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A B S T R A C T   

Mangroves are key ecosystems which respond to global changes in tropical and subtropical regions worldwide. 
We describe late Holocene mangroves that established close to the southernmost limit (28◦S) for this type of 
ecosystem in South America. Our findings are based on a 14C dated core obtained from Babitonga Bay, Santa 
Catarina State, Brazil (26◦12′S, 48◦33′W). Analysis of palynology, sedimentary facies, isotopic and elemental 
data shows that mangrove establishment took place ~500 yrs. B.C.E., following an increase in humidity, and 
expanded further during the Roman Warm Period and at the end of Dark Age Cold Period. Mangrove and pre-
cipitation proxies records appear to be sensitive to rainfall patterns imposed both by the expansion/retraction of 
the Intertropical Convergence Zone and also the interaction with the South Atlantic Subtropical Anticyclone 
which affects coastal region due to sea surface temperature variations.   

1. Introduction 

The mangrove ecosystem performs several natural functions of great 
climatological and economic importance. It is present along tropical and 
subtropical coastlines (Baran, 1999; de Rodrigues et al., 1999; Barbier, 
2000; Nagelkerken et al., 2008; Cannicci et al., 2008) and protects these 
areas due to its aerial roots that trap sediments, stabilizing the substrate 
of intertidal areas, and thereby reducing erosion (Thampanya et al., 
2006). In addition, roots, trunks, and canopy dissipates storm surges 
(McIvor et al., 2012a) and waves (McIvor et al., 2012b). 

Previous studies have shown that mangroves can reduce up to 66% of 
wave energy in the first 100 m of forest width (McIvor et al., 2012b; 
McIvor et al., 2016), and these forests can provide adaptive defenses, 

accompanying the rise in sea level through vertical accumulation 
(McKee, 2011; Krauss et al., 2014). This means significant annual flood 
protection for people and property both from cyclones and the more 
regular (non-cyclonic) high wave and swell events, hence savings of over 
$65 billion per year for the United States, for instance, in terms of flood 
protection benefits (Menéndez et al., 2020). 

Besides, these ecosystems can store vast amounts of carbon. The fact 
that they are among the most carbon-rich forests in the tropics (Donato 
et al., 2011) lends them added value in the global warming trend and 
future scenario. Yet, the loss of mangrove ecosystems could be greatly 
intensified if sea-level rise and drought are enhanced in coastal areas, as 
forecast for the future (IPCC, 2013). The study of past environmental 
changes serve to improve our understanding of future climate scenarios 
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by providing information on when mangrove environments were 
established or how they reacted to millennial-to-centennial variations in 
climate during the Holocene (Jones et al., 2019). 

Mangrove expansion worldwide has been limited due to changes in 
precipitation, salinity, tide level, topography (Schaeffer-Novelli et al., 
1990; Kathiresan and Bingham, 2001; Schaeffer-Novelli et al., 2016) 
sea-level rise, changing ocean currents, and increased storminess (Duke 
et al., 1998; Ellison, 2002; Spalding et al., 2010; McKee et al., 2012). In 
Brazil, mangroves occur from Cabo Orange (5◦ N) to Laguna (Santa 
Catarina State), the southernmost limit for South American mangroves 
(Lat. 28◦S) (Cintrón-Molero and Schaeffer-Novelli, 1992), covering an 
area of approximately 14 thousand km2 (Schwamborn and Saint-Paul, 
1996). Globally mangroves have declined over the past decades, from 
~140,000 km2 in 2000 to ~132,000 km2 in 2014 (Hamilton and Casey, 
2016). 

At this region studies are mainly focused on increasing air temper-
ature due paleoclimatic changes and sea level rise as the drivers of 
mangrove forests expansion (Behling, 1995; França et al., 2019; Cohen 

et al., 2020). Comparison between palynological and precipitation re-
cords are scarce. Here we address this issue comparing two cores on 
margins of Babitonga Bay (Southerrn Brazil, Lat. 26◦ S), close to the 
southernmost limit (28◦S) for mangroves ecosystem growth in South 
America, with records sensitive to the South American monsoon system 
(e.g., Botuverá Cave, Bernal et al., 2016). 

Thus, this study was carried out by sedimentary facies, palynology, 
isotopes (δ13C), and elemental data (C:N ratio) dated by radiocarbon 
analysis with three main goals: (1) to ascertain when the mangroves of 
Babitonga Bay were established; (2) to propose a paleoenvironmental 
reconstruction of the study area; and (3) to determine the main forces 
driving the mangrove development. 

2. Study site 

Our study site is located at margins of Babitonga Bay, northeastern of 
Santa Catarina State, Southern Brazil (Fig. 1a). At its northeastern bank 
we collected a shallow core measuring 200-cm-long (present study, SF8: 

Fig. 1. Localization of discussed sites: A) core SF8 (this study), core SF1 (França et al., 2019) and Botuverá Cave (Bernal et al., 2016) in Santa Catarina State, 
southern Brazil; B) Surrounding modern vegetation of SF8 sampling site delimited by red dashed lines and C) Panoramic view of Babitonga Bay and vegetation type 
around SF1 sampling area. Map of Babitonga Bay were made with shapefiles available on Geodiversidade do Estado de Santa Catarina Project of Geological Survey of 
Brazil (Viero and Silva, 2016). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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26◦12′S/ 48◦33′W). The core SF1 (França et al., 2019), further 
approached, is 300-cm-long and was recovered from northwestern 
margin (Fig. 1b, c). The former core is located 120 km far from Botuverá 
Cave (27◦13′S; 49◦09′W, Bernal et al., 2016) and 6 km from the South 
Atlantic Ocean. Modern vegetation surrounding the bay comprises 
herbaceous field, mangrove and ombrophilous forests. Tidal flats of 
Babitonga Bay are expressively marked by mangroves, representing 
~75% of the mangroves in Santa Catarina State (Herz, 1991). 

Babitonga Bay is under influence of rivers, tides, and waves (Mazzer 
and Gonçalves, 2012). Riverine input into Babitonga Bay results from 
Cachoeira, Palmital, Cubatão, and Parati hydrographic basins (Barros 
et al., 2010). Warm (> 20 ◦C) and saline (> 36.2) Tropical Water 
(Stramma and England, 1999) from the South Atlantic Ocean overruns 
this bay once a day as a semidiurnal tide (FEMAR, 2000). Mean tidal 
range is ~0.84 m, while the maximum high tide is ~1.9 m (DHN, 2017), 
thus characterizing a micro-tidal coast. 

This region has a humid mesothermal climate with a hot summer and 
no dry season (Köppen classification). Moisture content is 68% to 89%, 
the monthly average temperature ranges from 16.5 to 25.6 ◦C, and the 
monthly rainfall ranges from 402 mm (January) to 106 mm (August) 
(Gonçalves et al., 2006). Rainfall and temperature are highest in 
January and March (summer), and decrease from June to August 
(winter) (FUNDEMA, 1994). 

The precipitation at our study site is influenced by two major com-
ponents of atmospheric dynamics within South Atlantic Monsoon Sys-
tem (SAMS) scope: South Atlantic Convergence Zone (SACZ) and South 
Atlantic Subtropical Anticyclone (SASA), both associated to South 

Atlantic surface temperature (Liebmann and Mechoso, 2011). During 
the austral summer, positives South Atlantic surface temperature 
anomalies boosts the Intertropical Convergence Zone (ITCZ), promoting 
its expansion and migration to more southward position. From that low- 
level winds flow westward, transporting moisture into the Amazon 
basin. However, it is blocked by the Andes ridge and shift its direction to 
the southeast/southern region forming a ‘wind corridor’ called South 
Atlantic Low-Level Jet (SALLJ) (Garreaud et al., 2009; Marengo et al., 
2012; Vuille et al., 2012; Zhou and Lau, 1998). Near middle latitudes, 
SALLJ and the low-level moisture convergence favors deep convection, 
forming the SACZ rain belt (Kodama, 1992) (Fig. 2). The second 
component, SASA, is closely related to sea surface temperature (SST) 
mode of South Atlantic Subtropical Dipole (SASD). SASD, dominant 
mode of coupled ocean–atmosphere (Venegas et al., 1997), has a dipole 
structure oriented in the northeast-southwest direction (Haarsma et al., 
2005; Morioka et al., 2011; Nnamchi et al., 2011). SASD positive 
(negative) phase is related to negative (positive) SST anomalies at 
northeastern pole (0◦ and ~ 30◦S) and positive (negative) SST anomalies 
at southwestern pole (~30◦S and 50◦S) (Morioka et al., 2011). This 
positive phase is related to intensified evaporation in the Southwestern 
Pole and, consequently, increased moisture advection to SE and South-
ern Brazil by the SASA, resulting in wetter conditions in this region. The 
reverse situation creates the negative phase of SASD (Wainer et al., 
2014). 

Fig. 2. Main drivers of Babitonga Bay hydrology: 1) Intertropical Convergence Zone (ITCZ) expansion feeds the South Atlantic Low-Level Jet (SALLJ), bringing 
moisture to rain belt South Atlantic Convergence Zone (SACZ) and, 2) Positive phase of South Atlantic Subtropical Dipole (warmer waters (orange colour) at 
southwestern pole and colder waters at northeastern pole), which provides less evaporation and moisture advection at northeastern pole by South Atlantic Sub-
tropical Anticyclone (SASA). Yellow square represents study area site. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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2.1. Geologic and geomorphological settings 

The study area is inserted within the Joinville geologic map (SG.22- 
Z-B) (Fig. 3a). It comprises four geologic units: a crystalline basement 
(Luis Alves Microplate and Paranaguá Domain), diabase dikes (Serra 
Geral Formation), and Cenozoic unconsolidated sediments (recent de-
posits). The geologic-geotectonical structure of this area a result of the 
independent development of four amalgamated geotectonic blocks in 
Neoproterozoic times, during the formation of the Gondwana Super-
continent. The Luis Alves Microplate geotectonic block is the largest unit 
(Basei et al., 1992). These rocks were later covered by Paleozoic to 
Mesozoic sedimentary rocks, by Cretaceous volcanic rocks of Paraná 
basin, and by Holocene unconsolidated sediments. 

The origin of all estuarine complexes on the eastern Brazilian coast is 
strongly related to Quaternary sea-level oscillations (Villwock et al., 
1986; Tomazelli and Villwock, 2000). After the mid-Holocene sea-level 
highstand, at about 5100 cal. Yrs. BP (Angulo and Lessa, 1997; Angulo 
et al., 1999; Lessa et al., 2000; Martin et al., 2003), coastal river valleys 
and coastal plains were flooded, this was followed by a relative sea-level 
fall until reaching the current mean sea-level, conforming the current 
landscape. The study site is divided into the following geomorphological 
sub-units: Babitonga upper estuary, lower littoral, alluvial and marine 
plain, hills and residual elevations, Serra do Mar and plateau (Fig. 3b) 

(Gonçalves and Kaul, 2002; Rosa, 2002; IBGE, 2004; Vieira and Horn 
Filho, 2007). 

3. Material and methods 

3.1. Fieldwork and sampling 

The fieldwork was carried out in September 20–30, 2016, at the 
northeastern margin of Babitonga Bay, northeastern coast of Santa 
Catarina, where we collected the core SF8 (26◦12′S, 48◦33′W) with a 
Russian sampler. After recovering, it was properly wrapped (with a tube 
and a PVC plastic), and kept under 4 ◦C temperatures refrigeration to 
preserve organic matter. 

3.2. Sedimentary facies analysis 

Description of sediments core SF8 was based on Walker and James’s 
(1992) model that proposes the following descriptive and interpretative 
criteria such: 1) facies individualization, which takes into account the 
geometry of bedding, sedimentary structures, textures, lithological 
composition, fossiliferous content, and 2) facies association and depo-
sitional model. The core coloring was described based on Munsell’s 
colour chart (Munsell Colour, 2009). 

Fig. 3. A) Delimitation of Joinville geologic map (SG.22-Z-B) (red square), which both cores SF8 and SF1 are inserted, and B) Geomorphologic map of study site. 
Shapes are available on Geodiversidade do Estado de Santa Catarina Project of Geological Survey of Brazil (Viero and Silva, 2016). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Granulometric analysis 

Sampling for granulometric analysis were carried out every five 
centimeters, totaling forty-one samples throughout the entire core. 
Before particle size reading all samples were chemically treated with 
hydrogen peroxide (10%) to remove organic matter and placed into 
ultrasound to disperse sedimentary particles. Granulometric reading 
was performed with a Laser Particle Size SHIMADZU SALD 3101 and 
grain sizes were displayed according to Wentworth’s distribution 
(Wentworth, 1922). 

3.4. Palynological analysis 

3.4.1. Cleaning procedure 
A total of 1 cm3 was sampled from each interval of 5 cm to be 

chemically cleaned following Colinvaux et al. (1999) protocol. At first 
step, we add tablets of exotic marker Lycopodium (Stockmarr, 1971) 
and 10 ml of 10% Hydrochloric Acid (HCl) in all forty-one samples to 
remove carbonate (CO3)− 2 of both matrix of samples and Lycopodium. 
After each acid (10 ml) input step, we performed repeatedly the mixing, 
centrifugation, and distilled water addition in order to remove the 
applied acid. Second step involved the usage of Hydrofluoric Acid (HF) 
to remove the silica (SiO2). We left samples with this acid for 24 h and 
then we removed it. Third step consisted on adding glacial acetic acid 
(C2H4O2) to dehydrate samples and avoid dangerous reactions at the 
final step, acetolysis (H2SO4 and C4H6O3). During acetolysis we removed 
cellulose and polysaccharides, which often mask the internal structures 
of pollen grains and make harder the correct taxonomic identification. 

3.4.2. Pollen taxonomy and cluster analysis 
Taxonomic identification of SF8 pollen grains was accomplished 

mainly up to the hierarchical family level based on morphological de-
scriptions of quaternary palynology published by Roubik and Moreno 
(1991), Behling (1993), Colinvaux et al. (1999), Neves et al. (2001), and 
Bauermann (2003). Besides, we also consulted the Neotoma Paleo-
ecology database, as well as the pollen database from Laboratory C-14 of 
the Center for Nuclear Energy in Agriculture of the University of São 
Paulo (CENA-USP). 

Cluster analysis was perfomed by CONISS, which is a Fortran pro-
graming language for stratigraphically constrained cluster analysis 
applied on palynological data by the incremental sum of squares method 
(Grimm, 1987) by means of Tilia software (Version 1.7.16) (Grimm, 
1990). The criteria used to define the heights of nodes connecting 
clusters in generated dendrograms by this method includes: enhance in 
dispersion at each stage (Gordon, 1981), total dispersion at each stage 
(Ward, 1963; Anderberg, 1973), within-cluster dispersion of individual 
clusters (Pielou, 1984), and mean within-cluster dispersion of individual 
clusters (Orloci, 1967; Birks et al., 1975). 

3.5. Radiocarbon dates and age model 

The chronology of core SF8 was obtained through four radiocarbon 
dating on samples SF8-60_65, SF8-115_120, SF-170_175, and SF- 
190_195. Each sample comprised 10 g of bulk organic matter, where 
shells, seeds, and roots were mechanically removed to avoid contami-
nation. These samples were treated with 2% HCl to remove carbonate, 
rinsed several times with distilled water, and dehydrated in an oven at 
40 ◦C. This initial treatment was performed at Laboratory C-14 of the 
Center for Nuclear Energy in Agriculture of the University of São Paulo 
(CENA-USP). The graphitization process was performed at the Radio-
carbon Laboratory of the Fluminense Federal University (LACUFF) on 
samples SF8-60_65 and SF8-115_120. These pretreated samples were 
dated by Accelerator Mass Spectrometry (AMS) at the Center for Applied 
Isotope Studies (CAIS, University of Georgia, USA) and the residue of 
samples SF-170_175, and SF-190_195 was submitted to BETA Analytic 
(Miami, USA) for AMS analysis. 

The complete age–depth model (Fig. 4) was built with Bacon v. 2.2 
package, which uses Bayesian statistics to reconstruct Bayesian accu-
mulation histories for sedimentary deposits within the R software 
(Blaauw and Christeny, 2011). The 14C ages were normalized to δ13C 
value of − 25‰ VPDB and calibrated using SHCal20 calibration curve 
(Hogg et al., 2020) on CALIB 8.2 software (Stuiver et al., 2021) 
(Table 1). Results were displayed as calibrated years before present (cal 
yr B.P.) at age model and as Before Common Era (B.C.E.)/Common Era 
(C.E.) to make easier the comparison of exploited dataset. 

3.6. Isotopic and elemental data 

The sampling to isotopic and elemental data of core SF8 followed the 
same reasoning of 5 cm intervals, but to each depth we collected ~35 
mg, thus we gathered a total of 82 samples (41 to former analysis and 41 
to later). These samples were chemically treated with 5% Hydrochloric 
Acid (HCl) to remove carbonate, washed with distilled water, dried at 
50 ◦C, and homogenized. δ13C analysis were performed by ANCA 
SL2020 mass spectrometer at the Stable Isotope Laboratory (at CENA/ 
USP). Total organic carbon (TOC) and total nitrogen (TN) were read on 
LECO Truspec CHNS elemental analyzer at the Laboratory of Nutrient 
Cycling (at CENA/USP). The δ13C results are expressed in ‰ with 
reference to VPDB (Vienna Pee Dee Belemnite) and ± 0.2‰ of analytical 
precision (Pessenda et al., 2004). TOC and TN results are expressed as a 
percentage of dry weight, with analytical precisions of 0.09% (TOC) and 
0.07% (TN). 

4. Results 

4.1. Sedimentation ages and rates 

The 14C data of core SF8 represents a sedimentary record covering 
~5 kyr B.P. Dated depths of core SF8 revealed the following ages dis-
played in cal yr B.P. (1σ): 190–195 cm (4727 ± 35), 170–175 cm (3706 
± 22), 115–120 cm (1345 ± 23), and 60–65 cm (591 ± 24), showed in 
years C.E. on Table 1. These results showed respective sedimentation 
ages (exhibited here as mm/yr) from deepest to shallowest depth: 0.41, 
0.46, 0.87, and 1.06. Beyond radiocarbon dating of core SF8 we also 
used core SF1 14C ages to compare mangrove and spores content 
behavior of both records. 

4.2. Facies association and pollen content 

The sedimentary analysis of core SF8 allowed the identification of six 
facies and the grouping into three facies associations (FA), from oldest to 
youngest: FA1, FA2, and FA3 (Table 2, Fig. 4). Two fining-upward cycles 
were identified, the first from 200 cm to 100 cm and the second from 
100 cm to the surface. 

Trees and shrubs as Alnus, Annonaceae, Bignoniaceae, Meliaceae, 
Byrsonima, Burseraceae, Cannabaceae, Celastraceae, Icacinaceae, Mal-
pighiaceae, Mimosoideae, Proteaceae, Smilax, Sapotaceae, Phyllantha-
ceae, Sapindaceae, and Simplocaceae showed the lowest values (<3%) 
throughout all facies association and for that reason were excluded from 
pollen diagrams. The same was applied to herbs with <2% values as 
Apiaceae, Begoniaceae, Borismene, Malvaceae, and Ranuculaceae. 

4.2.1. Facies association 1 (FA1) 
Sedimentary deposits of FA1 represents the base of core SF8 and 

comprises depth 200 to 150 cm. It is composed by sand (18–100%) with 
clay levels (0–64%), and silt (0–18%) divided into tabular and laterally 
continuous layers of sands with plane-parallel (facies Pp, 30 cm thick) 
and cross-bedding sand (facies Cb, 20 cm thick) (Fig. 4). These facies 
vary from coarse to medium-grained sand, brownish-yellow in colour, 
and disjointed valves of bivalve mollusks represents their macro-
fossiliferous contents. FA1 contact with FA2 is transitional and marked 
by fine sand and mud laminations. 
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Pollen diagrams (Figs. 5, 6 and 7) display the data by each depth. Our 
dataset description involves the total sum of vegetation type (e.g., 
∑

herbs, 
∑

palms) of all depths that compose each facies association. 
Thereby, paleo-palynological records of FA1 (

∑
pollen grain = 816) are 

composed by herbs, (33.33%, 
∑

= 272), trees-shrubs (29.04%, 
∑

=

237), spores (24.02%, 
∑

= 196), and palms (13.60%, 
∑

= 111). Poa-
ceae (5–67%) and Asteraceae (1–11%) are the main representative 
family of herbs. As major trees and shrubs we found Alchornea (4–12%), 
Fabaceae (2–9%), Hedyosmum (1–10%), and Ilex (1–11%). Arecaceae 
(2–18%) is the only family that characterizes palms in all facies asso-
ciation. Spores are evidenced by Polypodiaceae (3–24%) and trilete 
spores (1–19%). Typical mangrove pollen grains assemblage (Avicennia, 
Laguncularia, and Rhizophora) were not observed. 

4.2.2. Facies association 2 (FA2) 
The central portion of core SF8 is depicted by facies association 2 

(FA2) that ranges between 150 and 85 cm. It is composed by sand layers 
(15–100%) that intercalates between silt (0–65%) and clay (0–18%) 
through alternation of tabular and laterally continuous layers of heter-
olithic facies as flaser bedding (Fb) and wavy bedding (Wb). Coloring of 
these deposits fluctuate from brownish-yellow (150 to 142 cm), very 
dark greenish gray (142 to 100 cm), and dark greenish gray (100 to 85 
cm). Macrofossiliferous content includes plant/trunk fragments and 
expressive quantitative bivalve mollusk shells. The contact of FA2 with 
FA3 is transitional and marked by the presence of fine sand and small 
mud lenses. 

We observe a higher palynological content (
∑

= 2333), than pre-
vious one. Outstanding in this association is the beginning of mangroves 

with development of Laguncularia (1–20%) and Avicennia (1–2%). 
Throughout FA2 Laguncularia is continuous, whereas Avicennia are is 
discontinuous and represented by lower values. Vegetation type such as 
herbs, trees-shrubs, and palm trees reach its maximum values (Fig. 5). 
Herbs are mostly represented by Poaceae (12–77%), Cyperaceae 
(1–6%), and Asteraceae (2–11%). Alchornea (1–57%), Fabaceae 
(2–19%), Hedyosmum (2–11%), Rubiaceae (2–11%), Melastomataceae/ 
Combretaceae (1–8%), Myrsinaceae (1–8%), and Ilex (1–7%) are the 
predominant trees and shrubs (Fig. 6). The Arecaceae family ranged 
from 10 to 45%. Spores are characterized by Polypodiaceae (6–55%) 
and trilete spores (6–26%) (Fig. 7). 

4.2.3. Facies association 3 (FA3) 
Sedimentary deposits from 85 cm to surface displays tabular and 

laterally continuous layers of clay (0–64%) along with silt (0–18%) 
containing sand lenses (20–60%), which are expressed by lenticular 
bedding (Lb) and massive mud (Mm) facies, grouped into FA3. Its major 
macrofossiliferous content are roots and plant fragments. In colour, it 
ranges from very dark greenish gray (85–50 cm) and very dark brown 
(50 cm to surface). 

The mangrove forest (
∑

= 98) is composed by Laguncularia (2–8%) 
and Avicennia (1–2%), and Rhizophora (1–10%). Comparatively to FA2, 
we observed a decreasing of trees and shrubs (

∑
= 590), herbs (

∑
=

530), palm trees (
∑

= 169), and spores (
∑

= 348). The former vege-
tation type is mainly represented by Alchornea (2–29%), Mela-
stomataceae/ Combretaceae (1–12%), Podocarpus (1–10%), Moraceae 
(1–9%), Myrsinaceae (1–7%), and Myrtaceae (1–7%). Similarly, herbs 
content diminished and was represented predominantly by Poaceae 

Fig. 4. Lithostratigraphic profile of 200-cm-long core SF8 displaying facies, features, labels, facies association, Bayesian age model and quality parameters of 
age modelling. 

Table 1 
Sediment samples selected for radiocarbon dating and results with, laboratory code-number, interval depth (m), material type, radiocarbon ages (cal yr B.P., 1σ and 
2σ), common era (C.E.) ages and median of calibrated ages displayed in C.E. Age calibration has been performed by means of the SHCal20 calibration curve (Hogg 
et al., 2020) and CALIB 8.2 software (Stuiver et al., 2021).  

Core Laboratory Code- 
Number 

Depth (m) Material Ages (14C yr BP, 
1σ) 

Ages (cal. yr BP, 
2σ) 

Common Era (yr C. 
E.) 

Median Probability (yr C. 
E.) 

Reference 

SF8 UGAMS -28,837 0.60–0.65 Bulk sed. 591 ± 24 626–518 1324–1432 1404 This study 
SF8 UGAMS -28,838 1.15–1.20 Bulk sed. 1345 ± 23 1279-1178 671–772 724 This study 
SF8 Beta - 585,259 1.70–1.75 Bulk sed. 3490 ± 30 3835 - 3629 (− 1886) - (− 1680) -1774 This study 
SF8 Beta - 585,260 1.90–1.95 Bulk sed. 4210 ± 30 4835–4579 (− 2886) – (− 2630) -2764 This study 
SF1 UGAMS-28368 0.75–0.80 Bulk sed. 1070 ± 20 960–916 990–1034 1006 França et al., 

2019 
SF1 UGAMS-28372 1.10–1.15 Bulk sed. 950 ± 20 904–739 1046–1211 1132 França et al., 

2019 
SF1 UGAMS-28848 1.60–1.65 Bulk sed. 1570 ± 20 1512–1353 438–597 548 França et al., 

2019 
SF1 UGAMS-31233 2.30–2.35 Bulk sed. 1870 ± 30 1862 -1636 88–314 182 França et al., 

2019  
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(4–44%), Asteraceae (1–14%), and Cyperaceae (1–8%). Polypodiaceae 
(6–55%) and trilete spores (1–26%) comprised the content of spores. 

4.3. Cluster analysis – CONISS 

Palynological cluster analysis performed through CONISS provided 
three main groups (stratigraphic zones), which present similarities 
regarding pollen grains amount of constrained adjacency (depths). 
These zones agree and reinforces the three facies association previously 
identified during the fieldwork (subtidal, intertidal and supratidal flat) 
(Fig. 6). 

4.4. Elemental and isotopic analysis 

Elemental data regarding the stratigraphic profile reveal a topward 
increase in total organic carbon (TOC), as well as increases in total ni-
trogen (TN) and in the C:N ratio. Our TOC and TN data showed a strong 
positive correlation coefficient (r2 > 0.9). The TOC and TN results are 
between 0.33% and 17.39% (X = 6.43%) and 0.07–0.61% (X = 0.26%), 

respectively. The C:N values varied from 4.33 to 32.61 (X = 18.44%). 
According to the stratigraphic profile, the C:N ratio behavior gradually 
increased topward, with a relation between TOC and grain size, and 
mangrove colonization (Fig. 5). The δ13C values exhibit a relatively 
stable result from − 27.47 to − 22.43‰ (X = − 24.64‰). The δ13C 
behavior revealed depleted isotopic values throughout the stratigraphic 
profile. 

5. Discussions 

Our pollen, sedimentary data, and elemental and isotopic results 
consistently suggest wetland development associated with the sedi-
mentary evolution of a progradational tidalflat-succession (from sub to 
supratidal paleoenvironment) along the eastern margin of Babitonga 
Bay during the late Holocene. Here we assume the following late Ho-
locene epochs: Roman Warm Period (RWP, 0 to 500 yrs. C.E.), Dark Ages 
Cold Period (DACP, 500 to 900 yrs. C.E.), Medieval Climate Anomaly 
(MCA, 900 to 1300 yrs. C.E.), and Little Ice Age (LIA, 1300 to 1850 yrs. 
C.E.) (Moreno et al., 2012) as there is no consensus about the precise 

Table 2 
SF8 facies, description and sedimentary process of each facies association from the base to top: subtidal flat 
(Facies Association 1, FA1), intertidal flat (Facies Association 2, FA2) and supratidal flat (Facies Association 
3, FA3). 
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temporal extent of these epochs (Neukom et al., 2019). 5.1. FA1 - Subtidal flat facies association (~2940 yrs. B.C.E. to ~750 
yrs. B.C.E) 

The cross-bedding and plane-parallel cross-bedding sandy facies, 

Fig. 5. Integrated data of sedimentary, palynological, radiocarbon dates (yrs C.E.) and geochemical features from core SF8. Total Organic Carbon (TOC), Total 
Nitrogen (TN), and C/N ratio from the base of core SF8 were not displayed due their low values. 

Fig. 6. Major genus of mangrove and trees/shrubs family from core SF8. Trees/shrubs that presented lower values (<3%) were not display.  
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grouped into FA1, were interpreted as sand bars of a subtidal flat pale-
oenvironment formed between ~2940 to ~750 yrs. B.C.E. Its origin is 
tied to a migration of 2D bedforms and sandy sheets under unidirec-
tional flow. Subtidal paleoenvironments with those sand bars is the 
result of a flood-filled channel during high tides on sheltered environ-
ments as estuaries and lagoons (Li et al., 1992; Dalrymple et al., 2003; 
Fan, 2011) reflecting to channel-filling deposits at the base of a tidal flat 
(Dalrymple, 1992). Tidal dominance over other processes (e.g., influ-
ence of waves) is most common in areas of a huge tidal range (Walker 
and James, 1992); our study site, however, has a microtidal pattern 
(DHN, 2017). A possible explanation for this occurrence would be 
limited wave action due to topographic sheltering (Walker and James, 
1992). High concentrations of sands due this sedimentological setting 
unfavored the organic matter preservation and its mineralization pro-
cess, which is corroborated by our TOC and TN data. 

Throughout subtidal flat development spores, trees-shrubs and palms 
showed lower values comparatively to herbs. High percentages of Poa-
ceae as seen in our records (Fig. 7) are often interpreted as an increased 
openness induced by dry and/or low humidity climatic conditions 
(Absy, 1979; Absy et al., 1991; van der Hammen and Absy, 1994; 
Hooghiemstra and van der Hammen, 1998). However, our isotopic data 
showed δ13C ranging from − 27.7 to − 24.15‰. These values are 
compatible with C3 plants (Meyers, 1994), meaning humidity further 
corroborated by tropical rain forest taxa (e.g., Alchornea, Didymopanax, 
Melastomataceae, Myrsinaceae, Arecaceae, Myrtaceae, and Moraceae/ 
Urticaceae) (Behling, 1997). Thus, the high values of herbs, mainly 
represented by Poaceae in subtidal flat, cannot be interpreted as 
marking a dry period; its pollination strategies (wind-pollinated) 
determine the abundance of this taxa and allowing it to produce a huge 
amount of pollen as opposed to other taxa (Bush et al., 2002). For this 
reason, Poaceae is massively over-represented in the lowland tropical 
forests, and contributes to the disproportionately high percentage and 
low production of taxa that are insect-polinated (Faegri, 1966). 
Regarding this palynological context we can infer that subtidal flat 
vegetation recorded alternation of moisture supply, varying from more 
to less humid. 

Precipitation patterns reconstructed by δ18O speleothems from 
Botuverá Cave show the influence of ITCZ on southern South America 
throughout the late Holocene (Bernal et al., 2016). From ~2940 to 
~750 yrs. B.C.E. δ18O Botuverá Cave recorded variable depleted iso-
topic signal, suggesting increasing precipitation trend. This pattern is in 
agreement with our palynological data, where trees, shrubs and palms 
percentage were slightly lower than those of herbs, probably moving 
from a less to more moisture supply during subtidal flat development 
due to ITCZ influence. 

5.2. FA2 - Intertidal flat facies association (~750 yrs. B.C.E. to ~1100 
yrs. C.E) 

The gradational spectrum of heterolithic bedding (flaser, wavy and 
lenticular bedding), grouped together into FA2, reveals alternation be-
tween suspension and traction processes from ~750 yrs. B.C.E. to 1100 
yrs. C.E. (~RWP, DACP, and beginning of MCA), which were interpreted 
as intertidal flat paleoenvironment. The aforementioned facies may be 
produced by episodic flooding on alluvial plains, or weak storms in 
offshore environments, yet they occur mostly in tidal settings where the 
regular presence of slack tides favors mud deposition (Reineck and 
Singh, 1980; Dalrymple, 2010). Their development calls for factors 
including wave protection, high sediment supply, and sufficient ac-
commodation space over the short term. The margins of estuarine 
channels, such as our study site, show high potential the deposit of neap- 
spring cyclic sequences, especially in mega-tidal estuaries where tidal 
bores may occur (Daidu et al., 2013). 

Intertidal flat onset is marked by favorable conditions such as muddy 
substrate and wetter paleoclimate, allowing mangrove establishment 
(~500 yrs. B.C.E.) and two expansion phases at ~220 yrs. C.E. (~first 
half of RWP) and at ~930 yrs. C.E. (end of DACP) at SF8. Its colonization 
was associated with continuous presence of Laguncularia and a few 
Avicennia. Genus Laguncularia is often correlated with areas of sandy 
substrates, with less salinity (Schaeffer-Novelli et al., 2000), however, it 
can develop in mud substrate and is conditioned to early or middle 
succession stages of mangroves (Soares, 1999; Menghini, 2004; Kilca 
et al., 2010). Referred genus indicates higher precipitation combined 
with enhancing sediment input to the basin, additional spaces for 
mangrove establishment, therefore, became available (González et al., 
2006) and probably also warming climate (França et al., 2019). 

Mangrove forests recorded by core SF1 is younger than SF8, which 
only appeared after ~360 yrs. C.E. Despite their distance (~24 km) and 
age difference our core revealed a mangrove species succession similar 
to SF1. Initially occurred Laguncularia establishment, later Avicennia, 
and finally, Rhizophora trees (França et al., 2019). According these au-
thors, this succession pattern is related to temperature increase during 
the late Holocene. Furthermore, when compare the palynological asso-
ciation with precipitation pattern recorded by Botuverá Cave it is 
possible to see an additional relationship with mangrove growth and 
precipitation. This growth was preceded by a peak in depleted values 
(high precipitation) at Botuverá cave, which points out that onset of 
mangrove ecosystem was linked to a more southward ITCZ position, 
more intense SACZ, and wetter conditions in the study area. Observed 
stem growth in mangrove species has been directly associated to periods 
of higher precipitation and temperature (Chowdhury et al., 2008;De 
Alvarenga et al., 2017). Other authors also corroborate the role of pre-
cipitation in cambial activity of mangrove species, which in turn affect 
processes such as stomatal conductance (Robert et al., 2014). Some 
subtropical mangroves, for example, underwent remarkably increasing 
in stem radial growth during the wetter season, whose growth was 
associated to rainfall (Krauss et al., 2006). Thereby, precipitation and 
temperature play a very important role on dynamics growth of 
mangrove species. 

Moreover, TOC presented higher values than in the previous phase 
(X = 0.69%), while C:N ratio also showed higher values (X = 6.31). Such 
increases may be closely tied to mangrove establishment, as it began to 
produce and preserve more organic matter through Laguncularia forests 
as well as spores, palms, trees-shrubs, which reached their peaks. 
Accordingly, C3 plants provided more continental origin to organic 
matter signal (Fig. 8). 

Indeed, RWP is acknowledged as a recent warm period in the 
northern hemisphere during the late Holocene (Yan et al., 2014; Seppä 
et al., 2009), commonly related to increased moisture supply in many 
regions (Haas, 1996; Ji et al., 2005; Seidenkrantz et al., 2007; Martín- 
Puertas et al., 2009; Wang et al., 2012). Its origin and causes are still not 

Fig. 7. Major herbs/grass, palms, and spores observed throughout core SF8. 
Herbs with lower values (<2%) were not displayed. 
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elucidated (Holmquist et al., 2016). South American studies approach-
ing this epoch are concentrated along south-west side of the continent, 
while in the southeast they are very sparse (Flantua et al., 2016). Most 
records show that during RWP this region shifted toward a wetter 
regime (Behling, 1995, 1997, 2003; Behling et al., 2001; Behling and 
Safford, 2010; Jeske-Pieruschka and Behling, 2012). Our data agree 
with this general pattern, moving toward wetter paleoclimatic condi-
tions during RWP. 

During much of the DACP, the δ18O of Botuverá Cave exhibited 
depleted values (high precipitation). Nevertheless, our humidity proxies 
do not reflect this rising rainfall pattern. Overall DACP record involving 
our SF8 mangrove shows a slight diminish (650 yrs. C.E.). Only at the 
end of this epoch, when Botuverá record had a marked peak, did SF8 
exhibit an abrupt expansion (Fig. 9, dashed black line). Again, our re-
cords appear to be only partially sensitive to ITCZ shifts, when major 
southward movements promoted higher humidity in this region and 
may have led to mangrove expansion. 

The DACP has generally been regarded as a cold period around 
Europe, the North Atlantic, Arctic regions, North America, the China/ 
Tibetan Plateau, and the northern Pacific (Helama et al., 2017), in turn 
related to greater North Atlantic ice-rafting, weak North Atlantic 
Oscillation and/or El Niño–Southern Oscillation (Bond et al., 1997; 
Berglund, 2003; Reimann et al., 2011; Ülgen et al., 2012; Cui and Chang, 
2013; Li et al., 2016). Previous studies further indicate a weakening of 
northern hemisphere monsoon systems due to redistribution of the heat 
received, giving rise to a southward migration of ITCZ (Braconnot et al., 
2007). In southeast South America, this epoch is regarded as a wet 
paleoclimate (Behling, 1995, 1997, 2003; Behling et al., 2001; Behling 
and Safford, 2010; Jeske-Pieruschka and Behling, 2012), whereas in 
southern South America it marks move from wet to dry (Sepúlveda et al., 
2009). For the most part, the DACP SF8 palynological signal reflects 
fewer wet conditions; the paleoclimate became wetter only at the end of 
this epoch. 

Spore content of core SF1 presents a diminishing trend from RWP 
and the beginning of MCA (Fig. 9a), while its mangrove forest showed an 
increasing pattern (Fig. 9b), denoting decreasing of moisture supply, but 
suitable conditions to mangrove establishment. 

5.3. FA3 - Supratidal flat facies association (~1100 yrs. C.E. to present) 

The upper part of the SF8 site, FA3, was interpreted as a classical 
supratidal flat environment (upper portion of a progradational tidal 
flat), due to the presence of massive mud and heterolytic lenticular 
bedding (Lb) facies superimposed by a mangrove (Daidu et al., 2013). 
Classic supratidal flats are often covered with vegetation over clay/fine 
silt substrate showing a higher concentration of organic matter (Daidu 
et al., 2013). Between ~1000 to ~1600 yrs. C.E. (~MCA to ~LIA) SF8 
mangrove exhibited stabilization, expanded again only from ~1700 yrs. 
C.E. 

Depleted values of δ13C (X = 24.39‰) indicate more substantial 
continental influence, coherent with a mangrove expansion and influ-
ence of type C3 vegetation marked by Rhizophora (Fig. 8). Colonization 
by the genus Rhizophora was probably fundamental for the increase of 
primary production in the study area throughout supratidal flat. Hy-
drological conditions influence the Rhizophora species distribution 
(Numbere and Camilo, 2017), once they are a low salt-tolerant species 
(Lugo, 1980). They are at found at the fringes of the woods in contact 
with the sea, along channels, at the mouth of some rivers, or in the inner 
parts of estuaries where salinity is not very high (França et al., 2019). 
Although they tolerate salinities of up to 55 psu, they grow best when 
these values around 35 psu or less (Schaeffer-Novelli and Lacerda, 
1994). Genus Rhizophora is also related to mangroves in advanced stages 
of development (Soares, 1999; de Souza and Sampaio, 2001; Kilca et al., 
2010), to silty substrate (Dornelles et al., 2006), and to air temperature 
(Duke et al., 1998; Quisthoudt et al., 2012; França et al., 2019). In our 
study area, Rhizophora data agree with the findings of some previous 
researchers (e.g., Duke et al., 1998), namely in that it predominated in 
silty sand and sandy silt soil composition. Laguncularia, however, pre-
sented some disparity, being found in both soils with varying grain size 
(sand, silt, and clay). 

Throughout most part of LIA, SF8 mangrove and ferns remained low 
and stable despite the increasing precipitation trend evidenced by δ18O 
Botuverá Cave data in the beginning of this epoch (Fig. 9c-e). Our data 
shows that study area vegetation does not respond to this ITCZ south-
ward migration, even though it usually contributes to wetter climate 

Fig. 8. Binary diagram showing the relationship between δ13C and C/N (Meyers, 2003) of intertidal flat (facies association 2, red squares) and supratidal flat facies 
association (facies association 3, yellow squares) pointing a predominance change on organic matter origin to more continental influence toward top of core SF8. 
POC = Particulate Organic Carbon, DOC = Dissolved Organic Carbon. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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conditions at other sites in southern South America (Behling, 1995, 
1997, 2003; Behling et al., 2001; Behling and Safford, 2010; Jeske- 
Pieruschka and Behling, 2012) for which reason other environmental 
factors must force mangrove evolution at our particular study site. 

5.4. South Atlantic Subtropical Anticyclone (SASA) and Intertropical 
Convergence Zone (ITCZ) as rainfall drivers of Babitonga Bay 

Precipitation recorded by the δ18O of speleothem from Botuverá 
Cave can be interpreted in the light of ITCZ latitudinal migration during 
the late Holocene (Bernal et al., 2016), along the lines of other cave 
studies (Novello et al., 2018). Our pollen, elemental, and isotopic re-
cords show a major relation with most depleted values of Botuverá, 
humid conditions (~ mid RWP, end of DACP); but different patterns also 
emerge. The difference is especially clear during the LIA, when our 
spores and mangrove record shows some retraction despite high pre-
cipitation at Botuverá Cave (Fig. 9) and surrounding cave locations (e.g., 
Cristal Cave at southeastern Brazil, Novello et al., 2012, 2018). A likely 

explanation is that Babitonga Bay was facing drier and/or colder con-
ditions affecting mangrove development. However, we can discard low 
temperatures during the LIA in the studied coastal area, as diverse re-
cords point toward an increase in sea surface temperature (SST) in the 
South Atlantic Ocean (Chiessi et al., 2014). For instance, one modern 
interpretation holds that the recent increase in SST in the South Atlantic 
Ocean led to the intensification of SASA in 2014, and reduced precipi-
tation in southeast Brazil (Coelho et al., 2016). Therefore, our palyno-
logical data probably reflect ITCZ movements, but would also be 
sensitive to further climate forcings. We put forth that intense/weak 
SASA could have affected the vegetation (Fig. 10). 

During the LIA, enhanced SST in the South Atlantic Ocean (at ~33◦S) 
was connected to a strong Brazil Current as well as weak Atlantic 
Meridional Overturning Circulation (Chiessi et al., 2014). South Atlantic 
SST modulates the South Atlantic Subtropical Dipole (SASD), which in 
turn reflects on SASA and creates a rainfall dipole over South America. 
Positive phase of SASD is related to warmer waters on its southwestern 
pole (30◦S to 50◦S) and colder on its northeastern pole (0◦ to 30◦ S). This 

Fig. 9. Integrated sum pollen and isotope data from 
nearby southernmost mangrove limit in South Amer-
ica. A) Spores content of core SF1 (França et al., 
2019) located at northwestern margin of Babitonga 
Bay, B) Mangrove content of core SF1 (França et al., 
2019), C) Spore amount of core SF8 (this study), 
which was recovered at northeastern margin of 
Babitonga Bay, D) Mangrove quantity observed 
throughout core SF8, and E) δ18O data from Botuverá 
Cave records (Bernal et al., 2016), which is ~120 km 
far from core SF8. Dashed black lines = peaks of 
precipitation at Botuverá Cave. RWP = Roman Warm 
Period, DACP = Dark Age Cold Period, MCA = Me-
dieval Climate Anomaly, LIA = Little Ice Age, FA1 =
Facies Association 1 (Subtidal Flat), FA2 = Facies 
Association 2 (Intertidal Flat), FA3 = Facies Associa-
tion 3 (Supratidal Flat), and C.E. = Common Era.   
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pattern is attributed to increased evaporation in the southwestern pole 
and consequently, decreased moisture advection to northeastern pole 
through South Atlantic Subtropical Anticyclone resulting in drier con-
ditions to these regions (Wainer et al., 2014). Thereby, air-sea interac-
tion likely created suitable conditions for the development of an intense 
SASA, influencing the Brazilian southern coastal region through drier 
conditions. In other words, our palynological data may reflect ITCZ 

movements, but would also be sensitive to other climate forcings such as 
too intense/weak SASA. Our interpretation lies in agreement with 
studies that point to regional precipitation along Atlantic coastal areas in 
South America as not only forced by ITCZ migrations, but to sea surface 
temperatures and trade winds (Utida et al., 2019). Therefore, precipi-
tation is seen to be an essential controlling factor in the appearance and 
expansion of mangroves during the late Holocene, regulating nutrients, 

Fig. 10. Paleoenvironmental reconstitution of Babitonga Bay northeastern margin (southern Brazil). From top to the bottom blocks show the evolution of study area. 
RWP = Roman Warm Period, DACP = Dark Age Cold Period, FA1 = Facies Association 1, FA2 = Facies association 2, FA3 = Facies Association 3, SASA = South 
Atlantic Subtropical Anticyclone. 
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productivity (Snedaker, 1995), and ultimately mangrove survival 
(Tomlinson, 1998). 

6. Conclusions 

Sedimentological data of core SF8 allowed the reconstruction of 
surrounding Babitonga bay paleoenvironment during the late Holocene. 
Six facies were identified and grouped into three facies association, from 
the base to top: subtidal (~2940 yrs. B.C.E. to ~750 yrs. C.E.), intertidal 
(~750 to ~1100 yrs. C.E.), and supratidal flat (~1100 yrs. C.E. to the 
present). Elemental and isotopic data reveal a progressive increase in 
continental influence of organic matter, likely due to the appearance of 
the mangrove ecosystem (~500 yrs. C.E.) at the studied bay. 

A comparison between our palynological data and precipitation 
patterns reconstructed by δ18O Botuverá Cave and other records provide 
new insights about the influence of the Intertropical Convergence Zone 
(ITCZ) on hydrological control by near southernmost South America 
mangroves during the late Holocene. During the Little Ice Age, SF8 
mangrove did not respond to the precipitation peak imposed by the most 
southward ITCZ position, probably due to an intense South Atlantic 
Subtropical Anticyclone that created drier conditions for the study area. 
Our interpretation agrees with studies to point that regional precipita-
tion along South America Atlantic coastal areas not only forced by ITCZ 
migrations, but also to South Atlantic SST dipole. Further studies are 
needed in order to evaluate the role of hydrological forcing into 
mangrove forest evolution. 
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dynamics in the Serra dos Órgãos, Rio de Janeiro State, southeastern Brazil. Glob. 
Chang. Biol. 16, 1661–1671. https://doi.org/10.1111/j.1365-2486.2009.02029.x. 

Behling, H., Bauermann, S.G., Pereira Neves, P.C., 2001. Holocene environmental 
changes in the São Francisco de Paula region, southern Brazil. J. S. Am. Earth Sci. 14, 
631–639. https://doi.org/10.1016/S0895-9811(01)00040-2. 

Berglund, B.E., 2003. Human impact and climate changes - synchronous events and a 
causal link? Quat. Int. 104, 7–12. https://doi.org/10.1016/S1040-6182(02)00144-1. 

Bernal, J.P., Cruz, F.W., Stríkis, N.M., Wang, X., Deininger, M., Catunda, M.C.A., Ortega- 
Obregón Cheng, H., Edwards, R.L., Auler, A.S., 2016. High-resolution Holocene 
south American monsoon history recorded by a speleothem from Botuverá Cave, 
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Domínguez, A.L. (Eds.), Ecosistemas de Manglar en América Tropical. Instituto de 
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Kodama, Y., 1992. Large-scale common features of subtropical precipitation zones (the 
Baiu Frontal Zone, the SPCZ, and the SACZ) part I: Characteristics of Subtropical 
Frontal zones. J. Meteorol. Soc. Jpn. 70, 813–836. 

Krauss, K.W., Doyle, T.W., Twilley, R.R., Rivera-Monroy, V.H., Sullivan, J.K., 2006. 
Evaluating the relative contributions of hydroperiod and soil fertility on growth of 
south Florida mangroves. Hydrobiologia,. In: , 569, pp. 311–324. 

Krauss, K.W., Mckee, K.L., Lovelock, C.E., Cahoon, D.R., Saintilan, N., Reef, R., Chen, L., 
2014. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34. 
https://doi.org/10.1111/nph.12605. 

Lessa, G., Angulo, R.J., Giannini, P.C.F., Araújo, A.D., 2000. Stratigraphy and Holocene 
evolution of a regressive barrier in south Brasil. Mar. Geol. 165, 87–108. https://doi. 
org/10.1016/S0025-3227(99)00130-9. 

Li, C., Han, C., Wang, P., 1992. Depositional sequences and storm deposition on low- 
energy coast of China. Acta Sedimentol. Sin. 10 (4), 119–127. 

Li, G., Dong, H., Hou, W., Wang, S., Jiang, H., Yang, J., Wu, G., 2016. Temporal 
succession of ancient phytoplankton community in Qinghai Lake and Implication for 
Paleoenvironmental change. Sci. Rep. 6, 1–12. https://doi.org/10.1038/srep19769. 

Liebmann, B., Mechoso, C., 2011. The South American Monsoon system. In: Chang, C.P., 
et al. (Eds.), The Global Monsoon System: Research and Forecast, 2nd ed. World 
Scientific Publication Company, p. 608. 

Lugo, A.E., 1980. Mangrove ecosystems: successional or steady state? Biotropica 12, 
65–72. 

Marengo, J.A., Liebmann, B., Grimm, A.M., Misra, V., Silva Dias, P.L., Cavalcanti, I.F.A., 
Carvalho, L.M.V., Berbery, E.H., Ambrizzi, T., Vera, C.S., Saulo, A.C., Nogues- 
Paegle, J., Zipser, E., Seth, A., Alves, L.M., 2012. Recent developments on the South 
American monsoon system. Int. J. Climatol. 32, 1–21. https://doi.org/10.1002/ 
joc.2254. 

Martin, L., Dominguez, J.M.L., Bittencourt, A.C.S.P., 2003. Fluctuating Holocene Sea 
levels is eastern and southeastern Brazil: evidence from a multiple fossil and 
geometric indicators. J. Coast. Res. 19, 101–124. 

Martín-Puertas, C., Valero-Garcés, B.L., Brauer, A., Mata, M.P., Delgado-Huertas, A., 
Dulski, P., 2009. The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the 
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