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Abstract

In order to use the global available eddy-covariance (EC) flux dataset and remote sens-
ing measurements to provide estimates of gross primary production (GPP) at land-
scape (101–102 km2), regional (103–106 km2) and global land surface scales, we devel-
oped a satellite-based GPP algorithm using Landsat data and an upscaling framework.5

The satellite-based GPP algorithm uses two improved vegetation indices (Enhanced
Vegetation Index – EVI, Land Surface Water Index – LSWI). The upscalling framework
involves flux footprint climatology modeling and data-model fusion. This approach
was first applied to an evergreen coniferous stand in South China subtropical mon-
soon climatic zone. The EC measurements at Qian Yinzhou tower site (26◦ 44′ 48′′ N,10

115◦ 04′ 13′′ E), which belongs to the Chinaflux network, and the Landsat images for
this region in 2004 were used in this study. The seasonal dynamics of GPP predicted
by the satellite-based algorithm agreed well with observed GPP in 2004 at this site.
These results demonstrate the potential of combining of the satellite-based algorithm,
flux footprint modeling and data-fusion, for scaling-up of GPP at the CO2 flux tower15

sites, a key component for the study of the carbon cycle at regional and global scales.

1 Introduction

Growing interest in climate change has stimulated recent research that aims to quantify
components of the natural carbon (C) cycle. The eddy-covariance technique (EC) is
commonly used to directly measure the CO2, water vapor and energy exchange be-20

tween the atmosphere and terrestrial ecosystems (Baldocchi, 2008). Today, there exist
more than 400 EC-flux towers across continents. EC measurements are a rich source
of information on temporal variability and environmental controls of CO2 exchange be-
tween the atmosphere and terrestrial ecosystems (Law et al., 2000). These global EC
datasets provide investigators opportunities and information to 1) explore emergent-25

scale properties by quantifying how the metabolism of complex ecosystems respond
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to perturbations in climate variables on diurnal, seasonal, interannual and decadal time
scales and elucidate physical and biological controlling factors (Law et al., 2000; Bal-
docchi, 2008); 2) examine carry-over effects that may be introduced by either favorable
or deleterious conditions during antecedent years (Barford et al., 2001); 3) observe
a disturbance and the recovery from it or to span a natural sequence of ecological de-5

velopment coupled with fluctuations in climate (Amiro et al., 2006; Stoy et al., 2006);
and 4) test and validate ecosystem process models (Chen et al., 2007; Urbanski et al.,
2007), since most of these models span timescales from hours to decades. Although
the available EC data have been rapidly accumulating, much of this information is of
limited use because of the difficulties/uncertainties in i) assessing/interpreting the asso-10

ciated measuring biases of EC data and ii) upscaling of the EC fluxes at the ecosystem
(typically less than 1–3 km2 for each site) to larger scales, e.g. landscape and regional
scales.

The EC method is based on measurements of turbulent fluctuations of the vertical
velocity and the concentration of a passive tracer. Knowledge of the area’s soil and15

vegetation that impacts the EC flux is clearly important both in planning the site tower
location and in the interpretation of measured fluxes (Finnigan, 2004). The adoption
of the EC technique to estimate surface exchange is based on the assumption that
certain meteorological conditions (e.g. horizontal homogeneity, steady-state, and non-
advection) are satisfied (Göckede et al., 2004). Since such conditions are often vio-20

lated in complex terrain, e.g. at flux monitoring sites in forests, correct interpretation
of EC-data is still a matter of some difficulty (Sogachev et al., 2004). In particular, the
spatial variability of vegetation density influences the lower atmospheric circulation and
surface exchange of energy, water and C over a wide range of scales (e.g., Shen and
Leclerc, 1995; Buermann et al., 2001; Cosh and Brutsaert, 2003). As a result, evalua-25

tion of the spatial representativeness of long-term accumulated EC-flux measurements
is still challenging (Chen et al., 2009a).

Footprint analysis is a recognized part of the establishment and siting of flux tow-
ers and the analysis of their output (Finnigan, 2004). The interpretation of EC flux
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measurements over a heterogeneous surface depends largely on the footprint over
which the fluxes are sampled. The temporal and spatial variability of footprints and the
associated influence of varying site heterogeneities on tower flux measurements has
yet to be fully been investigated, although this information is critical needed for inter-
pretation and for making a more wide use of the globally available EC datasets which5

have been rapidly accumulating.
In order to use EC flux measurements to provide estimates of components of the

natural C cycles at landscape (101–102 km2), regional (103–106 km2), or hemispheric
to global land surface (107–108 km2) scales, they must be reasonably “upscaled” us-
ing either models and/or remote sensing measurements (e.g. Earth observation (EO)10

data). However, it has been proved that, it is an extremely challenging task to scale
up those EC measurements from stand-level to a region or global scales because of
the large spatial heterogeneity and temporal dynamics of ecosystems across complex
landscapes and regions and the nonlinearity inherent in ecophysiological processes
(Levy et al., 1999; Chen et al., 2007; Hilker et al., 2008).15

Satellite remote sensing can provide consistent and systematic observations of veg-
etation and ecosystems over large spatial extents on variable spatial and temporal res-
olutions. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS)
is a 36 band spectrometer providing a global data set every 1–2 d. The spatial reso-
lution of MODIS (pixel size at nadir) is 250 m for channel 1 and 2 (0.6–0.9µm), 500 m20

for channel 3 to 7 (0.4–2.1µm) and 1000 m for channel 8 to 36 (0.4–14.4µm), re-
spectively. The Landsat Enhanced Thematic Mapper Plus (ETM+) is a sensor carried
onboard the Landsat 7 satellite and has acquired images of the Earth at 30 m spatial
resolution with a 16-d repeat cycle. Data from the satellite-borne MODIS are currently
used in the calculation of global weekly gross primary productivity (GPP) at 1-km spa-25

tial resolution (Running et al., 2004; Coops et al., 2007). These data with variable
spatial and temporal resolutions, however, require appropriate methods for upscaling
and interfacing EC-measurements to satellite observations (Drolet et al., 2008; Hall
et al., 2008). It is challenging to compare the estimated GPP using MODIS satellite
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data at 1-km resolution with the EC-derived GPP because of mismatch between them
in spatial scales (Xiao et al., 2004). Whereas, the Landsat imagines have fine resolu-
tions (i.e. 30 m), which are ideal for spatial scaling and comparison of C fluxes derived
from satellite-borne and EC data with assistance of flux footprint analysis (Chen et al.,
2009a).5

The objective of this study is twofold: 1) to examine biophysical performance of
vegetation indices in relation to seasonal dynamics of CO2 fluxes; and 2) to develop
a practical approach for upscaling GPP to the landscape scale and assessing the EC
sensor location biases (i.e. the influence of patch-scale heterogeneities and the spatial
representativeness of the EC flux footprint on the uncertainty in EC CO2 flux data) using10

the Landsat images and a recently developed footprint model (Chen et al., 2009a).
Qian Yanzhou (QYZ) EC flux tower site, locating in South China subtropical monsoon
climatic zone at 26◦ 44′ 48′′ N, 115◦ 04′ 13′′ E, which belongs to the Chinaflux network,
was selected as an experiment site. The EC data measured at this tower and the
Landsat images in 2004 were used in this study. Firstly, footprint climatology across15

multi-temporal scales (i.e. daily, biweekly, monthly and annual) was calculated using
the Simple Analytical Footprint model on Eulerian coordinates (SAFE, Chen et al.,
2008, 2009a); secondly, biweekly high-spatial-resolution GPP maps were produced
based on the Landsat data using a light-use efficiency modeling approach (e.g., Xiao
et al., 2004); and finally these year-round estimates of GPP were compared to that20

directly derived from EC measurements using two alternative weighting approaches,
i.e. footprint weighting or “equal” weighting. These comparisons provided opportunities
to optimize the parameters used in the light-use efficiency model and to estimate the
tower sensor location biases caused by the variations in size and orientation of footprint
climatology and patch-scale heterogeneities.25
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2 Materials and methods

2.1 Site description

The study site, QYZ Experimental Station, which belongs to Chinese Ecosystem Re-
search Network (CERN) and ChinaFLUX network, is located in southeastern China
(elevation 102 m). The mean annual air temperature was 17.9◦C, and mean annual5

precipitation was 1485 mm (1985–2004). Most areas in the same latitude zone as
QYZ around the world are arid steppes or deserts. The warm and humid environment
in QYZ is the result of unique southeast monsoon. QYZ is located on gently undulating
terrain with slopes between 2.88 and 13.58 (Wen et al., 2006). The QYZ ecological
experimental station was established in 1983, at that time the area was mainly covered10

by wild grasslands, shrub lands and some sparse Pinus massoniana. After the experi-
mental station setup, the land covers of QYZ were changed much by scientists (Huang
et al., 2007). The EC flux tower was established in late August of 2002. The dominated
trees in the flux footprint area are Pinus elliottii, Pinus massoniana and Cunninghamia
lanceolata. The stand characteristics at QYZ based on a survey made in 2005 (Wen15

et al., 2006) are list in Table 1. According to the field measurements in August of 2003,
the leaf area index (LAI) of the plantation was 4.5 (Huang et al., 2007). The understory
shrub mainly includes Loropetalum Chinense and Lyonia compta. The soil is red soil,
which weathered from red sand rock.

2.2 EC flux and meteorological measurements20

CO2, water vapour and energy exchange, and meteorological variables were mea-
sured continuously at the QYZ site from 2003. Measurements, instruments, calcula-
tion procedures and gap filling methodologies were described in Wen et al. (2006). Net
ecosystem exchange (NEE) was calculated as the sum of the EC CO2 flux above the
canopy and the change in CO2 storage in the air column between the EC-sensor height25

and the ground (Wen et al., 2006). Ecosystem respiration (Reco) at night was assumed
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to equal NEE in well-mixed conditions, i.e., friction velocity (u∗) larger than a threshold
value (uth

∗ =0.2 m s−1). Daytime Reco and values to fill nighttime gaps were calculated
using the relationship between nighttime NEE in well-mixed conditions and soil tem-
perature at the 5-cm depth (Wen et al., 2006). Net ecosystem productivity (NEP) was
calculated as NEP=−NEE. GPP was calculated as the sum of daytime NEP and cal-5

culated daytime Reco.

2.3 Data-model fusion and upscaling framework based on Landsat images

An algorithm for estimating landscape and regional C fluxes (e.g. GPP) includes the
following four steps (Fig. 1): i) A satellite-based vegetation photosynthesis model was
adopted to produce GPP maps at 30 m resolutions using Landsat and climate data;10

ii) EC flux footprints for the corresponding Landsat repeating periods (normally bi-
weekly) were calculated using a recently developed footprint model (SAFE, Chen et al.,
2009a); iii) By assuming the footprint integration of remotely-sensed GPP to be com-
parable with the EC-derived GPP values, several key parameters in the satellite-based
vegetation photosynthesis model were optimized using the data-model fusion tech-15

nique; and iv) The updated satellite-based vegetation photosynthesis model was used
for data fusion with other satellite data (e.g. MODIS) or directly used for estimating
landscape/regional GPP.

2.4 An algorithm for estimating GPP based on Landsat data

2.4.1 Overview of the algorithm20

Satellite-based studies have used the light-use efficiency (ε) approach to estimating
GPP (Prince and Goward, 1995; Running et al., 2000, 2004; Behrenfeld et al., 2001)
or net primary production (NPP) (Field et al., 1995; Ruimy et al., 1999). Significant
effort and progress have been made in developing the satellite-based GPP algorithms
(Running et al., 2004; Xiao et al., 2004, 2005). Similar to the MODIS GPP algorithm25
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(Running et al., 2004) and the vegetation photosynthesis model (Xiao et al., 2004),
the algorithm (Fig. 2) used in this study relies on the light-use efficiency (ε) approach
relating GPP to the amount of absorbed photosynthetically active radiation (APAR)
(Monteith, 1966, 1972) such that,

GPP=ε× fPARchl×PAR, (1)5

where PAR is the photosynetically active radiation (in µmol photosynthetic photon flux
density, PPFD), fPARchl is the fraction of PAR absorbed by leaf chlorophyll in the
canopy, and ε is the light use efficiency (µmol CO2/µmol PPFD). Light use efficiency
(ε) is affected by leaf phenology, temperature, and water:

ε=ε0×Pm×Wm×Tm , (2)10

where ε0 is the apparent quantum yield or maximum light use efficiency (µmol CO2/
µmol PPFD) for a given land cover type or vegetation function type, and Pm, Wm and Tm
are the modifiers for the effects of leaf phenology, water and temperature on light use
efficiency of vegetation, respectively.

2.4.2 Model parameter estimates15

Different parameters and inputs for the satellite-based algorithm are estimated in dif-
ferent ways: i) the fraction of PAR absorbed by leaf chlorophyll in the canopy (fPARchl)
and the modifiers (Pm, Wm) are estimated using Landsat imagery data; ii) PAR and
temperature modifier (Tm) are calculated using climate data (either from tower mea-
surements or climate models); and iii) the maximum light use efficiency (ε0) is referred20

to the land-cover-related look-up table and then modified/optimized using EC tower C
measurements and footprint climatology.

To accurately estimate fPARchl in forests is a challenge to both radiative transfer
modeling and field measurements. Significant effort and progress have been made in
developing advanced vegetation indices that are optimized for retrieval of fPAR from25

individual optical sensors (Gobron et al., 1999; Govaerts et al., 1999). In this study, the
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fPAR within the photosynthetically active period of vegetation is estimated as a linear
function of the Enhanced Vegetation Index (EVI),

fPAR=EVI, (3)

where EVI directly normalizes the reflectance in the red band as a function of the
reflectance in the blue band (Huete et al., 1997):5

EVI=G× (ρnir−ρred)/(ρnir+C1×ρred−C2×ρblue+L) (4)

where G=2.5, C1=6, C2=7.5, and L=1 (Huete et al., 1997); and ρnir, ρred and ρblue are
the reflectance of near infrared bands, red bands and blue bands, respectively.

The leaf phenology modifier (Pm) is estimated using the Normalized Difference Veg-
etation Index (NDVI) and the Land Surface Water Index (LSWI). NDVI (Tucker, 1979;10

Field et al., 1995) and LSWI (Xiao et al., 2002) are calculated, respectively using
Eqs. (5) and (6):

NDVI= (ρnir−ρred)/(ρnir+ρred), (5)

LSWI= (ρnir−ρswir)/(ρnir+ρswir), (6)

where ρnir, ρred and ρswir are the reflectance of near infrared bands, red bands and15

short infrared bands, respectively. Pm is calculated at two different phases, depending
upon life expectancy of leaves (deciduous versus evergreen):

Pm =

{
1+LSWI

2 During bud burst to leaf full expansion

1 After leaf full expansion
(7)

The timings of bud burst and leaf full expansion can be identified using NDVI. The effect
of water on plant photosynthesis (Wm) has been estimated as a function of available20

soil content in plant root zone and water vapor pressure deficit (VPD) in a number of
process-based ecosystem models (e.g., Chen et al., 2007) and remote-sensing based
models (e.g., Running et al., 2000). Soil moisture represents water supply to the leaves
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and canopy, and VPD represents evaporative demand in the atmosphere. Leaf and
canopy water content is largely determined by the dynamics of both soil moisture and
VPD. As the first order of approximation, here following the alternative and simple ap-
proach that uses a satellite-derived water index (Xiao et al., 2004), we use Eq. (8) to
estimate the seasonal dynamics of Wm:5

Wm = (1+LSWI)/(1+LSWImax), (8)

where LSWImax is the maximum LSWI within the plant growing season for individual
pixels. The temperature modifier Tm was estimated at each time step, using the equa-
tion developed for the terrestrial ecosystem model (Raich et al., 1991):

Tm =
(T −Tmin)(T −Tmax)

[(T −Tmin)(T −Tmax)]− (T −Topt)2
(9)10

where Tmin, Tmax and Topt are the minimum, maximum and optimal temperature for
photosynthetic activities, respectively. Their values are respectively set to be 0, 35 and
20◦C in this study. If air temperature falls below Tmin, Tm is set to be zero.

The ε0 values vary with vegetation types, and the information about ε0 for individual
vegetation types can be obtained from a survey of the literature (Ruimy et al., 1995) and15

optimized using EC tower measurements. According to the work (Zhang et al., 2006),
the ε0 value was estimated to be 0.032µmol CO2/µmol PPFD in this study stand in
2004.

2.5 Footprint and footprint climatology estimates

We use the Simple Analytical Footprint model on Eulerian coordinates (SAFE, Chen20

et al., 2008, 2009a) to calculate QYZ EC tower’s footprints. The flux footprints were
calculated at a grid size of 30 m×30 m (consistent with the Landsat spatial resolutions)
covering the area (domain) centred on the towers of 6 km×6 km. The model was run
at half-hourly time steps. The half-hourly footprint f (x,y) was rotated along the wind
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direction and cumulated to biweekly, monthly and annual time steps to yield the infor-
mation on footprint climatology, φ(x,y). The total footprint Φ=

∫∫
ΩΠ

φdxdy within the

model domain (ΩΠ) equals 1. The calculated footprint provides a map of the contribu-
tion for the area around the tower to the integral EC-measured flux component. The
detailed description of footprint model and the footprint climatology calculations can5

been found in Chen et al. (2009a).

2.6 Scaling of remotely sensed GPP to EC-flux derived GPP

The ecosystem-scale overall GPP (FGPP,rs) was up-scaled from the spatial distributed
GPP field (FGPP,rs) using Eq. (10),

FGPP,φ =
∫ ∫
ΩΠ

FGPP,rs(x,y)φpure(x,y)dxdy . (10)10

In Eq. (10), φpure is the pure footprint and ΩΠ is the upwind footprint source area.
Both FGPP,rs and φpure were estimated at 30-m resolution. The EC-derived GPP value
is expected to be close to the value of FGPP,rs weighted with φpure over ΩΠ. “Equal”
integration of FGPP,rs was also calculated using Eq. (10) by setting φpure to be 1 over
ΩΠ. Both footprint integration and “Equal” integration of FGPP,rs were calculated at15

biweekly time steps first and then summed up to gain annual values for comparisons.
Comparisons of ecosystem-scale GPP estimates between integrated from FGPP,rs and
directly derived from EC measurements were made for the year of 2004 at the QYZ
site.

2.7 Sensor location bias20

The spatial representativeness of the footprint is given by the sensor location bias (∆)
following Schmid (1997),

∆= (FGPP,φ−FGPP,φ=1)2/(FGPP,φ=1)2 , (11)
11327

where FGPP,φ and FGPP,φ=1 is the footprint-weighted and “equally”-weighted GPP, re-
spectively. Alternatively, the sensor location bias was also estimated by replacing the
“equally” integrated FGPP,φ=1 with the GPP values of the tower location pixel. The val-

ues of ∆ and of root bias δ (δ =
√
∆) were calculated at biweekly time steps and then

averaged to gain monthly and annual values for the year of 2004 at QYZ.5

2.8 Dataset used

The Landsat image data in 2004 for the area (domain) of 6 km×6 km centered at the
QYZ tower acquired from the website of US Geological Survey at http://glovis.usgs.
gov/. The NDVI (Fig. 3), EVI and LSWI were calculated based on the Landsat original
data after atmospheric and other corrections. The QYZ tower data in 2004 were used10

for footprint calculations and several key parameters (e.g. ε0) of the satellite-based
GPP algorithm estimates and for GPP comparisons. The seasonal dynamics of C flux
components measured at QYZ in 2004 were shown in Fig. 4.

3 Results

3.1 Variations in seasonal footprint climatology15

Figure 5 shows the mean monthly daytime pure footprints and the corresponding cu-
mulative footprint contours for every other months in 2004 for QYZ. The seasonal vari-
ations in size and orientation of footprint for QYZ are significant. The areas of 90%
cumulative footprints in winter months were less than 1 km2 whist were as large as
2.5 km2 in summer months.20

3.2 Comparing estimated values of remotely sensed and EC derived GPP

The remotely-sensed biweekly mean GPP maps at 30 m resolution were produced
based on Landsat image data, which overlaid by the corresponding period daytime
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footprint. Figure 6 shows an example at annual time step. The spatial variations of
remotely-sensed GPP were not obvious for this plantation stand. The elliptical shape
of the annual footprint distributed along the NNW-SSE prevailing wind directions. The
size of the annual mean 90% cumulative footprint was about 1.5 km2.

The ecosystem-scale overall biweekly GPP (namely footprint-integrated GPP) was5

up-scaled from these spatially distributed GPP field using Eq. (10). The “equally” inte-
grated GPP was also calculated using Eq. (10) by setting φpure=1 for comparisons. The
remotely-sensed GPP using Landsat data reasonably followed the seasonal dynamics
of observed GPP (Figs. 7 and 8). During winter time (when GPP<=∼3 g m−2 d−1),
the remote-sensing algorithm underestimated the measured GPP; while during sum-10

mer time (when GPP>=∼7 g m−2 d−1), the remote-sensing algorithm overestimated the
observed GPP (Figs. 7 and 8). The footprint integrated GPP values were closer to EC-
derived GPP values than the “equally” integrated GPP and the tower pixel’s GPP values
though their differences were small. The annual mean GPP values were 5.15, 5.06,
4.51 and 5.09 g C m−2 s−1 for EC-derived, footprint-integrated, “equally”-integrated and15

the tower pixel’s GPP, respectively. As shown in Figs. 3 and 6, the land surface het-
erogeneity is quite small for this plantation stand, therefore the annual mean tower
location biases was less than 5%. Even for this “ideal” EC tower location, the esti-
mated biases in annual sum of GPP at the landscape scale between with or without
footprint consideration could be as large as 200 g C m−2.20

4 Discussion

The seasonal phenologically dynamics of canopy development (leaf flush, expansion,
senescence, fall), in relation to their biophysical, biochemical (e.g., chlorophyll and
other pigments, nitrogen) and optical properties, which in turn influence both biophys-
ical parameters (e.g., albedo, latent and sensible heat fluxes) and biogeochemical pa-25

rameters (e.g., photosynthesis) of the land surface (Xiao et al., 2004; Li et al., 2007).
Therefore, the time series of the vegetation indices have potential to provide valuable
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insight into the processes (e.g., growing season length and water condition) that reg-
ulate ecosystem carbon exchange. NDVI and EVI are widely applied to detect the
information on leaf area index (Chen et al., 2006) and fPAR (Running et al., 2004;
Xiao et al., 2004). A number of studies demonstrated that the seasonal dynamics of
MODIS EVI agreed better with GPP than MODIS NDVI for different ecosystems (e.g.5

evergreen needleleaf forest, Xiao et al., 2004; alpine ecosystems in Qinghai-Tibetan
Plateau, Li et al., 2007). The availability of time-series data of SWIR and NIR bands
from the new generation of optical sensors (e.g., VGT, MODIS, Landsat 7) offer new
opportunity for quantifying canopy water content at large spatial scales (Xiao et al.,
2004). These sensor-specific advanced vegetation indices (e.g. EVI and LSWI) have10

been optimized for the Moderate Resolution Imaging Spectroradiometer (MODIS), the
Global Imager (GLI) and the VEGETATION sensors (Li et al., 2007). Clearly, there is
a need to examine those advanced vegetation indices for all available satellite sen-
sors in relation to leaf phenology and the seasonal dynamics of GPP across the flux
tower sites in various biomes. Limited number of studies had evaluated radiometric15

and biophysical performance of vegetation indices (e.g. EVI, NDVI) from Landsat data,
probably because of mismatch of spatial resolutions between Landsat data and EC flux
towers.

The performance of a new algorithm based on the advanced vegetation indices using
Landsat data was evaluated with assistance of a footprint model. A good agreement20

between predicted and EC measured biweekly GPP in 2004 in an evergreen needleleaf
forest at QYZ (R2=0.9, p<0.001, Fig. 8) indicates that there exist a good quantitative
relationship between the Landsat vegetation indices and CO2 flux data, in terms of
the seasonal phase and magnitude of photosynthesis. However, the discrepancies be-
tween remotely-sensed and EC-derived GPP are still large, especially in winter and in25

the middle of summer (Fig. 7). Those large discrepancies may be attributed to three
sources of errors. The first source is the sensitivity of the remote sensing algorithm
to PAR and Tm. The parameters for estimating Tm in Eq. (9), Tmin, Tmax and Topt are
vegetation-type and climate-zone dependent, and may vary with different seasonal
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phases. In this study, we simply assume those parameters have no seasonal varia-
tions. This may lead to ill parameterization of Tm, such as over-corrected (smaller val-
ues of Tm) during the low-temperature periods while under-corrected (larger values of
Tm) during the high-temperature periods. The second source is the time-series data of
vegetation indices from Landsat satellite images. We used the biweekly Landsat data5

that have no BRDF correction or normalization, and thus, the effect of angular geometry
on surface reflectance and vegetation indices remained. EVI is a semi-empirical math-
ematic transformation of observed reflectance from individual spectral bands (blue, red
and NIR) of optical sensors (Huete et al., 2002). The parameters in Eq. (4) may vary
seasonally. For simplification, however, we only optimized one value for each parame-10

ter and applied it to the whole year period. The third source is the error in EC-derived
GPP. The EC measurements themselves are not free from error. The partitioning of
NEE into its component fluxes (i.e. GPP and Reco) has large uncertainties (Falge et al.,
2001; Chen et al., 2009b). The two major steps to derive GPP are the gap filling of
NEE and estimation of daytime ecosystem respiration, and both of them carried on15

a lot of uncertainties.
The maximum light use efficiency (ε0) is the basis for the remote-sensing based al-

gorithms or models and the accurate estimating of ε0 is one of the key steps for using
the satellite data to estimate either GPP or NPP (Running et al., 1999). In nature, ε0
is determined by many biological and biophysical factors and soil nutrient conditions.20

Much attention should be given to the variability of ε0 among vegetation types across
a heterogeneous landscape (Li et al., 2007). Since ε0 differs significantly among veg-
etation types, these differences should be accounted for when estimating GPP using
remotely-sensed data. These global EC datasets provide investigators opportunities
to estimate the ecosystem-scale photosynthetic (including ε0) and respiratory param-25

eters. A widely-used method for those parameters estimation is the Michaelis-Menten
approach (Falge et al., 2001). Caution should be paid when we apply the EC-derived
ε0 to remote-sensing-based algorithms for GPP estimates because: i) there are large
uncertainties in the EC-derived ε0; ii) the values of EC-derived ε0 vary seasonally and
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interannually; and iii) the EC-derived ε0 represents the EC flux footprint area, whose
sizes and orientations vary with time, in other words, the spatial representativeness
of the EC-derived ε0 is normally different from the satellite image pixels. Making use
of the satellite data with fine resolution (e.g. Landsat data) to estimate GPP, flux foot-
print modeling should be involved to optimize the remote-sensing-based algorithms’5

parameters, such as ε0, Tm etc. These optimized parameters then can transfer to the
applications of other satellite images with coarse resolution (e.g. MODIS) by apply-
ing data-fusion techniques. Combining vegetation indices (e.g. EVI, LSWI) from dif-
ferent multi-temporal/spatial satellite sensors’ data, climate data (PAR, temperature),
optimized ε0 parameter for individual vegetation types, and flux footprint modeling and10

data-fusion, the remote-sensing-based algorithms is a powerful tool for estimating land-
scape/regional or global GPP.
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Table 1. Stand characteristics at Qian Yinzhou experiment station in southeastern China∗.

Stand species Pinus Pinus Cunninghamia Plantation
elliottii massoniana lanceolata time

Tree height (m) 12.6 10.5 10.8 1983
Diameter at breast height (m) 0.17 0.13 0.14 1983
Tree density (m ha−1) 745 880 102 1983

∗ Data are from a survey made in 2005 (Wen et al., 2006).
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Figure 1. Flow diagram of the GPP upscaling algorithm based on Landsat and EC tower data 
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Fig. 1. Flow diagram of the GPP upscaling algorithm based on Landsat and EC tower data.
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow diagram of the major processing steps of the Landsat-based GPP algorithm.  The 

definitions of symbols and abbreviations are given in text.  
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Fig. 2. Flow diagram of the major processing steps of the Landsat-based GPP algorithm. The
definitions of symbols and abbreviations are given in text.
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Fig. 3. Land surface heterogeneites of vegetation, indicated by the Normalized Difference
Vegetation Index (NDVI), for the area (domain) of 6 km×6 km centered at the Qian Yinzhou flux
tower in an evergreen needleleaf forest, China. The NDVI was calculated from a Landsat scene
on 3 October 2004.
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Fig. 4. Five-day ensemble means of CO2 component fluxes for the year of 2004 measured at
the Qian Yinzhou flux tower in an evergreen needleleaf forest, China. Measured net ecosys-
tem productivity (NEP) was partitioned into gross primary productivity (GPP) and ecosystem
respiration (Reco) using procedures described in Wen et al. (2006).
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Fig. 5. Mean monthly daytime pure footprints and the corresponding cumulative footprint con-
tours for every other month in 2004 for the Qian Yinzhou flux tower in an evergreen needleleaf
forest, China.
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Fig. 6. Remotely-sensed annual mean gross primary (GPP) map at 30-m resolutions surround-
ing the QYZ tower for 2004, overlaid by corresponding cumulative annual mean daytime pure
(unweighted) footprint climatology contours.

11343

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350

G
P

P
 (

g
 C

 m
-2

 d
ay

-1
)

DOY

EC-derived 

Remotely-sensed (footprint integration)

Remotely-sensed  ("equal" integration)

Remotely-sensed  (tower pixel)

Fig. 7. A comparison of the seasonal dynamics between the observed gross primary production
(GPP) and remotely sensed GPP in 2004 in an evergreen needleleaf forest at QYZ, China.
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Fig. 8. A comparison of biweekly gross primary production (GPP) values between the observed
(EC-derived) and predicted (remotely sensed) in 2004 in an evergreen needleleaf forest at QYZ,
China.
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