Getting to Know a Grass – Basic Anatomy and Identification

Have you ever tried to identify a grass? Most of us who like to look at plants and learn their names will probably admit that we often give up on grasses pretty quickly, or just ignore them entirely. They aren’t the easiest plants to identify to species, and there are so many of them. Without close inspection, they can all look pretty similar. Their flowers aren’t particularly showy, and their fruits are fairly forgettable. They are strands or clumps of green that create a backdrop for more intriguing forms of vegetation. Yet, they are among the most ecologically and economically important groups of plants on the planet. And actually, if you can ascend the hurdles that come with getting to know them, they are beautiful organisms and really quite amazing.

Kōura in the Grass

The grass family – Poaceae – consists of nearly 8oo genera and about 12,000 species. Grasses occur in a wide range of habitats across the globe. Wherever you are on land, a grass is likely nearby. Grasses play vital roles in their ecosystems and, from a human perspective, are critical to life as we know it. We grow them for food, use them for building materials and fuel, plant them as ornamentals, and rely on them for erosion control, storm water management, and other ecosystem services. We may not acknowledge their presence most of the time, but we very likely wouldn’t be here without them.

The sheer number of grass species is one thing that makes them so difficult to identify. Key identifying features of grasses and grass-like plants (also known as graminoids) tend to be very small and highly modified compared to similar features on other flowering plants. This requires using a hand lens and learning a whole new vocabulary in order to begin to understand a grass’s anatomy. It’s a time commitment that goes beyond a lot of other basic plant identification, and it’s a learning curve that few dare to follow. However, once you learn the basic features, it becomes clear that grasses are relatively simple organisms, and once you start identifying them, it can actually be an exciting and rewarding experience.

Quackgrass (Elymus repens) and Its Rhizome

Depending on the species, grasses can be annuals – completing their life cycle within a single year – or perennials – coming back year after year for two or more years. Most grasses have a fibrous root system; some are quite shallow and simple while others are extremely deep and extensive. Some species of perennial grasses spread by either rhizomes (underground stems), stolons (horizontal, above ground stems), or both. Some grasses also produce tillers, which are essentially daughter plants that form at the base of the plant. The area where roots, rhizomes, stolons, and tillers meet the shoots and leaves of a grass plant is called the crown. This is an important region of the plant, because it allows for regrowth even after the plant has been browsed by a grazing animal or mown down by a lawn mower.

The stem or shoot of a grass is called a culm. Leaves are formed along the lengths of culms, and culms terminate in inflorescences. Leaves originate at swollen sections of the culm called nodes. They start by wrapping around the culm and forming what is called a leaf sheath. Leaves of grasses are generally long and narrow with parallel venation – a trait typical of monocotyledons. The part of the leaf that extends away from the culm is called the leaf blade or lamina. Leaves are alternatively arranged along the length of the stem and are two-ranked, meaning they form two distinct rows opposite of each other along the stem.

The area where the leaf blade meets the leaf sheath on the culm is called the collar. This collar region is important for identifying grasses. With the help of a hand lens, a closer look reveals the way in which the leaf wraps around the culm (is it open or closed?), whether or not there are hairs present and what they are like, if there are auricles (small flaps of leaf tissue at the top of the collar), and what the ligule is like. The ligule is a thin membrane (sometimes a row of hairs) that forms around the culm where the leaf blade and leaf sheath intersect. The size of the ligule and what its margin is like can be very helpful in identifying grasses.

The last leaf on the culm before the inflorescence is called the flag leaf, and the section of the culm between the flag leaf and the inflorescence is called a peduncle. Like the collar, the flower head of a grass is where you’ll find some of the most important features for identification. Grass flowers are tiny and arranged in small groupings called spikelets. In general, several dozen or hundreds of spikelets make up an inflorescence. They can be non-branching and grouped tightly together at the top of the culm, an inflorescence referred to as a spike, or they can extend from the tip of the culm (or rachis) on small branches called pedicels, an inflorescence referred to as a raceme. They can also be multi-branched, which is the most common form of grass inflorescence and is called a panicle.

Either way, you will want to take an even closer look at the individual spikelets. Two small bracts, called glumes, form the base of the spikelet. Above the glumes are a series of florets, which are enclosed in even smaller bracts – the outer bract being the lemma and the inner bract being the palea. Certain features of the glumes, lemmas, and paleas are specific to a species of grass. This includes the way they are shaped, the presence of hairs, their venation, whether or not awns are present and what the awns are like, etc. If the grass species is cleistogamous – like cheatgrass – and the florets never open, you will not get a look at the grass’s sex parts. However, a close inspection of an open floret is always a delight. A group of stamens protrude from their surrounding bracts bearing pollen, while feathery stigmas reach out to collect the pollen that is carried on the wind. Depending on the species, an individual grass floret can have either only stamens, only pistils (the stigma bearing organs), or both. Fertilized florets form fruits. The fruit of a grass is called a caryopsis (with a few exceptions) and is indistinguishable from the seed. This is because the seed coat is fused to the wall of the ovary, unlike other fruit types in which the two are separate and distinct.

If all this doesn’t make you want to run outside and take a close look at some grasses, I don’t know what will. What grasses can you identify in your part of the world? Let me know in the comment section below or check out the linktree and get in touch by the means that suits you best.

Tea Time: Kentucky Coffeetree

Learning to identify Kentucky coffeetree in the winter brings you one step closer to making a coffee-like (albeit caffeine-free) beverage from its seeds. Humans have a long history of occasionally using the “beans” of Gymnocladus dioicus to make this tisane, which explains common names like coffeetree, American coffee berry, and coffeenut. The process is a bit time consuming, and the end result is mixed, but foraging adventures like this are all about the experience. This drink is not likely to replace whatever you are currently drinking in the morning, but it does offer an interesting diversion.

fruit of Kentucky coffeetree (Gymnocladus dioicus)

Winter is the best time to collect the pods, which are flat, leathery, brown to black in color, and about 2 inches wide and 6 inches long. The stocky fruits are often found hanging from the tips of the tree’s bare branches. Many also fall to the ground over the course of the season, making them easier to collect. If you split the pods open early in the season, you’ll find the seeds embedded in a sticky, neon green goo that will stick to your hands and clothes. As the year progresses, the glue-like substance dries out and is easier to deal with. The seeds are dark, extremely hard, rounded and flattened, and about the size of a penny or nickel. The funiculus, which is a short stalk that connects the ovule/seed to the ovary, tends to be fairly prominent and something you don’t often get to see on seeds.

inside the fruit of a Kentucky coffeetree

Once you’ve collected several pods and removed the seeds from the gooey innards, soak the seeds for an hour or two and then rinse them, making sure to remove dried up goo and any remaining funiculi. Pat the seeds dry and place them in a baking dish with a lid for roasting. The roasting process is said to eliminate the toxicity of the seeds. The lid is important because several of the seeds will pop open during roasting and will fly around in your oven if they aren’t contained.

The fruits of Kentucky coffeetree contain a toxic compound called cytisine, an alkaloid that is similar in action to nicotine. The Handbook of Poisonous and Injurious Plants by Nelson, et al. states that “the cytisine content of the seeds is quite low; and chewing one or two would not be expected to produce toxic effects.” Actually, the bigger risk of chewing one of these rock hard seeds is breaking your teeth. Cytisine poisoning includes typical symptoms like diarrhea and vomiting; in extreme cases it can lead to coma and death. If the seeds are properly roasted, you won’t have to worry about any of this, but as with anything you are trying for the first time, start with small amounts.

seeds of Kentucky coffeetree

Times and temperatures for roasting vary depending on who you’re getting your information from. I went with 300° F for 3 hours (which ended up being 3 and a half hours because I forgot to take them out in time). One source suggested roasting the seeds for only 2 hours for better flavor, but I decided to err on the side of caution and roast them for longer. Many of the seeds will have popped open during the roasting process. For those that haven’t you will need to use a nutcracker or some other comparable tool to crack the seed coat and remove the insides. Dispose of the seed coats and grind the remaining bits into a fine powder using either a coffee grinder or mortar and pestle. You’ll end up with a fine, chocolate-colored powder which you will use to make your “coffee.”

You can prepare this beverage in the same way you would typically choose to make coffee, but keep in mind that upon adding water, the fine grounds quickly turn to a mud-like substance and will block up the filter you are using. For this reason, I recommend small batches. I found Kentucky coffeetree “coffee” to be very earthy and rich and somewhat similar to strong black coffee. Sierra tried it and immediately exclaimed, “That’s nice!” and then proceeded to give it two thumbs up. Some people like black coffee. I added cream to it and found it much more pleasant to drink. Other people don’t think this beverage tastes like coffee at all and instead call it tea-like, chocolaty, fruity, or “akin to mud,” among other more negative reviews. I think it’s a drink that could grow on me, but considering the effort it takes to make one cup, I don’t see that happening any time soon.

Kentucky coffeetree “coffee grounds”

Have you tried making “coffee” from the seeds of Kentucky coffeetree? Let us know what you think about it in the comment section below.

More Tea Time Posts on Awkward Botany:

Winter Trees and Shrubs: Kentucky Coffeetree

A few years ago, I was on the hunt for a Kentucky coffeetree. I was aware that a few could be found in some of the parks around Boise, but not being familiar with them, I wasn’t sure where exactly to find one or what I was even looking for. One winter while riding my bike to work, I noticed a tree at the edge of a golf course. No doubt I had passed this tree hundreds (if not thousands) of times. What caught my eye were thick, bean-like pods hanging from the ends of branches. They were unlike any other tree fruits I was familiar with. I stopped and, with a little effort, knocked one of the pods free from the tree. When I split it open, I found three or four large, smooth, black seeds inside. Later, I confirmed that the tree was indeed Kentucky coffeetree. Passing by it during any other time of year, it may have never caught my eye – just another deciduous tree with green leaves that, from a distance at least, looks like so many other deciduous trees. But in winter, with several chunky pods hanging from the tips of its stout branches, it really stood out. This is the joy of looking at trees and shrubs in the winter, where features that may otherwise be obscured, become glaringly obvious against the plainness of a winter backdrop.

fruits of Kentucky coffeetree (Gymnocladus dioicus)

Kentucky coffeetree (Gymnocladus dioicus) is in the bean family (Fabaceae). It occurs in forests across the eastern and central United States and north into southern Ontario, Canada. It is also planted in urban areas both within and outside of its native range. It is a medium to large tree, averaging 60-70 feet (18-21 meters) high and 40-50 feet (12-15 meters) wide. It generally branches out at around 10-15 feet high and forms a narrow, rounded to pyramidal crown. It is a fairly sparsely branched tree compared to other trees its size, which is much easier to observe in the winter after all of its leaves have dropped.

winter twigs of Kentucky coffeetree

The winter twigs of Kentucky coffeetree are thick and stubby with few hairs and can be greenish, orange, brown, or deep wine-red in color. They have small, scattered lenticels that are either white, orange, or orange-brown. Their leaf scars are alternately arranged and are heart- or sheild-shaped and very large with 3 to 5 distinct bundle traces. It’s pretty obvious from the leaf scars that Kentucky coffeetree bears a sizeable leaf. These massive, bipinnately compound leaves are demonstrated in this Plant Sleuth YouTube video. Leaf buds are tiny and found directly above the leaf scar. There are usually two of them, one of which is sterile and can be difficult to see. They are round, hairy, olive-colored, and sunken like fuzzy, little craters, although you’ll need a hand lens to really see the hairs (which I highly recommend). The twigs lack a terminal leaf bud. Their pith is rounded, thick, and either orange, brown, or salmon colored. The young bark of Kentucky coffeetree is pale gray and fairly smooth. As the tree ages, it breaks into shallow ridges that run the length of the tree. At maturity, the bark is shades of grey and scaly with long, defined, narrow ridges.

pith of Kentucky coffeetree twigs

Kentucky coffeetree is dioecious, meaning that there are “male” trees and “female” trees. The tree that I found on the golf course was a “female” tree because it was bearing fruit, which the “males” and certain cultivars won’t have. If there are no seed pods present, you will have to rely on other features to identify the tree; however, when the pods are present, the tree is unmistakable. Its fruits are thick-walled, flat, oval-shaped, smooth, leathery, and orange-brown to black in color. They measure around 5 to 10 inches long and up to 4 inches wide. They are indehiscent and can persist on the tree for more than a year, and even those that fall to the ground can take months or years to break down enough to release the seeds, which have a hard, dark seed coat. Inside the pod, the seeds are embedded in a thick, gooey, yellow-green pulp, which some descriptions call sweet. However, it doesn’t look appetizing enough to try, and considering that the seeds are toxic, I’d be hesitant to consume any part of the fruit without first verifying its safety with a reputable source. That being said, the seeds can be roasted and used to make a coffee substitute and, as long as it’s done correctly, is safe to drink.

mature bark of Kentucky coffeetree

Kentucky coffeetree is one of the last trees to leaf out in the spring and one of the first to drop its leaves in the fall. Flowers appear in mid to late spring. The leaves have a pink to bronze color as they first emerge, and in the fall they turn bright yellow before they drop.

fall foliage of Kentucky coffeetree

More Winter Trees and Shrubs:

Weeds of Boise: Hellstrip on Jefferson Street

Growing plants in urban areas comes with a variety of challenges. Soil conditions aren’t always ideal; shade thrown by buildings and other structures can be difficult to work around; paved surfaces lead to compaction and, among other things, can increase temperatures in the immediate area; and in locations where water is limited, keeping plants hydrated is a constant concern. One location that tends to be especially difficult for gardeners is the hellstrip – the section of ground between a roadway and a sidewalk. Much can be said about gardening in hellstrips, so much that there is even a book about it called Hellstrip Gardening by Evelyn Hadden, which I spent several posts reviewing a few years back.

The difficulty of maintaining a hellstrip (and perhaps questions about who is responsible for maintaining it in the first place) can result in it being a piece of property frequently subject to neglect. In urban areas, neglected land is the perfect place for weeds to take up residence. The conditions in a hellstrip being what they are – hot, dry, frequently trampled, and often polluted – also gives weeds a chance to show what they can do. It’s a wonder that any plant can survive in such conditions, but the wild flora of our cities consists of some pretty tough plants, and a hellstrip is an excellent location to familiarize yourself with some of these plants.

On a walk with Kōura, I came across a weedy hellstrip on Jefferson Street in downtown Boise. Many of the classic hellstrip challenges are present there – it’s surrounded by paved surfaces, there is lots of foot traffic in the area, parking is permitted on the roadside, urban infrastructure (street signs, parking meters, stoplights) is present within the strip. It’s clear that at one point the area was being maintained as irrigation is installed and there are remnants of turfgrass. Three honey locusts were also planted in the strip, one of which has clearly died. Now that maintenance seems to have ceased, weeds have become the dominant flora in this hellstrip. What follows are a few photos and a list of the weeds I’ve identified so far. Like all posts in the Weeds of Boise series, this list may be updated as I continue to check back in on this location.

shepherd’s purse (Capsella bursa-pastoris) and prickly lettuce (Lactuca serriola)
dandelion (Taraxacum officinale)
salsify (Tragopogon dubius)
seed head of salsify
knotweed (Poylgonum sp.)
prickly lettuce (Lactuca serriola)
mallow (Malva neglecta)
orchard grass (Dactylis glomerata)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Dactylis glomerata (orchard grass)
  • Epilobium brachycarpum (tall willowherb)
  • Lactuca serriola (prickly lettuce)
  • Malva neglecta (dwarf mallow)
  • Polygonum sp. (knotweed)
  • Salsola sp. (Russian thistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Vulpia myuros (rattail fescue)

Are there unkept hellstrips in your neighborhood? If so, what weeds have you seen taking up residence there?

The Wonderful World of Plantlets, Bulbils, Cormlets, Tubercles, and Gemmae

Probably the most well known strategy that plants have for dispersal is by way of seeds. Seeds are plants in embryo, and new generations of plants are born when seeds, released from their parent plants, find suitable locations to germinate. But one of the most amazing things about plants in general is that they have the ability to reproduce in a variety of different ways, and many plant species are not limited to seeds as their only means of dispersal. A paper by Scott Zona and Cody Coyotee Howard, published in Flora (February 2022), introduces us to the intriguing world of aerial vegetative diaspores – just one of the many ways that plants have to get around.

A diaspore is a plant structure that facilitates dispersal. Seeds are diaspores, as are spores, which are produced by non-seed bearing plants like mosses and ferns. If you’ve ever planted bulbs, you’ve handled another type of diaspore. Bulbs and corms, which many spring flowering plants are grown from, form little offshoots called bulblets and cormels that, when detached from their parent structure, can grow into new individuals. These vegetative diaspores are produced below ground. Aerial vegetative diaspores, on the other hand, are formed on above ground plant parts. This clunky term encompasses a number of different structures that are often simply called bulbils, which Zona and Howard explain is used as “a catch-all term that obscures their morphological identity.”

Compiling a list of plant species that feature aerial vegetative diaspores is a difficult task when plant descriptions from various sources use a broad selection of terminology for the same or similar plant parts. To help complete this task, Zona and Howard defined five distinct types of aerial vegetative diaspores – plantlets, bulbils, cormlets, tubercles, and gemmae – and came up with a list of 252 taxa that are known to feature at least one of these structures.

plantlets on the leaf margin of Kalanchoe daigremontiana (wikimedia commons; Aurélien Mora)

Plantlets are miniature plants attached to another plant. Once mature, they have clearly visible leaves, stems, and roots (or root initials) and are non-dormant, meaning they are ready to grow on their own as soon as they’re given the opportunity. The tiny plants borne along the margins of the leaves of mother of thousands (Kalanchoe daigremontiana) is a great example of a plantlet.

A bulbil consists of a shortened stem surrounded by scale leaves modified for food and water storage. Sometimes root initials are visible at the base of the bulbil. Bulbils remain dormant until they are dispersed and conditions are suitable for growth. When bulbils start growing but remain attached to the plant, they become a plantlet. A good example of a bulbil can be found on bulbous bluegrass (Poa bulbosa).

Cormlets are comprised of stem tissue and, like plantlets and bulbils, have a single axis of polarity. They have highly reduced scale leaves and are dormant at dispersal. Bulbil bugle lily (Watsonia meriana), despite its misleading common name, is a good example of a plant that produces cormlets.

Tubercles are made up of swollen stem tissue and, like tubers (their underground counterparts), have multiple shoot buds and multiple axes of polarity (meaning there is no right side up like there is in plantlets, bulbils, and cormlets). They lack scale leaves and are dormant at dispersal. Air potato (Dioscorea bulbifera) is an example of a tubercle-producing plant. As you might guess from the common name, potato-like structures are produced aerially on this vining plant that was introduced to North America from Africa and is now invasive in Florida.

A gemma is a tiny cluster of undifferentiated cells. Gemmae are non-dormant and lack polarity. They are the smallest and least common form of aerial vegetative diaspore and can be found on Drosera pygmaea, a species of sundew native to parts of Australia and New Zealand.

Drosera pygmaea (wikimedia commons; Björn S…)

Zona and Howard’s list of plants with aerial vegetative diaspores is the most comprehensive list to date – although it is undoubtedly and understandably missing some – and includes representatives from 42 plant families and 21 plant orders. Plantlets are the most common form of aerial vegetative diaspore at 116 taxa, with bulbils coming in second at 72. Cormlets and tubercles are less common, with 25 and 16 taxa respectively. Their paper includes the full list and offers further information about many of the species listed. It’s worth taking time to explore and is a valuable resource for anyone interested in the topic. In addition, their discussion section highlights a number of questions that warrant further investigation.

Questions surrounding reproductive strategies and the dispersal of aerial vegetative diaspores are particularly interesting. Because these structures are vegetative, they are essentially clones of the parent plant, meaning there is no genetic mixing as occurs when seeds are produced. This can be an advantage when sexual reproduction isn’t possible due to lack of pollinators, environmental restrictions, or chromosomal/polyploidy anomalies. It also assures that new individuals are pre-adapted to the site, and it can help a species colonize an area quickly. This ability to rapidly colonize explains why several of the species on Kona and Howard’s list are known to be invasive in parts of the world outside of their native range.

A species that produces both seeds and aerial vegetative diaspores may have an advantage when it comes to dispersal since both types of diaspores have their strengths. Seeds can remain dormant in the soil and are likely to persist in the environment longer than vegetative diaspores, but vegetative diaspores can be produced without relying on pollinators and can establish new individuals quickly. The modes of dispersal between the two can also vary. Seeds can be dispersed by wind or carried away by animals, while vegetative diaspores often rely solely on gravity to get around. One exception is hitchhiker elephant ear (Remusatia vivipara), whose bulbils are equipped with tiny hooks that cling to animal fur and are transported in a similar manner to burs.

hooked bulbils of hitchhiker elephant ear (Remusatia vivipara) (wikimedia commons; Dinesh Valke)

When the advantages of aerial vegetative diaspores are considered, it is a wonder that we don’t see them more often. Many plants can be easily propagated by taking stem, leaf, and/or root cuttings and placing them in conditions that favor adventitious root and shoot growth. This may suggest that dormant genetic pathways for producing vegetative diaspores exist in most plants. Or maybe not. Genetic studies of species that feature these structures are needed in order to understand why they are found in some species and not others. Kona and Howard leave us with a slew of research questions like this, and it’s a topic I’ll continue to check in on.


Follow and support Awkward Botany here: https://linktr.ee/awkwardbotany

Burr Tongue, or The Weed That Choked the Dog

It is said that the inspiration for Velcro came when Swiss inventor, George de Mestral, was removing the burrs of burdock from his dog’s coat, an experience we had with Kōura just days after adopting her. I knew that common burdock was found on our property, and I had made a point to remove all the plants that I could easily get to. However, during Kōura’s thorough exploration of our yard, she managed to find the one plant I had yet to pull due to its awkward location behind the chicken coop.

I knew when I saw the clump of burrs attached to her hind end that we were going to spend the evening combing them out of her fur. However, not long after that we discovered that Kōura had already started the process and in doing so had either swallowed or inhaled some. What tipped us off was her violent hacking and gagging as she moved frantically around the living room. She was clearly distraught, and so were we. Recognizing that she had probably swallowed a burr, we made a quick decision to take her to an emergency vet. This was our unfortunately timed (this happened on Christmas Eve) introduction to burr tongue and all the frightening things that can happen when a dog swallows burdock burrs.

The roots, shoots, and leaves of both greater burdock (Arctium lappa) and common burdock (Arctium minus) are edible, which I have already discussed in an Eating Weeds post. The burrs, on the other hand, are clearly not. While sticking to the fur of animals and the clothing of people is an excellent way for a plant to get their seeds dispersed, the sharp, hooked barbs that facilitate this are not something you want down your throat. When this occurs, the natural response is to try to hack them up, which Kōura was doing. Salivating heavily and vomiting can also help. In many cases, this will be enough to eliminate the barbs. However, if they manage to work their way into the soft tissues of the mouth, tongue, tonsils, or throat and remain there, serious infection can occur.

burr of common burdock (Arctium minus)

A paper published in The Canadian Veterinary Journal in 1973 describes the treatment for what is commonly known as burr tongue and technically referred to as granular stomatitis. The paper gives an account of what can happen when “long-haired breeds of dogs … run free in areas where [burdock] grows” and the hooked scales of the burrs consequently “penetrate the mucous membrane of the mouth and tongue.” Dogs with burrs imbedded in their mouths may start eating less or more slowly, drinking more water, and drooling excessively. As infection progresses, their breath can start to stink. A look inside the mouth and at the tongue will reveal lesions where the burrs have embedded themselves. Treatment involves putting the dog under anesthesia, scraping away the infected tissue, and administering antibiotics. Depending on the severity of the lesions, scar tissue can form where the barbs were attached.

To prevent infection from happening in the first place, a veterinarian can put the dog under anesthesia and use a camera inside the dog’s mouth and throat to search for pieces of the burr that may have gotten lodged. There is no guarantee that they will find them all or be able to remove them, and so the dog should be monitored over the next several days for signs and symptoms. At our veterinary visit, the vet also warned us that if any burrs were inhaled into the lungs, they could cause a lung infection, which is another thing to monitor for since it would be practically impossible for an x-ray or a camera to initially find them.

Luckily, now more than three weeks later, Kōura appears to be doing fine, and the offending burdock has been taken care of. One thing is for sure, as someone who is generally forgiving of weeds, burdock is one weed that will not be permitted to grow at Awkward Botany Headquarters.


For more adventures involving Kōura, be sure to follow her on Instagram @plantdoctordog.

The Serotinous Cones of Lodgepole Pine

Behind the scales of a pine cone lie the seeds that promise future generations of pine trees. Even though the seeds are not housed within fruits as they are in angiosperms (i.e. flowering plants), the tough scales of pine cones help protect the developing seeds and keep them secure until the time comes for dispersal. In some species, scales open on their own as the cone matures, at which point winged seeds fall from the tree, taking flight towards their new homes. In other species, the scales must be pried open by an animal in order to free the seed. A third group of species have what are called serotinous cones, the scales of which are sealed shut with resin. High temperatures are required to soften the resin and expose the seeds.

Serotinous cones are a common trait of pine species located in regions where wildfire naturally and regularly occurs. One such species is lodgepole pine (Pinus contorta), which is found in abundance in forests across much of western North America. Lodgepole pine is a thin-barked tree species that burns easily and is often one of the first plants to recolonize after a stand-replacing wildfire. There are 3 or 4 subspecies of lodgepole pine. The one with the largest distribution and the one that most commonly exhibits serotinous cones is P. contorta subsp. latifolia, which occurs throughout the Rocky Mountains, north into the Yukon, and just west of the Cascade Range.

needles of lodgpole pine (Pinus contorta)

Lodgepole pine grows tall and straight, generally maxing out at around 80 feet tall. Its needles are about two and a half inches long, are borne in bundles of two, and tend to twist away from each other, which is one explanation for the specific epithet, contorta. Its cones are egg-shaped with asymmetrical bases, measuring less than two inches long with prickly tips at the ends of each scale. The seeds of lodgepole pine are tiny with little, papery wings that aid in dispersal. The cones can remain attached to the tree for 15-20 years (sometimes much longer), and the seeds remain viable for decades. In non-serotinous cones, the scales start opening on their own in early autumn. Serotinous cones require temperatures of 45-50°C (113-122°F), to release the resin bond between the scales. Some cones that happen to fall from the tree can open when exposed to particularly warm temperatures on the ground. Otherwise, it takes fire to free the seeds.

Serotinous cones aren’t a guarantee, and the percentage of trees with serotinous cones compared to those with non-serotinous cones varies widely across the range of lodgepole pine, both in space and in time. One reason for this is that trees with serotinous cones don’t develop them until they reach a certain age, generally around 20-30 years old, or perhaps as old as 50 or 60. The cones of young trees are all non-serotinous. But some trees never develop serotinous cones at all. Serotiny is a genetic trait, and there are various factors that either select for or against it. A number of factors are at play simultaneously over the life of a tree and across a population of trees, so it is difficult to determine exactly why the percentage of serotinous cones is so variable across the range of the species. What follows are a few potential explanations for this phenomenon.

closed cone of lodgepole pine (Pinus contorta)

As a fire-adapted, pioneer species, lodgepole pine has evolved to live in environments where fire is predictably common. Serotinous cones help ensure that a population won’t be wiped out when a massive wildfire comes through. After the fire has passed and the seeds are released, lodgepole pine can quickly repopulate the barren ground. As long as fire occurs within the lifespan of a population of similarly aged trees, it is advantageous for the majority of individuals to maintain their serotinous trait. If the population is located in an area that historically does not see much fire, serotinous cones may be a disadvantage and can have adverse effects on the longevity of that population.

A study published in Ecology in 2003 looked at the influence that the frequency of fire has on lodgepole pine stands found at low and high elevations in Yellowstone National Park. At lower elevations, where summer temperatures are warmer and precipitation is relatively minimal, fires occur more frequently compared to higher elevations, which tend to be cooler and wetter. The researchers found that at lower elevations when fires occurred at short intervals (less than 100 years between each fire), lodgepole pine was slower to repopulate compared to longer intervals. This suggests that the percentage of serotiny found in stands that experienced short fire intervals was low, and that stands with long fire intervals exhibit a higher percentage of serotiny. After all, as mentioned above, lodgepole pines don’t start developing serotinous cones until later in life.

At higher elevations, where fire occurs less frequently, lodgepole pines were found to have a low percentage of serotinous cones regardless of the age of the stand. Because the trees at high elevations are more likely to die of old age rather than fire, maintaining serotinous cones would be a disadvantage. Open cones are preferred. Thus, at least in this study, a greater percentage of serotinous cones was found in lodgepole pines at lower elevations compared to those at higher elevations. Latitude, elevation, mountain pine beetle attacks, and other environmental factors have all been used to explain differences in serotiny. However, the factor that seems to have the greatest influence is the frequency of fire. As James Lotan writes in a 1976 report: “A high degree of cone serotiny would be expected where repeated, high-intensity fires occur. Where forest canopies are disrupted by factors other than fire, open cones annually supply [seed] for restocking disturbances such as windfalls.”

That being said, one other factor does appear to play a critical role in whether or not lodgepole pines produce serotinous cones, and that is seed predation by squirrels. In a paper published in Ecology in 2004, researchers wondered why the percentage of serotinous cones wasn’t even higher in populations where fire reliably occurred during the lifetime of the stand. To help answer this question they looked at the activities of pine squirrels, which are the main seed predator of lodgepole pine seeds. Pine squirrels visit the canopy of lodgepole pines and consume the seeds found in serotinous cones. Because non-serotinous cones quickly shed their seeds, serotinous cones are a more reliable and accessible food source, and because pine squirrels are so effective at harvesting the seeds of serotinous cones, the researchers concluded that, “in the presence of pine squirrels, the frequency of serotiny is lower and more variable, presumably reflecting,” among a variety of other factors, “the strength of selection exerted by pine squirrels.”

A study published in PNAS in 2014 added evidence to this conclusion. While acknowledging that fire plays a major role in the frequency of serotinous cones, the researchers asserted that “squirrels select against serotiny and that the strength of selection increases with increasing squirrel density.” However, despite making it easier for squirrels to access their seeds, lodgepole pines maintain a degree of serotinous cones, since clearly their main advantage is retaining a canopy-level seed bank from which seeds are released after a fire and by which a new generation of lodgepole pines is born.

open cones of lodgepole pine (Pinus contorta)

Further Reading and Viewing:

Meet Erigeron linearis

Erigeron is a genus of herbaceous, flowering plants consisting of between 390 and 460 species and is a member of the aster/sunflower family (Asteraceae). Plants in this genus are annuals, biennials, or perennials and are mainly found in temperate regions around the world. At least 163 species occur in the contiguous United States. Erigeron diversity is particularly high in western states; however, each state is home to at least one Erigeron species.

A common name for plants in this genus is fleabane. This name comes from an outdated belief that the plants can be used to repel or poison fleas, flies, gnats, and other tiny insects, a belief for which there is no evidence. In Ancient Greek, the name Erigeron is said to mean something akin to “old man in the early morning,” likely referring to the appearance of the seed heads which look like little tufts of white hair. Some Erigeron species are also commonly referred to as daisies.

desert yellow fleabane (Erigeron linearis)

One species of Erigeron that I would like you to meet is Erigeron linearis. While most of the plants in this genus have flowers that are white, pink, or various shades of purple, E. linearis is a yellow-flowered species, hence the common name, desert yellow fleabane. Another common name for this plant is narrow leaved fleabane, a reference to its linear leaves. E. linearis is a small plant with a prominent taproot that reaches up to 20 centimeters tall and forms a leafy, rounded mat or cushion of whitish or gray-green, alternately arranged leaves. The white appearance is due to numerous, fine, appressed hairs on the leaves and stems. Flower stalks are produced in abundance in late spring through early summer and are mostly leafless. They reach above the mound of leaves and are each topped with at least one flower head, which nods at first, but then straightens out as the flowers open. Each flower head is about 2 centimeters wide and is typical of plants in the sunflower family, with a cluster of deep yellow disc florets in the center, surrounded by ray florets that are lighter in color. Both disc and ray florets are fertile; however, the disc florets have both “male” (stamens) and “female” (pistils) flower parts, while the ray florets have only “female” parts. The involucre, which sits at the base of the flowers, is egg-shaped or hemispheric and made up of a series of tiny, fuzzy bracts called phyllaries.

the flower head of desert yellow fleabane (Erigeron linearis)

The fruit of Erigeron linearis is called a cypsela, an achene-like fruit that is characteristic of plants in the sunflower family. The fruits are miniscule and topped with a pappus composed of short outer bristles and longer, pale, inner bristles. The two types of pappus bristles (or double pappus) must be the reason for the scientific name this species was originally given in 1834, Diplopappus linearis. While the seeds of more than 80% of flowering plant species found in dryland regions exhibit some form of dormancy, a study published in Plant Biology (2019), found that E. linearis is one of the few species with non-dormant seeds. This means that for those of us interested in growing plants native to the Intermountain West, E. linearis is a pretty easy one to grow and is a great addition to water-wise gardens, pollinator gardens, and rock gardens.

Erigeron linearis seedling

Erigeron linearis is distributed across several western states and into Canada. It is found in northern California, eastern Oregon and Washington, southern British Columbia, across Idaho and east into southern Montana, western Wyoming and northwestern Utah. It is found at low to moderate elevations in open, rocky foothills, grasslands, sagebrush steppe, and juniper woodlands. It prefers well-drained soils and full sun. It is one of many interesting plants found on lithosols (also known as orthents), which are shallow, poorly develop soils consisting of partially weathered rock fragments. In the book Sagebrush Country, Ronald Taylor calls lithosols “the rock gardens of the sagebrush steppe,” and refers to E. linearis and other members of its genus as “some of the more colorful components of the lithosol gardens.” E. linearis is a food source for pronghorn, mule deer, and greater sage-grouse, and the flowers are visited by several species of bees and butterflies. The plant is also a larval host for sagebrush checkerspots.

desert yellow fleabane (Erigeron linearis)

Additional Resources:

Drought Tolerant Plants: Blue Flax

“Lewis’s prairie flax is a pretty garden ornamental suited to hot, dry sites. Each morning delicate sky blue flowers open on slender arching stems, only to fall off in the afternoon and be replaced by others the next morning. In spite of its fragile appearance, it is quite sturdy and may put out a second flush of blossoms on new growth in late summer.”Common to the This Country: Botanical Discoveries of Lewis and Clark by Susan H. Munger


When selecting plants for a waterwise garden, it is imperative that at least a portion of the plants are easy to grow and maintain and are adapted to a wide variety of conditions. This will ensure a more successful garden, both functionally and aesthetically. Luckily, there are a number of drought-tolerant plants that pretty much anyone can grow without too much trouble. Blue flax, in my opinion, is one such plant.

You may be familiar with flax as a culinary plant, known for its edible seeds which are used to make flour (i.e. meal) and oil. Or perhaps you’ve used linseed oil, a product of flax seeds, to protect wooden, outdoor furniture or in other wood finishing projects. You may also think of linen when you think of flax; and you should, because linen is a textile made from the fibrous stems of the flax plant. All of these products generally come from a domesticated, annual flax known as Linum usitatissimum – a species that has been of benefit to humans for millenia. Various species of flax have also been planted for erosion control, fire breaks, forage for livestock, and in pollinator-friendly gardens. Flax seeds, a common ingredient in bird seed mixes, provide food for birds and other small animals. All this to say, humans and flax share a long history together, and it deserves a place in your garden.

The flax species profiled here is actually two species: Linum lewisii and Linum perenne. That’s because these two species look nearly identical and are both used as garden ornamentals and in wildflower seed mixes. They are also both known as blue flax, among myriad other common names. Due to their similiarity, L. lewisii is considered by some to be a subspecies of L. perenne.

Linum lewisii is found across western North America and received its name after being collected by a member of the Lewis and Clark Expedition. The plant collection was brought back from the expedition and determined to be new to western science. It was described and named by Frederick Pursh. Linum perenne is a European species which was introduced to North America as an ornamental and has since become widely naturalized. In 1980, a naturalized selection of L. perenne was released for use in restoration plantings under the cultivar name ‘Appar’ with the understanding that it was L. lewisii. A genetic study later revealed that the cultivar was instead L. perenne. The study also provided evidence that “North American Lewis flax and European perennial blue flax are reproductively isolated,” suggesting that they are indeed two separate species.

Despite being separate species, telling them apart can be a challenge. Blue flax plants grow from a taproot and woody base and are multistemmed, reaching two to three feet tall. The stems are thin yet stringy, wiry, and not easily torn, which helps explain why flax is such a good plant for making textiles. Short, slender leaves are alternately arranged along the length of the stems, while flower buds form at the ends of stems in loose clusters. Flowers bloom early in the day and are spent by the afternoon. They are 5-petaled, saucer-shaped, and a shade of blue – from whitish blue to deep blue – depending on the plant. Small, round, 10-chambered seed capsules form in the place of flowers, each chamber housing one or two flat, shiny, dark brown seeds. Flowers bloom daily in succession up towards the ends of stems even as the fruits of spent flowers lower on the stalk mature.

seed capsules of blue flax

A close look at their flower parts is really the only way you might be able to tell these two species apart. Blue flax flowers have five stamens topped with white anthers and five styles topped with little, yellow stigmas. The flowers of L. lewisii are homostlyous, which means their styles are all the same length and are generally taller than or about the same height as the stamens. The flowers of L. perenne are heterostylous, which means their flowers can either have styles that are much longer than their stamens or stamens that are much longer than their styles. Each plant in a population of L. perenne has either all long-styled flowers or all short-styled flowers. In a mixed population of L. perenne and L. lewisii, separating the long-styled L. perenne plants from the L. lewisii plants presents a challenge (at least for me).

long-styled blue flax flower
short-styled blue flax flower

Due to the similarity of these two species, it’s easy to see how the plants or seeds of blue flax could easily be mislabeled and sold as one species even though they are the other species. This could be a problem in a restoration planting where seed source and identity is critical, but in your garden, it’s really no big deal. Both species are great for waterwise and pollinator gardens. They are equally beautiful and easy to grow and care for. If nothing else, perhaps the challenge in identifying them will encourage you to take a closer look at your flowers and familiarize yourself with their tinier parts – an act all of us amateur botanists could stand to do more often.

The photos in this post were taken at Idaho Botanical Garden in Boise, Idaho.

More Drought Tolerant Plants Posts:

To Fruit or Not to Fruit – The Story of Mast Seeding

Perennial plants that are able to reproduce multiple times during their lifetime don’t always yield the same amount of seeds each time they reproduce. For some of these plants, there is a stark difference between high-yield years and low-yield years, with low-yield years outnumbering the occasional high-yield years. In years when yields are high, fruit production can seem excessive. This phenomenon is called masting, or mast seeding, and it takes place at the population level. That is, during a mast year, virtually all individuals in a population of a certain species synchronously produce a bumper crop of seeds.

Plants of many types can be masting species. Bitterroot milkvetch (Astragalus scaphoides) and a tussock grass known as Chionochloa pallens are masting species, for example. However, this behavior is most commonly observed in trees, notably nut producing trees like oaks, beeches, and pecans. As you might imagine, the boom and bust cycles of mast seeding plant populations can have dramatic ecological effects. Animals that eat acorns, for example, are greeted with a veritable buffet in a mast year, which can increase their rate of reproduction for a spell. Then, in years when acorns are scarce, the populations of those animals can plummet.

How and why masting happens is not well understood. It is particularly baffling because masting populations can cover considerably large geographic areas. How do trees covering several square miles all “know” that this is the year to really go for it? While a number of possible explanations have been explored, there is still much to learn, especially since so many different species growing in such varied environments exhibit this behavior.

A popular explanation for mast seeding is predator satiation. The fruits and seeds of plants are important food sources for many animals. When a population of plants produces fruit in an unusually high abundance, its predators won’t possibly be able to eat them all. At least a few seeds will be left behind and can sprout and grow into new plants. By satiating their predators they help ensure the survival of future generations. However, even if a plant species has evolved to behave this way, it still doesn’t explain how all the plants in a particular population seem to know when it’s time for another mast year.

Predator satiation is an example of an economy of scale, which essentially means that individual plants benefit when the population acts as a whole. Another economy of scale that helps explain masting is pollen coupling. This has to do with the timing of flowering in cross pollinating species. If individuals flower out of sync with one another, the opportunities for cross pollination are limited. However, if individuals in a population flower simultaneously, more flowers will be pollinated which leads to increased fruit and seed production.  For this to happen, there are at least two factors that come into play. First, the plants have to have enough resources to flower. Making flowers is expensive, and if the resources to do so (like carbon, nitrogen, and water) aren’t available, it won’t happen. Second, weather conditions have to work in their favor. Timing of flowering depends, not only on daylength, but on temperature, rainfall, and other local weather conditions. If individuals across a population aren’t experiencing similar weather, the timing of their flowering may be off.

pollen-producing (male) flowers of pecan (Carya illinoinensis) — via wikimedia commons; Clemson University

Resource matching and resource budgeting are other proposed explanations for masting. Since plants can only use the resources available to them for things like growth and reproduction, they vary each year in how much growing or reproducing they do. Theoretically, if plants in a population are all going to flower in the same year, they all have to have access to a similar amount of resources. Often, the year following a mast year, there is a significant drop in fruit production, as though the plants have used up all of their available resources for reproduction and are taking a break. Some hypothesize that masting is a result of resource storage, and that plants save up resources for several years until they have what they need for yet another big year.

Another thing to consider is how plant hormones might play a role in masting. Gene expression and environmental cues both result in hormonal responses in plants. As Bogdziewicz, et al. write in Ecology Letters (2020), “if hormones and the genes that control them are hypersensitive to an environmental signal, masting can be at least partially independent of resource- and pollen-based mechanisms.” This and other potential explanations for masting are, at this point, largely theoretical. In their paper, Bogdziewicz, et al. propose a number of ways that theoretical predictions can be experimentally tested. If the “research agenda” outlined in their paper is carried out, they believe it will “take the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding.”

In her book, Braiding Sweetgrass, Robin Wall Kimmerer proposes an additional explanation for the mechanisms behind masting – the trees are talking to one another. Not in the way that you and I might converse, but rather by sending signals through the air via pheromones and underground via complex fungal networks. There is already evidence for this behavior when it comes to plants defending themselves from predators and in sharing resources, so why not in planning when to reproduce? As Kimmerer writes regarding masting, “the trees act not as individuals, but somehow as a collective.” The question now is how.

seedlings of European beech (Fagus sylvatica), a mast-seeding species — via wikimedia commons; user: Beentree

Additional Resources: