10.3390/molecules23081849

[35] Lou LL, Yaoaz GD, Wang J, Zhao WY, Wang XB, Huang XX, et al. Enantiomeric neolignans from *Picrasma quassioides* exhibit distinctive cytotoxicity on hepatic carcinoma cells through ROS generation and apoptosis induction. Bioorganic & Medicinal Chemistry Letters. 2018;**28**:1263-1268. DOI: 10.1016/j.bmcl.2018.03.043

[36] de Sousa FS, Nunes EA, Gomes KS, Cerchiaro G, Lago JHG. Genotoxic and cytotoxic effects of neolignans isolated from *Nectandra leucantha* (Lauraceae). Toxicology In Vitro. 2019;55:116-123. DOI: 10.1016/j.tiv.2018.12.011

[37] Flegkas A, Milosević Ifantis T, Barda C, Samara P, Tsitsilonis O, Skaltsa H. Antiproliferative activity of (-)-rabdosiin isolated from *Ocimum sanctum* L. Medicine. 2019;6:37. DOI: 10.3390/medicines6010037

[38] Wang GK, Jin WF, Zhang N, Wang G, Cheng YY, Morris-Natschke SL, et al. Kalshiolin A, new lignan from *Kalimeris shimadai*. Journal of Asian Natural Products Research. 2020;**22**: 489-495. DOI: 10.1080/ 10286020.2019.1592164 [39] Qiao Y, Sunada NK, Hatada AE, Lange I, Khutsishvili M, Alizade V, et al. Potential anti-neuroblastoma agents from Juniperus oblonga. Biochemical and Biophysical Research Communications. 2019;**516**:733-738. DOI: 10.1016/j.bbrc.2019.06.123

[40] Han J, Chen X, Liu W, Cui H, Yuan T. Triterpenoid saponin and lignan glycosides from the traditional medicine Elaeagnus angustifolia flowers and their cytotoxic activities. Molecules. 2020;**25**: 462. DOI: 10.3390/molecules25030462

[41] Ma Y, Wang H, Wang R, Meng F, Dong Z, Wang G, et al. Cytotoxic lignans from the stems of Herpetospermum pedunculosum. Phytochemistry. 2019; **164**:102-110. DOI: 10.1016/j. phytochem.2019.05.004

[42] Yang Y, Liu Y, Daniyal M, Yu H, Xie Q, Li B, et al. New lignans from roots of Kadsura coccinea. Fitoterapia. 2019; **139**:104368. DOI: 10.1016/j. fitote.2019.104368

[43] Tran HNK, Cao TQ, Kim JA, Woo MH, Min BS. Anti-inflammatory and cytotoxic activities of constituents isolated from the fruits of *Ziziphus jujuba* var. *inermis* Rehder. Fitoterapia. 2019; **137**:104261. DOI: 10.1016/j. fitote.2019.104261

[44] Guo R, Lv TM, Shang XY, Yao GD, Lin B, Wang XB, et al. Racemic neolignans from *Crataegus pinnatifida*: Chiral resolution, configurational assignment, and cytotoxic activities against human hepatoma cells. Fitoterapia. 2019;**137**:104287. DOI: 10.1016/j.fitote.2019.104287

[45] Rao L, You YX, Su Y, Fan Y, Liu Y, He Q, et al. Lignans and neolignans with antioxidant and human cancer cell proliferation inhibitory activities from *Cinnamomum bejolghota* confirm its functional food property. Journal of Agricultural and Food Chemistry. 2020; **68**:8825-8835. DOI: 10.1021/acs. jafc.0c02885

[46] Al-Sayed E, Ke TY, Hwang TL, Chen SR, Korinek M, Chen SL, et al. Cytotoxic and anti-inflammatory effects of lignans and diterpenes from Cupressus macrocarpa. Bioorganic & Medicinal Chemistry Letters. 2020;**30**: 127127. DOI: 10.1016/j.bmcl.2020.127127

[47] Zhang L, Wang XL, Wang B, Zhang LT, Gao HM, Shen T, et al. Lignans from Euphorbia hirta L. Natural Product Research. 2020:**36**:1478-6427. DOI: 10.1080/14786419.2020.1761358

[48] Nguyen LH, Vu VN, Thi DP, Tran VH, Litaudon M, Roussi F, et al. Cytotoxic lignans from fruits of Cleistanthus tonkinensis. Fitoterapia. 2020;**140**:104432. DOI: 10.1016/j. fitote.2019.104432

[49] Shang XY, Guo R, Yu XQ, Lin B, Huang XX, Yao GD, et al. Enantiomeric 8-O-4'-type neolignans from Crataegus pinnatifida exhibit cytotoxic effect via apoptosis and autophagy in Hep3B cells. Bioorganic Chemistry. 2020;**104**:104267. DOI: 10.1016/j.bioorg.2020.104267

[50] Pootaeng-On Y, Charoensuksai P, Wongprayoon P, Jiajaroen S, Chainok K, Rayanil K. Miliusins; cytotoxic neolignans from the leaves of *Miliusa sessilis*. Phytochemistry. 2020;**176**:112417. DOI: 10.1016/j.phytochem.2020.112417

[51] Su XM, Liang Q, Zhang XM, Yao ZY, Xu WH. Four new chemical constituents from *Piper pleiocarpum*. Fitoterapia. 2020;**143**:104544. DOI: 10.1016/j. fitote.2020.104544

[52] Wang X, Zhao Y, Dong X, Wu X, Yu HY, Zhang LH, et al. Amides and lignans from *Solanum lyratum*.

Phytochemistry Letters. 2021;**45**:25-29. DOI: 10.1016/j.phytol.2021.07.002

[53] Tra NT, Van Tuyen N, Van Cuong P, Ha NTT, Anh LTT, Son NT. Chemical constituents from the leaves of Styrax argentifolius HL Li and their biological activities. Phytochemistry Letters. 2021; **41**:70-73. DOI: 10.1016/j. phytol.2020.11.003

[54] Huang S, Liu Y, Li Y, Fan H,
Huang W, Deng C, et al.
Dibenzocyclooctadiene lignans from the root bark of *Schisandra sphenanthera*.
Phytochemistry Letters. 2021;45: 137-141. DOI: 10.1016/j.
phytol.2021.08.015

[55] Gao XX, Gao YN, Wang DD, Hu GS, Yan T, Jia JM, et al. Six novel lignanoids with complex structures from *Sigesbeckia glabrescens* Makino with their cytotoxic activities. Fitoterapia. 2021;**148**:104799. DOI: 10.1016/j.fitote.2020.104799

[56] Atabaki V, Pourahmad J, Hosseinabadi T. Phytochemical compounds from *Jurinea macrocephala* subsp. *elbursensis* and their cytotoxicity evaluation. South African Journal of Botany. 2021;**137**:399-405. DOI: 10.1016/ j.sajb.2020.11.011

[57] Gusson-Zanetoni JP, Monteiro da Silva JSG, Picão TB, Cardin LT, Prates J, Sousa SO, et al. Effect of *Piper cubeba* total extract and isolated lignans on head and neck cancer cell lines and normal fibroblasts. Journal of Pharmacological Sciences. 2021;**148**:93-102. DOI: 10.1016/ j.jphs.2021.09.002

[58] Kaunda JS, Qin XJ, Zhu HT, Wang D, Yang CR, Zhang YJ. Previously undescribed pyridyl-steroidal glycoalkaloids and 23S, 26Rhydroxylated spirostanoid saponin from the fruits of Solanum violaceum ortega and their bioactivities. Phytochemistry. 2021;**184**:112656. DOI: 10.1016/j. phytochem.2021.112656

[59] Harmatha J, Dinan L. Biological activities of lignans and stilbenoids associated with plant-insectchemical interactions. Phytochemistry Reviews. 2003;**2**:321-330. DOI: 10.1023/B: PHYT.0000045494.98645.a3

[60] Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010; **2**:1231-1246. DOI: 10.3390/nu2121231

[61] Kirsch V, Bakuradze T, Richling E. Toxicological testing of syringaresinol and enterolignans. Current Research in Toxicology. 2020;1:104-110. DOI: 10.1016/j.crtox.2020.09.002

[62] Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis. 2005;**2005**(26):263-270. DOI: 10.1093/carcin/bgh283

[63] Henry CM, Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Methods. 2013;**61**:90-97. DOI: 10.1016/j.ymeth.2013.01.008

[64] Guerram M, Jiang ZZ, Zhang LY. Podophyllotoxin, a medicinal agent of plant origin: Past, present and future. Chinese Journal of Natural Medicines. 2012;**10**:161-169. DOI: 10.3724/SP. J.1009.2012.00161

[65] Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. The Journal of Pathology. 2010;**221**(1):3-12. DOI: 10.1002/path.2697

[66] Lou C, Zhu Z, Zhao Y, Zhu R, Zhao H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/–9 and heparanase in MDA-MB-231 cells. Oncology Reports. 2017;**37**:179-184. DOI: 10.3892/or.2016.5269 [67] Shin HS, Bae MJ, Jung SY, See HJ, Kim YT, Do JR, et al. Enhancing effect of trachelogenin from *Trachelospermi caulis* extract on intestinal barrier function. Biological and Pharmaceutical Bulletin. 2015;**38**:1707-1713. DOI: 10.1248/bpb. b15-00332

[68] Kuehnl S, Schroecksnadel S, Temml V, Gostner JM, Schennach H, Schuster D, et al. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2, 3-dioxygenase. Phytomedicine. 2013;
20:1190-1195. DOI: 10.1016/j. phymed.2013.06.006

[69] Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, et al. Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. Journal of Neuroinflammation. 2012;**9**:1-19. DOI: 10.1186/1742-2094-9-35

[70] Zheng Z, Ma T, Guo H, Kim KS, Kim KT, Bi L, et al. 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement. Journal of Cellular and Molecular Medicine. 2019;23:5771-5781. DOI: 10.1111/ jcmm.14493

[71] Oh JH, Ban JO, Cho MC, Jo M, Jung JK, Ahn B, et al. 4-Omethylhonokiol inhibits colon tumor growth via p21-mediated suppression of NF-κB activity. The Journal of Nutritional Biochemistry. 2012;**23**: 706-715. DOI: 10.1016/j. jnutbio.2011.03.013

[72] Cho JH, Lee RH, Jeon YJ, Shin JC, Park SM, Choi NJ, et al. Role of transcription factor Sp1 in the 4-O- methylhonokiol-mediated apoptotic effect on oral squamous cancer cells and xenograft. The International Journal of Biochemistry & Cell Biology. 2015;**64**: 287-297. DOI: 10.1016/j. biocel.2015.05.007

[73] Hu S, Zhou Q, Wu WR, Duan YX, Gao ZY, Li YW, et al. Anticancer effect of deoxypodophyllotoxin induces apoptosis of human prostate cancer cells. Oncology Letters. 2016;**12**:2918-2923. DOI: 10.3892/ol.2016.4943

[74] Kuehnl S, Schroecksnadel S, Temml V, Gostner JM, Schennach H, Schuster D, et al. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine
2, 3-dioxygenase. Phytomedicine. 2013;
20:190-1195. DOI: 10.1016/j. phymed.2013.06.006

[75] Li X, Gao Q, Yang L, Han M,
Zhou C, Mu H. Matairesinol ameliorates experimental autoimmune uveitis by suppression of IRBP-specific Th17 cells.
Journal of Neuroimmunology. 2020;345: 577286. DOI: 10.1016/j.jneuroim.
2020.577286

[76] Lee B, Kim KH, Jung HJ, Kwon HJ. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Biochemical and Biophysical Research Communications. 2012;**421**:76-80. DOI: 10.1016/j. bbrc.2012.03.114