Asian Journal of Chemistry

Vol. 21, No. 8 (2009), 6547-6554

Composition of The Essential Oils of *Tanacetum densum* (Lab.) Schultz Bip. subsp. *amani* and *T. densum* (Lab.) Schultz Bip. subsp. *laxum* (Asteraceae) from Turkey

EYUP BAGCI

Department of Biology, Plant Products and Biotechnology Res. Lab., Faculty of Art & Science, Firat University, Elazig, Turkey Tel: (90)(424)2370000-3806; E-mail: ebagci@firat.edu.tr

The aerial parts of *Tanacetum densum* subsp. *amani* and *T. densum* subsp. *laxum* were hydrodistilled to produce the oils with yields of 0.30 % (v/w) and 0.15 % (v/w), respectively. The oils were analyzed by GC and GC/MS. Seventy three and seventy components were identified representing 92.2 and 80.6 % of the oils, respectively. The main compounds of *T. densum* subsp. *amani* were α -pinene (3.0 %), 1,8-cineole (14.7 %), borneol (31.3 %) and endoborneol (21.0 %). Whereas α -pinene (5.0 %), (+)-epi-bicyclosesquiphellandrene (31.4 %), α -cadinol (7.0 %), 1-heptadecanol (5.6 %) and eicosane (3.2 %) were the major constituents in *T. densum* subsp. *laxum*. Distribution of the predominate compounds in essential oil were discussed among the *Tanacetum* genus patterns.

Key Words: *Tanacetum, Tanacetum densum*, Essential oil, Borneol, 1,8-Cineole.

INTRODUCTION

The genus *Tanacetum* (Compositae) is distributed in Europe and West Asia throughout the northern temperate regions¹. The genus is represented with *ca*. 60 taxa in Flora of Turkey^{2,3}. *Tanacetum densum* (Lab.) Schultz Bip. is also represented with four subspecies; subsp. *sivasicum* Hub.-Mor.& Grierson, subsp. *laxum* Grierson, subsp. *amani* Heywood and subsp. *eginense* Heywood². *Tanacetum* spp. are rich in essential oils, bitter substances and sesqui-terpene lactones and aromatic annual and perennial plants^{2,4}. *Tanacetum densum* has been shown to produce a variety of sesqui-terpenes and investigations into subsp. *sivasicum* showed a new germacranolide¹ from *T. densum* subsp. *sivasicum*⁵. Both taxa are endemic to Turkey². Some members of Asteraceae family particularly genus *Tanacetum* have traditionally been used in balsams, cosmetics, dyes, insecticides, medicines and preservatives as herbal remedy (for example, *T. vulgare*)⁶⁻⁸. They have also been used as anti-helmintic for migraine, neuralgia, rheumatism and loss of appetite⁹. According to recent studies, essential oils and extracts of members of the genus *Tanacetum* exhibit antiinflammatory^{10,11}, antibacterial^{12,13}, antifungal^{14,15} and insecticidal effects^{16,17}. Oil of tansy (*Tanacetum*

vulgare L.) rubbed on skin is supposed to repel insects. In moderate doses, the plant and its essential oils are stomachic, cordial and used as food additive¹⁸⁻²⁰. Some earlier works have been reported on the essential oils of various *Tanacetum* species from all over the world²¹ and Turkey^{1,8,22}. The volatile compounds from *T. vulgare* have been examined in detail²³⁻²⁵. The present work presents the chemical composition of the hydrodistilled oils of *T. densum* subsp. *amani* and *T. densum* subsp. *laxum* of Turkey origin firstly and results are compared to those reported in the other *Tanacetum* genus patterns.

EXPERIMENTAL

Tanacetum densum subsp. *amani* and *T. densum* subsp. *laxum* samples were collected from South-Eastern Anatolian region, in Elazig in July 2006 (Haroglu Mountain 1800m. *Tanacetum densum* subsp. *amani* (Bagci, 1928); *Tanacetum densum* subsp. *laxum* (Bagci-1927). Voucher specimens are kept at the Herbarium of Firat University (FUH) and Plant Products and Biotechnology Research Laboratory.

Isolation of the essential oils: Air-dried aerial parts of the plant materials were subjected to hydrodistillation using a Clevenger-type apparatus for 3 h.

Gas chromatographic (GC) analysis: The essential oil was analyzed using HP 6890 GC equipped with and FID detector and an HP- 5 MS column (30 m \times 0.25 mm i.d., film tickness 0.25 µm) capillary column was used. The column and analysis conditions were the same as in GC-MS. The percentage composition of the essential oils was computed from GC-FID peak areas without correction factors.

Gas chromatography/mass spectrometry (GC-MS) analysis: The oils were analyzed by GC, GC-MS, using a Hewlett Packard system. HP-Agilent 5973 N GC-MS system with 6890 GC in Plant Products and Biotechnology Research Laboratory (BUBAL) in Firat University. HP-5 MS column ($30 \text{ m} \times 0.25 \text{ mm}$ i.d., film tickness 0.25 µm) was used with helium as the carrier gas. Injector temperature was 250 °C, split flow was 1 mL/min. The GC oven temperature was kept at 70 °C for 2 min. and programmed to 150 °C at a rate of 10 °C/min and then kept constant at 150 °C for 15 min to 240 °C at a rate of 5 °C / min. Alkanes were used as reference points in the calculation of relative retention indices (RRI). MS were taken at 70 eV and a mass range of 35-425. Component identification was carried out using spectrometric electronic libraries (WILEY, NIST). The identified constituents of the essential oils are listed in Table-1.

RESULTS AND DISCUSSION

The essential oil yields (v/w) of *T. densum* subsp. *amani* and *T. densum* var. *laxum* were 0.30 and 0.15 %, respectively with yellowish oil. The result of the analysis of *T. densum* subsp. *amani* and *T. densum* subsp. *laxum* essential oils are present in Table-1.

Vol. 21, No. 8 (2009)

Composition of The Essential Oils of Tanacetum densum 6549

TABLE-	
--------	--

 TABLE-1

 CHEMICAL COMPOSITION OF T. densum subsp. amani AND T. densum subsp. Laxum

No.	Compounds name	Ref.	RRI	<i>T. densum</i> subsp. <i>amani</i>	<i>T. densum</i> subsp. <i>laxum</i>
1	1-Pentanol		951	0.1	_
2	Bicyclo(4,1,0)heptane		994	_	0.2
3	α-Pinene	adf	1019	3.0	5.0
4	Camphene	adf	1032	0.7	_
5	Heptanol		1046	0.1	_
6	Sabinene	adfg	1049	0.2	0.1
7	β-Pinene	adf	1053	0.8	0.1
8	6-methyl-5-heptene-2-one		1057	0.1	_
9	1,2,4,4-tetramethylcyclopentane		1062	0.3	_
10	Benzene, 1-methyl-4		1089	0.5	0.1
11	d-Limonene	cd	1092	0.1	_
12	1,8-Cineole	abcdf	1095	14.7	1.5
13	1-Octanol		1096	0.2	_
14	γ-Terpinene	ad	1114	0.1	—
15	trans-Sabinene hydrate	abd	1123	1.0	_
16	α-Terpinolene	adf	1134	0.1	_
17	Fencholenic aldehyde		1137	0.1	_
18	Terpineol	f	1146	0.7	_
19	Nonanal	ad	1148	0.1	_
20	δ-Fenchyl alcohol		1159	0.1	_
21	2-Cyclohexene-1-ol		1162	0.1	_
22	3-Cyclopentene-1-acet-aldehyde		1164	0.2	_
23	+\- 4-acetyl-1-methyl-cyclohexene		1167	0.5	_
24	Isopinocarveol	abcd	1174	3.3	0.8
25	Camphor	acdg	1179	1.2	_
26	Exo-methyl-camphenilol	•	1185	0.1	_
27	Pinocarvone	abcd	1189	2.0	0.2
28	γ-Campholenol		1192	0.1	_
29	Borneol	abcdef	1198	31.3	1.6
30	3-Cyclohexene-1-ol		1202	1.0	_
31	Cyclohexene		1212		0.2
32	6-Octen-1-ol		1225	0.1	_
33	Cyclooctyl bromide		1226	_	0.1
34	trans-(+)-Carveol	abcd	1227	0.6	0.1
35	Phenol		1231	0.1	_
36	cis-Carveol	ab	1236	0.3	-
37	2-Cyclohexene-1-one		1245	0.2	-
38	Cyclopentane		1254	0.1	-
39	1-Decenal		1267	0.1	-
40	4-Hydroxy-3-methyl-acetophenone		1271	0.1	-
41	Endoborneol		1279	21.0	-
42	Thymol	b	1283	1.2	0.7
43	Acetic acid		1300	0.1	_

6550	Bagci
0550	Duger

Asian	J.	Chem.

			1200	0.1	
44	2,4-Decadienal		1308	0.1 0.1	—
45	Nerylacetate		1334		-
46	β-Myrcene		1335	-	1.1
47	Endobornylacetate		1355	0.1	-
48	Propanoic acid		1357	-	0.1
49	β-Elemene		1366	0.1	0.1
50	Bornyl ester of isobutanoic acid		1385	0.1	_
51	1,6,10-Dodecatriene		1411	0.1	-
52	1H-Cycloprop(e)azulene		1417	_	0.3
53	Tricyclo(4,3,1,18,8)undecane		1426	0.1	_
54	E-Ocimenone		1427	-	0.1
55	β-Lonone		1428	0.1	0.1
56	Germacrene D	bdf	1431	0.1	0.5
57	δ-Selinene		1435	0.1	_
58	Germacrene B		1440	0.1	0.1
59	β-Bisabolene		1448	0.1	1.6
60	Naphthalene		1452	-	1.3
61	Valencene 1		1453	-	0.1
62	δ-Cadinene		1455	-	1.2
63	Sabinyl acetate	f	1476	_	0.1
64	β-Caryophyllene	f	1478	0.1	_
65	1,3,6-Octatriene		1485	0.1	_
66	2,6-Dimetyloxytoluene		1489	0.1	_
67	α-Copaene-8-ol		1490	0.1	_
68	Ethanone		1494	_	0.8
69	Junipene		1496	_	0.1
70	(-)-Caryophylleneoxide	f	1501	0.1	_
71	Oplopenone	•	1506	_	0.5
72	Nerolidol	b	1508	_	0.5
73	4,7-Methanoazulene	U	1513	_	0.8
74	Bicyclo(2,2,1)heptane		1515	_	0.2
75	Azulene		1518	0.1	0.2
76	9-Aristolen-1, alpha-ol		1519	_	1.4
77	Germacrene D		1527	0.2	_
78	(+)-Epi-bicyclosesquiphellandrene		1528	_	31.4
79	Dehydroaromadendrene		1530	_	0.6
80	β-Selinene		1532	_	0.2
81	Pyrene		1535	0.3	_
82	α-Cadinol	bd	1536	-	7.0
83	(+)-Spathulenol	θů	1550	0.3	2.4
84 85	1(2H)-Naphthalenone		1545 1546	0.3	_ 1.7
	Cyclododecane			-	
86 87	Aromadendreneoxide-(1)		1548	- 0.1	0.7
87 80	Caryopyhllene oxide		1550	0.1	-
88 80	<i>trans</i> -Caryophyllene Farnesol		1562	-	0.1
89 90	Tetradecenal		1565 1566	0.2	0.6

Vol. 21, No. 8 (2009)

91	1,6,10-Dodecatriene-3-ol		1571	_	0.8
92	Benzenepropanoic acid		1581	-	0.2
93	1-Hexadecanol	d	1597	0.1	0.7
94	1,8-Cyclopentadecadyne		1605	-	0.1
95	Pentadecenal		1616	_	0.2
96	2,6,10-Dodecatrien-1-ol		1622	1.0	_
97	Farnesyl acetate 3		1623	_	1.8
98	2-Pentadecanone		1627	0.1	0.6
99	Cyclotetradecane		1628	0.1	_
100	Pyridine		1635	0.1	—
101	Cyclohexadecane		1645	0.4	—
102	1-Heptadecenol		1646	_	5.6
103	Dodecane		1652	_	0.1
104	2-Heptadecanone		1655	0.1	0.6
105	Caryophylla-2(12),6-dien-5-one	ad	1663	_	1.0
106	Di-epi-a-cedrene		1668	0.3	_
107	1,6-Cylodecadiene		1669	_	1.0
108	Hexadecanoic acid	abcd	1679	-	0.4
109	17-Pentatriacontene		1683	-	0.8
110	1-Eicosanol		1700	_	0.4
111	1,3-Dimethyl-3-vinycyclohexene-1		1705	-	0.2
112	Cyclotetradecane		1717	-	0.7
113	Delta-(13)-tetradecenol		1726	_	0.1
114	Phytol isomer		1788	_	0.2
115	9-Octadecanoic acid (Z)		1804	_	1.0
116	Octadecanoic acid		1820	_	0.1
117	Phenol		1953	_	0.1
118	Gibberellin A3		1956	_	0.1
119	Cyclotrisiloxane		1973	_	0.2
120	Pentacosane	ad	1985	_	1.2
121	Eicosane		1987	0.1	3.2
122	Acetamide		2020	-	0.1
	Total			92.2	87.8
DDI			[D C 1]		· [D C 1]

RRI = Relative retention indices, a = *Tanacetum armenum* [Ref. 1], b = *T. balsamita* [Ref. 1], c = *T. chiliophyllum* var. *chiliophyllum* [Ref. 1], d = *T. haradjani* [Ref. 1], e = *T. praeteritum* subsp. *praeteritum* [Ref. 22], f = *T. vulgare* L. var. *vulgare* [Ref. 25].

In case of *T. densum* subsp. *amani*, 73 compounds were identified representing 92.2 % of the oils. Borneol was determined to be present at the high percentage (31.3 %). The presence of α -pinene (3.0 %), 1,8-cineole (14.7 %), endoborneol (21.0 %) and *trans*-pinocarveol (3.3 %) are also important for the oil profile. A comparison of the data presented in present studies with the other species of *Tanacetum* show that there are qualitative and quantitative differences in some of the compounds presented. The oil obtained from the leaves of *T. balsamita* L. ssp. *balsamitoides* (Schults-Bip.) and *Tanacetum praeteritum* subsp. *praeteritum* are reported to contain a high percentage of bornyl acetate (47.7 %, 10 %), respectively^{22,26}.

6552 Bagci

Asian J. Chem.

Camphor (17 %) was the main constituent in the oils of *T. chiliophyllum* var. *chiliophyllum* and *T. haradjani*, respectively¹. Other species of genus *Tanacetum*, rich in camphor include *T. armenum*¹, *T. lingulatum*²⁷, *T. khorassanicum*²⁸ and *T. vulgare*²⁹. At the same kind, it also characterizes the essential oils of *T. armenum*, *T. haradjani* (26-16 %)¹ and *T. parthenium* (56.9 %)⁸, whereas it ranged between 0.06 and 73.02 %²³ in 20 genotypes of *T. vulgare* collected from different geographical locations in Finland. It is not found at the large percentages (1.2 %) in *T. densum* subsp. *amani* studied in here.

Considerable amounts of 1,8-cineole (14.7-1.5 %) was determined in both oils in present study, have also been found in the essential oil of *T. lingulatum* (18.6 %)²⁷. In the case of *T. balsamita* L. ssp. *balsamitoides* (Schults-Bip.) Grierson, bornyl acetate is reported to predominate in its essential oil²⁶.

In the case of *T. densum* subsp. *laxum*, 70 components were identified representing 87.8 % of the oil (Table-1). (+)-epi-bicyclosesquiphellandrene was the predominant compound (31.4 %) followed by α -cadinol (7.0 %), 1-heptadecanol (5.6 %), α -pinene (5.0 %) and eicosane (3.2 %).

It is surprising that large qualitative and quantitative differences were found between two *Tanacatum* subspecies in view of main compounds. Twenty one compounds are common in both subspecies of *Tanacaetum densum*. Infraspecific variation is also determined in essential oils of *Hypericum capitatum* var. *luteum* and var. *capitatum* (Hyperiaceae) from Turkey²⁸. An opposite correlation was noticed for mono and sesquiterpenes hydrocarbons and oxygenated sesquiterpenes between two subspecies. The results showed that *T. densum* subsp. *amani* was rich in mono and sesquiterpene hydrocarbons. On the contrary, *T. densum* var. *laxum* was rich in oxygenated sesquiterpenes as shown in Table-1. At the same time this table shown a small comparison of the major components found in this two *Tanacetum* taxa with the literature review as presence/absence of the essential oils components in other *Tanacetum* species.

Literature review of the *Tanacetum* genus patterns showed that the oils of *Tanacetum* patterns are distributed among three or more chemotypes groups in genus. α-Thujene/β-thujene dominated group; *Tanacetum praeteritum* subsp. *massicyticum* Heywood., *T. argyrophyllum* var. *Argyrophyllum*²², *T. vulgare* L. var. *vulgare* from Norway^{24,29}. 1,8-Cineole dominated group; *T. praeteritum* subsp. *praeteritum* (Horwood) Heywood, *T. armenum*¹, *T. Lingulatum*²⁷, *T. vulgare* chemotypes from Lithuania^{25,29}, *T. santolinoides* (DC.) Feinbr.³⁰, *T. argyrophyllum*⁸, *T. chliliophyllum* (Fisch. & Mey.) Schultz Bip. var. *chiliophyllum*¹³. Camphor dominated group comprised to; *T. armenum* and *T. haradjani* (Rech. fil.), *T. chliliophyllum* var. *chiliophyllum*^{1,13}; *T. lingulatum*²⁷, *T. vulgare* chemotypes from Lithuania^{25,29}, *T. parthenium* (L.) Schultz Bip.⁸, *T. balsamita* subsp. *balsamitoides* from Iran (Schultz Bip.) Grierson.²⁶, *T. balsamita* subsp. *balsamita* from Turkey¹³. The results and the chemical data gives more clues on the chemotaxonomy of genus *Tanacetum*.

Vol. 21, No. 8 (2009)

It is reported that as with other members of the Compositae family, *T. densum* has been shown to produce a variety sesquiterpenes and investigations into subsp. *sivasicum* have previously yielded eudesmanolides, germacranolides, guaianolides and farnesol derivatives⁵. Chemotypical classification of Norwegian tansy genotypes (*T. vulgare*) was underscored, indicating the genetic uniformity and biochemical stability of the domesticated plants²⁴.

In conclusion, this study demonstrates the occurrence of 1,8-cineole, borneol/ endoborneol chemotype of *T. densum* subsp. *amani* and (+)-epi-bicyclosesquiphellandrene/ α -cadinol chemotype of *T. densum* subsp. *laxum* in Eastern Anatolia region of Turkey. However, the absence of (+)-epi-bicyclosesquiphellandrene from *T. densum* subsp. *amani* chemotype and 1,8-cineole and borneol absence from *T. densum* subsp. *laxum* studied in herein are noteworthy.

REFERENCES

- 1. K.H.C. Baser, B. Demirci, N. Tabanca, T. Özek and N. Goren, *Flav. Fragr. J.*, 16, 195 (2001).
- 2. P.H. Davis, Flora of Turkey and The East Aegean Island, 5, Edinburgh University Press (1975).
- 3. A. Güner, N. Özhatay, T. Ekim abd K.H.C. Baser, Flora of Turkey and the East Aegean Islands, Edinburgh University Press, p. 11 (2000).
- V.H. Heywood, in eds.: T.G. Tutin, V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters and D.A. Webb, Flora Europaea, 4, Cambridge University Press, Cambridge, Great Britain, pp. 169-171 (1976).
- 5. N. Goren, P. Cai, L. Scott, M. Tianosoaramomonjy and J.K. Snyder, *Tetrahedron*, **51**, 4627 (1995).
- 6. J. Hussey, Econ. Bot., 28, 311 (1974).
- M. Grieve, in ed.: C.F. Leyel, A Modern Herbal. Penguin Books Ltd, Middlesex, Great Britain, p. 790 (1984).
- H.A. Akpulat, B. Tepe, A. Sokmen, D. Daferera and M. Polissiou, *Biochem. Syst. Ecol.*, 33, 511 (2005).
- M. Blumenthal, The Complete German Commission Monographs: Therapeutic Guide to Herbal Medicines. American Botanical Council/Integrative Medicine Communications, Austin, TX/ Boston, MA, (Translator), pp. 379-380 (1998).
- P. Mordujovich-Buschiazzo, E.M. Balsa, H.O. Busciazzo, E. Mandrile, M. Rosella, G. Schinella and D. Fioravanti, *Fitoterapia*, LXVII, 319 (1996).
- 11. A.M.G. Brown, C.M. Edwards, M.R. Davey, J.B. Power and K.C. Lowe, *Phytother. Res.*, **11**, 479 (1997).
- 12. M. Stefanovic, N. Ristic and M. Vukmirovic, Bull. T. XCV Acad. Serbe Sci. Arts, Classe Sci. Naturelles Math. Sci. Naturelles, 28, 23 (1988).
- 13. E. Bagci, M. Kursat, A. Kocak and S. Gur, J. Essen. Oils Bearing Plants, 11, 5 (2008).
- 14. E. Hethelyi, P. Tetenyi, B. Danos and I. Koczka, Herba Hung, 30, 82 (1991).
- 15. A. Neszmelyi, G.W.A. Milne and E. Hethelyi, J. Essent. Oil Res., 4, 243 (1992).
- 16. O. Panasiuk, J. Chem. Ecol., 10, 1325 (1984).
- 17. J. Hough-Golstein and S.P. Hahn, Environ. Entomol., 21, 837 (1992).
- D. Bown, Encyclopedia of Herbs and Their Uses, Dorling Kindersley: London, pp. 208-209 (1995).
- 19. A.J. Duke, Handbook of Medicinal Herbs, CRC Press: Boca Raton, FL (1985).
- M.A. Grieve, Modern Herbal-Medicianal, Culinary, Cosmatic and Economic Properties, Cultivation and Folklore of Herbs, Grases, Fungi, Shrubs and Trees, with All their Modern Scientific Uses. Dover: New York, p. 790 (1971).

6554 Bagci

Asian J. Chem.

- 21. P. Beauchamp, V. Dev, T. Kashyap, A. Melkani, C. Mathela and A.T. Bottini, *J. Essen. Oil Res.*, **13**, 319 (2001).
- 22. N. Goren, B. Demirci and K.H.C. Baser, Flav. Fragr. J., 19, 191 (2001).
- 23. M. Keskitalo, E. Pehu and J.E. Simon, Biochem. Syst. Ecol., 29, 267 (2001).
- 24. J. Rohloff, R. Mordal and S. Dragland, J. Agric. Food Chem., 52, 1742 (2004).
- 25. A. Judzentiene and D. Mockute, Biochem. Syst. Ecol., 33, 487 (2005).
- 26. K. Jaimand and M.B. Rezaee, J. Essent. Oil Res., 17, 565 (2005).
- 27. S. Afsharypour and M.M. Jahromy, J. Essent. Oil Res., 15, 74 (2003).
- 28. E. Bagci and E. Yuce, Plant Prod. Biotechnol. J., 1, 1 (2009).
- 29. D. Mockute and A. Judzentiene, J. Essen. Oil Res., 16, 550 (2004).
- 30. A. El-Shazly, G. Dorai and M. Wink, Z. Naturforsch., 57C, 620 (2002).

(Received: 14 March 2009; Accepted: 12 June 2009) AJC-7648