NPC

Natural Product Communications

Preparative Capillary GC for Characterization of Five *Dracocephalum* Essential Oils from Mongolia, and their Mosquito Larvicidal Activity

Gülmira Özek^a*, Nurhayat Tabanca^{b,c,d}, Mohammed M. Radwan^b, Sanduin Shatar^e, Altaa Altantsetseg^e, Dumaajav Baatar^f, Kemal H.C. Başer^{a,g,h}, James J. Becnel^d and Temel Özek^a

^aDepartment of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey ^bNational Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA ^cDepartment of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA

^dUSDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, 32608, USA ^eInstitute of Chemistry and Chemical Technology of the Mongolian Academy of Science (MAS), 211051, Ulaanbaatar, Mongolia

^fInstitute of Biology of the Mongolian Academy of Sciences, 211051, Ulaanbaatar, Mongolia

^gDepartment of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia

^hDepartment of Pharmacognosy, Faculty of Pharmacy, Near East University, Lefkoşa (Nicosia) N. Cyprus

gulmiraozek@gmail.com

Received: February 28th, 2016; Accepted: April 29th, 2016

The chemical composition and mosquito larvicidal and adulticidal activity of five essential oils (EOs), *Dracocephalum ruyschiana* L. (**DR**), *D. foetidum* Bunge (**DF**), *D. moldavica* L. (**DM**), *D. fruticulosum* Steph. ex Willd. (**DFr**) and *D. peregrinum* L. (**DP**) were evaluated. Simultaneous GC-FID and GC-MS analyses revealed in the EOs of **DR**, **DF** and **DM** an unidentified compound (1) ([M¹122], 5.4%, 57.9% and 74.0%, respectively). Therefore, we aimed to isolate compound 1 using Preparative Capillary GC (PCGC) connected to a Preparative Fraction Collector (PFC) system. Structure determination of 1 was determined by ¹H- and ¹³C-NMR as *p*-mentha-1,8-dien-10-al (1, limonen-10-al). Other detected major constituents were thymol (34.0%) and carvacrol (6.1%) in **DR**; limonene (28.8%) in **DF**; *cis*-chrysanthenol acetate (29.1%) and *trans*-verbenol (5.0%) in **DF**; and linalool (17.9%), *trans*-β-bergamotene (7.9%), (*E*)-nerolidol (7.7%) and eugenol (5.5%) in **DP**. The **DFr**, **DP**, **DR** and **DM** EOs produced 100% mortality to 1st instar larvae of *Aedes aegypti* L. at 250 ppm and **DR** EO exhibited the strongest activity and killed 100% 1st instar larvae at 62.5 ppm. No adulticidal activity was observed against female *Ae. aegypti*. In the scope of the present study, for the first time isolation of limonen-10-al (1) from **DR**, **DM**, and **DP** EOs and larvicidal activity of five *Dracocephalum* EOs were reported.

Keywords: Dracocephalum essential oils, Preparative gas chromatography, NMR, Limonen-10-al, Aedes aegypti, Mosquito control.

Dracocephalum L., one of the most important genera of Lamiaceae, encompasses *ca.* 75 species, mainly distributed in alpine and steppe regions of mainly Eurasia, northern America and extending to the alpine steppes of the Pamir Altai and Tian-Shan, Siberia, Kazakhstan, Central Asia and Mediterranean.

Dracocephalum species are used as a food ingredient (*e.g.* in yogurt), as a tea, as a herbal drug for their reputed medicinal properties: the treatment of stomach and liver disorders, headaches, cardioprotection, chronic bronchitis, hepatitis, gastritis, laryngitis, acute respiratory infection, diarrhea, and rheumatoid arthritis [1a]. *D. moldavica* is used in stomach and liver disorders, congestion, for coronary heart disease and hypertension [1b]. In Uygur medicine, *D. moldavica* was reported to be effective against chronic mountain sickness [1c]. A wide range of biological activities of *Dracocephalum* species have been scientifically investigated: antioxidant [2a-b], anticancer [2c], antibacterial [2d] and insecticidal [2e-f] properties.

A comprehensive review of chemical constituents of plants from the genus *Dracocephalum* has recently been reported by Zeng *et al.* [3a]. Previous phytochemical investigations of *Dracocephalum*

species resulted in EOs [3b-c], triterpenoids [3d], phenolics [3e] and alkaloids [3f]. The most investigated *Dracocephalum* species are *D. moldavica* (dragonhead) and *D. kotschyi*, which are cultivated in many countries [4a-b].

Our work aimed to elucidate further knowledge on the secondary metabolites of five Dracocephalum species from Mongolia and search for novel biological properties of these species. The list of detected compounds with their relative percentages, retention indices and method of identification is given in Table 1 in order of their elution on the HP-Innowax FSC column. GC analysis of DR, DF, DM, DFr and DP EOs resulted in 98, 31, 53, 47 and 35 constituents representing 89.4%, 95.0%, 93.1%, 87.3% and 98.6% of the oils, respectively. The EOs were characterized by a high diversity of volatile constituents which were classified as monoand sesquiterpene hydrocarbons and their oxygenated forms, phenylpropanoids, fatty acids and their esters, and aliphatic esters. Oxygenated monoterpenes were the most abundant of the groups in DR, DF, DM, DFr and DP EOs, representing 59.1%, 63.7%, 85.1%, 77.2% and 34.7% of the oils, respectively. They were followed by oxygenated sesquiterpenes (7.3%, 0.1 %, 2.7%, 7.6% and 27.6%, respectively).

Table 1: The chemical composition of the Dracocephalum EOs.

RRI^{a)}

1213

1255

1345

1393 1400

1450

1466

1474 1478

1484

1532 1535

1538 1540

1554 1556

1582

1586

1594

1613

1670 1672

1694

1705

1726

RRI^{b)} 1035

1132

1449

1556

1594

tr

1697

1716

ŀ

	C : :			% ^{c)}	s.		ID	RRI ^{a)}	RRI ^{b)}	Compound -	DR	DF	DM	DFr	DP	Method
	Compound -	DR	DF	DM	DFr	DP	Method	1742	1746	Geranial	1.8		2.3			d, e, f
	α-Pinene	0.2	0.6	0.2			d, e, f	1743	1779	α-Cadinene	0.2	0.0	0.6			d, e, f
	α-Thujene	0.2	t				d, e, f	1751 1755	1751 1742	Carvone Bicyclogermacrene	0.1	0.2	0.6	1.7		d, e, f d, e, f
	Camphene	0.1	t				d, e, f	1755	1/42	p-Mentha-1,8-dien-10-		0.6	0.3			d, e, f
	β-Pinene Sabinene	0.5 t	0.6 0.2				d, e, f d, e, f	1700		yl acetate		0.0	0.5			u, e, 1
	Thuja-2,4(10)-diene	ı	0.2		t		d, e, f	1764		cis-Chrysanthenol				2.6		d, e, f
	Hexyl-2-methyl butyrate			t	0.2		f	1765	1742	Geranyl acetate	1.2		1.1			d, e, f
	Myrcene	0.2	t				d, e, f	1770		trans-Linalool oxide				0.7		d, e, f
	p-Mentha-1,7(8)-diene		0.1				d, e, f	1769	1764	(Pyranoid)	1.7					d, e, f
	Limonene	0.5	28.8	3.5			d, e, f	1769	1764	δ-Cadinene	0.8				2.1	d, e, f d, e, f
	1,8-Cineole	0.4	0.2	0.2		2.3	d, e, f	1800	1766 1800	γ-Cadinene Octadecane	0.8				2.1	d, e, f
	(Z)-β-Ocimene	0.1	t				d, e, f	1800	1790	Myrtenol	0.1			1.4		d, e, f
	γ-Terpinene	0.1		t			d, e, f	1807	1790	Perilla aldehyde	0.2			0.6		d, e, f
	3-Octanone p-Cymene	0.3 1.7	t	t t			d, e, f d, e, f	1808	1807	Nerol	0.2					d, e, f
	Terpinolene	t./		ı			d, e, f	1827		(E,E)-2,4-Decadienal	0.3					d, e, f
	3-Octyl acetate	0.8					d, e, f	1838	1838	(E)-β-Damascenone	0.7		t			d, e, f
	(Z)-3-Hexenol	0.1					d, e, f	1845	1845	trans-Carveol	0.2		0.4	2.2		d, e, f
	3-Octanol	0.4					d, e, f	1853	1857	cis-Calamenene	t					d, e, f
	Nonanal	0.3					d, e, f	1857	1851	Geraniol	1.5		0.3			d, e, f
	α-Thujone		0.1	t			d, e, f	1860		4,7-(endo)-			0.7			f
	trans-Linalool oxide	0.2	0.2	t	0.8		d, e, f			Dimethylbicyclo(3.2.1)						
	(Furanoid)				0.8			1864	1864	oct-3-en-6(exo)-ol				2.5	0.8	46
	1-Octen-3-ol	0.5	0.3	0.2			d, e, f	1864	1804	p-Cymen-8-ol (E)-Geranyl acetone	t 0.2			2.5	0.8	d, e, f d, e, f
	Dimethyl tetradecane	0.2		t	0.3		d, e, f	1808		trans-2-Hydroxy-1,8-	0.2					d, e, f
	trans-1,2-Limonene			t			d, e, f	1075		cineole				0.8		u, v, 1
	epoxide (Z)-3-Hexenyl butyrate						d, e, f	1880		Benzyl 2-				0.6		d, e, f
	(Z)-3-Hexenyl butyrate trans-Sabinene hydrate	0.2		t	t t		d, e, f d, e, f			methylbutyrate				0.6		, -, -
	cis-Linalool oxide	0.2 t		t			d, e, f	1890		Carvacryl acetate	0.7					d, e, f
	(Furanoid)	·			0.7		u, v, 1	1900	1879	epi-Cubebol	0.1					d, e, f
	(Z)-3-Hexenyl-2-methy						1.0	1900	1900	Nonadecane	0.2					d, e, f
	butyrate				t		d, e, f	1912		cis-Dihydrocarveol	_		0.1			d, e, f
	Octyl acetate	0.3					d, e, f	1941	1916	α-Calacorene	0.2	o -				d, e, f
	α-Longipinene			t			d, e, f	1945	1000	neo-Isodihydrocarveol		0.9				d, e, f
	α-Copaene	0.3		t			d, e, f	1953	1980	Palustrol					2.1	d, e, f
	Chrysanthenone				t		d, e, f	1976		trans-2-Hydroxy pinocamphone				1.7		f
	Camphor	0.2			t	0.3	d, e, f	1988		2-Phenylethyl-2-						d, e, f
	β-Bourbonene	1.2			0.5	0.2	d, e, f	1988		methylbutyrate				0.5		u, e, 1
	Pinocamphone				0.1		d, e, f	2000		p-Menth-1-en-9-al			0.5			f
	Benzaldehyde	t					d, e, f	2000		(isomer 1)			0.2			
	α-Gurjunene	t	0.2		4.2	15.0	d, e, f	2008	2008	Caryophyllene oxide	0.6		0.6	0.5	3.9	d, e, f
	Linalool 8,9-Limonene epoxide	0.8	0.3 0.2		4.3	17.9	d, e, f d, e, f	2009		p-Mentha-1,8-dien-10-ol	0.4	2.3	0.3			d, e, f
	cis-Sabinene hydrate	0.1	0.2		0.3	0.6	d, e, f	2018		4a-β-7α-7a-α-					t	d, e, f
	Isopinocamphone	0.1		t	3.8	0.0	d, e, f			Nepetalactone						
	cis-Chrysanthenyl			t			d, e, f	2026	2023	Methyl eugenol			0.1		2.6	d, e, f
	acetate				29.1		-, -, -	2031	2016	Salvial-4(14)-en-1-one	0.3					d, e, f
	Nonyl acetate	t					d, e, f	2050	2044	(E)-Nerolidol	0.7		1.3		7.7	d, e, f
	Pinocarvone	0.1					d, e, f	2071 2084	2071	Humulene epoxide-II	0.1		0.1			d, e, f
	Bornyl acetate	0.5		t	0.3	0.9	d, e, f	2084 2088	2084 2054	Octanoic acid 1,10-di-epi-Cubenol	0.1 0.1					d, e, f d, e, f
	trans-β-Bergamotene	0.1				7.9	d, e, f	2000	2054	(Z)-γ-Curcumyl 2-	0.1		0.1			u, e, 1 f
	α-Guaiene					2.2	d, e, f	2005		methyl butyrate			0.1			1
	β-Elemene	0.3		t			d, e, f	2096		(E)-Methyl cinnamate					2.6	d, e, f
	Terpinen-4-ol	1.4	t	0.4	0.3	4.2	d, e, f	2100		Heneicosane	0.6					d, e, f
	β-Caryophyllene	0.4	0.1	0.1			d, e, f	2104	2113	Viridiflorol				2.8		d, e, f
	trans-Dihydrocarvone p-Menth-1-en-9-al		t	t t			d, e, f d, e, f	2113		Cumin alcohol				t	2.8	d, e, f
			ι	ι				2131	2132	Hexahydrofarnesyl	0.9		0.3	2.1	1.7	d, e, f
	β-Cyclocitral Thui-3-en-10-al	t			0.2		d, e, f d, e, f			acetone	<i>c</i> -			2.1		_
	trans-p-Mentha-2,8-	0.1	0.2	0.4	0.2		d, e, f d, e, f	2142	21.50	Salviadienol	0.3		0.1	2.2	2.0	d, e, f
	dien-1-ol	0.1	0.2	T .			u, v, 1	2144	2150	Spathulenol	0.5		0.1	2.2	3.8	d, e, f
	cis-Verbenyl acetate				1.1		d, e, f	2156		α-Bisabolol oxide B	0.2				t	d, e, f
	Myrtenal				1.6		d, e, f	2179		3,4-Dimethyl-5-pentyli- dene-2(5H)-furanone	0.2					d, e, f
	trans-Pinocarvyl acetate				1.3		d, e, f	2186	2136	Eugenol					5.5	d, e, f
	Safranal	0.1					d, e, f	2180	2150	T-Cadinol	0.8				5.8	d, e, f
	trans-Pinocarveol	0.1		-	1.7		d, e, f	2198	2205	Thymol	34.0		1.8	0.9	3.7	d, e, f
ŀ	-Mentha-1,8-dien-10-al	5.4	57.9	74.0			g	2209	2209	T-Muurolol	0.5					d, e, f
	(= Limonen-10-al)	0.2	0.2	0.2			daf	2226	2191	Methyl hexadecanoate	0.1					d, e, f
٤	is-p-Mentha-2,8-dien-1- ol	0.2	0.2	0.2			d, e, f	2239	2240	Carvacrol	6.1		0.4	1.6	2.1	d, e, f
	οι δ-Terpineol				1.8		d, e, f	2255	2231	α-Cadinol	1.4				t	d, e, f
	trans-Verbenol	0.2			1.8 5.0		d, e, f	2256		epi-α-Bisabolol					2.6	d, e, f
	α-Humulene	0.2	t		5.0		d, e, f	2265		Torilenol	0.6		0.2			d, e, f
	cis-	0.1	0.1				d, e, f	2291		Limonene glycol	0.1		0.2			d, e, f
	Dehydrosesquicineole		0.1				u, v, 1	2298	2200	Decanoic acid	0.1					d, e, f
	Methyl chavicol					1.6	d, e, f	2300	2300	Tricosane Garania agid	0.5		0.2			d, e, f
	Cryptone					1.5	d, e, f	2349	2204	Geranic acid Fudesma-4(15) 7-dien-	0.5		0.2 0.1			d, e, f
	Neral	1.0		1.0		-	d, e, f	2389	2396	Eudesma-4(15),7-dien- 1-β-ol	0.5		0.1			d, e, f
	(E) - β -Farnesene					0.5	d, e, f	2503	2448	Dodecanoic acid	t					d, e, f
	p-Mentha-1,8-dien-4-ol		t				d, e, f	2503	2448 2606	Phytol	1.3				1.4	d, e, f d, e, f
	Heptadecane	0.1					d, e, f	2022	2000	Anthracene	1.5				1.4	d, e, f
	Myrtenyl acetate				1.7		d, e, f	2931	2862	Hexadecanoic acid	2.0				2.0	d, e, f
	γ-Muurolene	t		_			d, e, f			Total	89.4	95.0	93.1	87.3	98.6	, -, -
	a-Terpineol	1.2	0.4	0.5	2.2	1.9	d, e, f	RRI: R	elative re	tention indices calculated						fied from
	Geranyl formate			0.3			d, e, f			; % calculated from FID of						
	Borneol	0.3					d, e, f	foetidum); DM (D	. moldavica); DFr (D. frut	iculosun	i); DP (L). peregr	inum); ^{a)}	Relative	Retentio
	Verbenone	2.0	0.5		3.7	1.0	d, e, f	Indices of	alculated	against n-alkanes (C9-C40)	on HP-	nnowax	column;	b) Relativ	ve retenti	on indice
	Germacrene D	2.9	0.5			1.6	d, e, f			ure; c) Percentage calculate						
	δ-Guaiene				0.5	1.8	d, e, f d o f			index of genuine compound						
	Neryl acetate	0.2			0.5		d, e, f d, e, f			r matching of the mass s he basis of computer mate					Başer	
	(Z, E) - α -Farnesene															

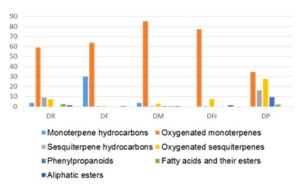


Figure 1: Distribution of major compound groups in *Dracocephalum* EOs. DR (*D. ruyschiana*); DF (*D. foetidum*); DM (*D. moldavica*); DFr (*D. fruticulosum*); DP (*D. peregrinum*).

Thymol (34.0 %) and carvacrol (6.1%) in **DR**; limonene (28.8%) in **DF**; *cis*-chrysanthenol acetate (29.1%) and *trans*-verbenol (5.0%) in **DFr**; and linalool (17.9%), *trans*- β -bergamotene (7.9%), (*E*)-nerolidol (7.7%) and eugenol (5.5%) in **DP** were the major volatile constituents. The distribution of the major compound classes in *Dracocephalum* EOs is presented in Figure 1.

Preliminary GC and GC-MS analyses of Dracocephalum EOs revealed the presence of an unidentified constituent (1) with M⁺ 122 in DR, DF, and DM, (5.4%, 57.9% and 74.0%, respectively). In this current study, fractionation of the EOs and isolation of 1 was performed using PCGC connected with PFC. PCGC has generated far superior purity: the targeted constituent (1) with relative retention index (RRI = 1672) was isolated from the Dracocephalum EOs with 97.0% purity. The target peak was trapped into the sample microcollector (U-shaped trap), while the other peaks were trapped in the waste. Trapping of the isolated compound 1 with an external cryotrap collection device during the course of multiple injections produced sufficient quantity to facilitate subsequent NMR spectroscopic analysis, as well as mass spectrometry. The isolated constituent 1 was characterized as p-mentha-1,8-dien-10-al (syn. limonene-10-al) by comparison of its ¹H- and ¹³C-NMR spectroscopic data with those published [4c]. Compound 1 had earlier been reported for D. subcapitatum (O. Kuntze) Lipsky, D. foetidum and D. kotschyi [4c-e].

Through the Deployed War-Fighter Protection (DWFP) Research Program, we have expanded our role in exploration and identification of new natural compounds for insecticidal and mosquito deterrent activity. Ultimately, our goal is to find new insecticides with low mammalian and environmental toxicity. These four *Dracocephalum* EOs gave 100% mortality to 1st instar larvae of *Aedes aegypti* L. at 250 ppm, except for the **DF** EO, which showed only 40% mortality, which dropped to 10% at 125 ppm (Table 2). Among the EOs, those of **DR** and **DM** demonstrated 100% mortality at 125 and 62.5 ppm and mortality down to 40% (**DR**) and 60% (**DM**) at 31.25 ppm, respectively.

Table 2: Larvicidal activity of Dracocephalum EOs against 1st instar Ae. Aegypti.

Dracocephalum	Mortality %								
species	250 ppm	125 ppm	62.5 ррт	31.25 ppm	15.625 ppm	8 ppm			
DR	100	100	100	40	0	0			
DF	40	0	0	0	0	0			
DM	100	100	100	60	0	0			
DFr	100	80	60	0	0	0			
DP	100	60	0	0	0	0			

In our previous study, thymol and carvacrol had LC_{50} values of 13.9 and 20.1 ppm, respectively against 1st instar *Ae. aegypti* larvae [4f],

which would explain why **DR** EO had good larvicidal activity in the current study. Limonene-10-al (1) was a major component in **DM** EO (74%) and might be responsible for the larvicidal activity. Due to insufficient amounts, compound 1 could only be tested in the larval bioassay. Although limonene-10-al (1, 57.9%) and limonene (28.8%) are the major components of **DF** EO, this **DF** oil demonstrated the weakest larvicidal activity. Antagonistic interactions may be responsible for this decrease in activity. Future studies are planned to test these two compounds individually and in combination in mosquito larval bioassays.

The isolation of the target constituent from the oils through the use of automated PCGC connected to PFC was considered to be a valuable approach. This combination allowed separation and recovery of sufficient quantities of individual compounds of high purity quickly from a complex oil matrix with minimal prior fractionation. The present work is the first contribution to the detailed chemical composition and mosquito larvicidal, and adulticidal activities of Mongolian *Dracocephalum* EOs against *Ae. aegypti.*

Experimental

General: All organic solvents and reagents used for PCGC were of analytical or chromatographic grade. An optical rotation measurement of the isolated compound was carried out with an A. Krüss Optronic polarimeter (Germany). NMR spectra were recorded in CDCl₃ on a Varian AS 400 spectrometer (Agilent Technologies, Santa Clara, CA, USA).

Plant material: The aerial parts of the *Dracocephalum* species were collected during their flowering period from Mongolia (Table 3). The identity was confirmed by anatomical examination in comparison with the herbarium specimen retained in the Mongolian Academy of Sciences (MAS, Ulanbaatar), Mongolia. The plant material was identified by Prof. Dr S. Shatar.

Table 3: Dracocephalum species subjected to chemical and larvicidal activity.

Studied species	Voucher Specimen	Collection site	Oil yield, %
DR	S.Shatar No7823	Mongolia, Ulanbaatar, Khairt Kairham Mountain	0.12
DF	S.Shatar No7819	Mongolia, Ulanbaatar, Dund - Gobi Province	0.22
DM	S.Shatar No7820	Mongolia, Ulanbaatar, Dund – Gobi Province	0.44
DFr	S.Shatar No7821	Mongolia, Gobi - Altay Mountains	0.35
DP	S.Shatar No7822	Mongolia, Mongol - Altay Mountains	0.02

Essential oil distillation: The EOs were isolated by steam distillation (3 h) of the dried aerial parts of the *Dracocephalum* species. The oil yields were calculated on a dry weight basis (Table 3).

Gas-chromatographic analysis: All the oils were analyzed by GC-FID and GC/MS techniques in conditions of previously reported methods [4g].

Essential oil fractionation and isolation of target compound 1 with PCGC system: At the second stage of the experiment, the oils with the unknown constituent (target compound) were subjected to fractionation in order to isolate and concentrate the target compound using PCGC connected to PFC.

PCGC system: Briefly, the oils containing the compound of interest were repeatedly injected by an autosampler into the GC equipped with a cooled injection system (CIS) and preparative capillary

column. The end of the column was connected to a zero dead volume effluent splitter which diverted a portion (1.0%) of the individua effluent to the detector while the majority (99.0%) was transferred to prepare transfer and selected fraction was transper

to preparative trapping device and selected fraction was trapped using a PFC unit. The PCGC system consisted of an Agilent 7890 GC (Agilent, USA), equipped with FID and 5975 MSD with Triple-Axis detector, Agilent G 4513 autoinjector, integrated with the CIS (Gerstel, Germany).

Conditions of PCGC procedure: The compound of interest was isolated from the oils using a HP Innowax (30 m × 0.53 mm × 1.0 μ m film thickness, USA) preparative capillary column with helium as carrier gas (flow rate 6 mL/min, average flow rate 46.84 cm/sec). GC oven temperature was programmed from 90°C to 195°C at a rate of 15°C/min then 60°C/min from 195°C to 230°C. It was kept at 230°C for 2.4167 min. Total time was 10 min. The oils were analyzed in splitless mode. The injector temperature was 250°C. Mass spectra were taken at 70 eV and the mass range was from *m*/*z* 35 to 450. PFC transfer and PFC distribution temperatures were kept at 220°C and 230°C, respectively. The PFC trap cooled with liquid N₂ was kept at -30°C. The retention time selection interval (cut time) was selected as 7.15-7.60 min for the target constituent. Injector volume was 4 μ L.

Identification and quantification of compounds: Identification of the individual compounds was performed according to previously reported methods [4g]. 1D and 2D NMR spectra of the isolated compounds were recorded in $CDCl_3$ on a Varian AS 400 spectrometer.

Larvicidal activity: The *Dracocephalum* EOs were evaluated for larvicidal and adulticidal activity against *Ae. aegypti* [4g] using procedures described previously. Permethrin (Chemical Service West Chester, PA) was used as positive control in both bioassays. Permethrin had 100% mortality at 0.55 ppm against 1st instar *Ae. aegypti* larvae. DMSO was used for the larvicidal negative control and acetone for the adulticidal assays.

Acknowledgments – We thank Anadolu University Scientific Research Project (BAP project No 090322) and the Mongolian Academy of Sciences for supporting this research. This study was partly supported by the Deployed War-Fighter Protection Research Program Grant funded by the U.S. Department of Defense through the Armed Forces Pest Management Board. Thanks to Dr William Reid (USDA-ARS, CMAVE) for the mosquito bioassays.

Declaration: All authors of the manuscript declare that they do not have financial/commercial conflicts of interest.

References

- (a) Ligaa U, Davaasuren B and Ninjil N. (2005) Medicinal Plants of Mongolia Used in Western and Eastern Medicine. JCK Printing, Ulaanbaatar, Mongolia, 52-55; (b) Qi L and Luo DS. (2000) Collection of Chinese Minorities Medicine, Neimenggu Science and Technology Press., Chifeng; (c) Maimaitiyiming D, Hu G, Aikemu A, Hui SW and Zhang X. (2014) The treatment of Uygur medicine Dracocephalum moldavica L. on chronic mountain sickness rat model. Pharmacognosy Magazine, 10, 477-482.
- (a) Zhang C, Li H, Yun T, Fu Y, Liu C, Gong B and Neng B. (2008) Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine *Dracocephalum heterophyllum* Benth. *Natural Product Research*, 22, 1-11; (b) Sonboli A, Esmaeili MA, Gholipour A and Kanani MR. (2010) Composition, cytotoxicity and antioxidant activity of the essential oil of *Dracocephalum surmandinum* from Iran. *Natural Product Communications*, 5, 341-344; (c) Esmaeili MA, Sonboli A and Mirjalili MH. (2014) Oxidative stress protective effect of *Dracocephalum multicaule* essential oil against human cancer cell line. *Natural Product Research*, 28, 848-852; (d) Nezhadali A, Khazaeifar A, Akbarpour M and Masrournia M. (2010) Chemical composition of essential oil and antibacterial activity of *Dracocephalum subcapitatum*. *Journal Essential Oil-Bearing Plants*, 13, 112-117; (e) Jalaei Z, Fattahi M and Aramideh S. (2015) Allelopathic and insecticidal activities of roducts, 73, 109-117; (f) Stappen I, Wanner J, Tabanca N, Wedge DE, Ali A, Kaul VK, Lal B, Jaitak V, Gochev VK and Schmidt E. (2015) Chemical composition and biological activity of essential oils of *Dracocephalum heterophyllum* and *Hyssopus officinalis* from Western Himalaya. *Natural Product Communications*, 10, 133-138.
- [3] (a) Zeng Q, Jin HZ, Qin JJ, Fu JJ, Hu XJ, Liu JH, Yan L, Chen M and Zhang WD. (2010) Chemical constituents of plants from the genus Dracocephalum. Chemistry & Biodiversity, 7, 1911-1929; (b) Hassani M, Farahpour M, Mahdavi M and Hassani L. (2013) Study of essantial oil content and composition of Dracocephalum kotschyi in different stages of plant growth in Mazandaran Province. Advances in Environmental Biology, 7, 1584-1588; (c) Sonboli A, Mojarrad M, Gholipour A, Ebrahimi SN and Arman M. (2008) Biological activity and composition of the essential oil of Dracocephalum moldavica L. grown in Iran. Natural Product Communications, 3, 1547-1550; (d) Numonov SR, Usmanova S and Aisa H. (2013) A triterpenoid and flavonoids from Dracocephalum heterophyllum. Chemistry Natural Compounds, 48, 1109-1110; (e) Numonov SR, Qureshi MN and Aisa HA. (2015) Development of HPLC protocol and simultaneous quantification of four free flavonoids from Dracocephalum heterophyllum Benth. International Journal of Analytical Chemistry, 2015, 1-5; (f) Ren DM, Guo HF, Yu WT, Wang SQ, Ji M and Lou HX. (2008) Stereochemistry of flavonoidal alkaloids from Dracocephalum rupestre. Phytochemistry, 69, 1425-1433.
- (a) Said-Al Ahl HAH, Sabra AS, El Gendy ANG, Aziz EE and Tkachenko KG. (2015) Changes in content and chemical composition of *Dracocephalum moldavica* L. essential oil at different harvest dates. *Journal of Medicinal Plants*, *3*, 61-64; (b) Najafpour NM. (2007) Comparative survay on the essential oil composition of cultivated and wild *Dracocephalum kotschyi*. *Iranian Journal Medicinal Aromatic Plants*, *23*, 128-133; (c) Saeidnia S, Gohari AR, Hadjiakhoondi A and Shafiee A. (2007) Bioactive compounds of the volatile oil of *Dracocephalum kotschyi*. *Zeitschrift für Naturforschung* C, *62*, 793-796; (d) Saeidnia S, Gohari AR, Ito M, Kiuchi F and Honda G. (2005) Bioactive constituents from *Dracocephalum subcapitatum* (O. Kuntze) Lipsky. *Zeitschrift für Naturforschung* C, *60*, 22-24; (e) Lee SB, Cha KH, Kim SN, Altantsetseg S, Shatar S, Sarangerel O and Nho CW. (2007) The antimicrobial activity of essential oil from *Dracocephalum foetidum* against pathogenic microorganisms. *Journal of Microbiology (Seoul, Korea)*, *45*, 53-57; (f) Tabanca N, Bernier UR, Ali A, Wang M, Demirci B, Blythe EK, Khan SI, Baser KHC and Khan IA. (2013) Bioasay-guided investigation of two *Monarda* essential oils as repellents of yellow fever mosquito *Aedes aegypti*. *Journal of Agricultural and Food Chemistry*, *61*, 8573-8580; (g) Özek G, Ishmuratova M, Tabanca N, Radwan MM, Göger F, Özek T, Wedge DE, Becnel JJ, Cutler SJ and Başer KHC. (2012) One-step multiple component isolation from the oil of *Crinitaria tatarica* (Less.) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques and evaluation of biological activity. *Journal of Separation Science*, *35*, 650-660.