ACHENE MICRO-MORPHOLOGY OF ANAPHALIS DC. (GNAPHALIEAE-ASTERACEAE) FROM CHINA

XUEMIN XU, ZHEN WEI, TAO ZHANG AND SHIXIN ZHU*

School of Life Sciences, Zhengzhou University, Zhengzhou, China *Corresponding author's email: sxzhu@zzu.edu.cn

Abstract

Anaphalis DC. is the largest genus in Asian Gnaphalieae, and China, containing 54 known species, is one of the largest centers of Anaphalis diversity. In the present study, the achene micro-morphology of 39 Chinese Anaphalis taxa were studied in detail using scanning electron microscopy (SEM). The results showed that the Chinese Anaphalis could be classified into two groups based on achene surface ornamentation viz. reticulate-claviform (Group I) and ligulate protuberant (Group II). Achene micro-morphological characteristics were useful for the delimitation of interspecific and supraspecific classification within Anaphalis.

Key words: Achene, Micro-morphology, Anaphalis, Gnaphalieae, Scanning Electron Microscopy.

Introduction

Anaphalis DC. (Gnaphalieae, Asteraceae), consisting of ca 110 species, is the largest genus in the Asian Gnaphalieae tribe (Wu et al., 2011). Anaphalis is mainly distributed in tropical and subtropical Asia, with only a few species in temperate Asia, Europe, and North America (Wu et al., 2011; Nie et al., 2013). China one of the diversity centers of Anaphalis (Nie et al., 2013), with about 54 Anaphalis species is intensively distributed in the Himalayas and Hengduan Mountains, and fewer species in North and Central China (Wu et al., 2011). Additionally, four Anaphalis species (A. morrisonicola Hayata, A. transnokoensis Sasaki, A. nagasawae Hayata, and A. horaimontana Masam.) are insulated in alpine meadows in Taiwan (Lin, 1979; Lin, 1993, 1997; Wu et al., 2003, 2011). The Chinese Anaphalis has been classified into two subgenera: Subgen. I Gnaphaliops and Subgen. I Anaphalis (Lin, 1979). The subgen. Anaphalis was further divided into two sections based on morphological characteristics such as shapes of involucre, color of phyllaries, and shapes of leaf base (Lin, 1979). The nuclear internal and external transcribed spacers (ITS and ETS) of Anaphalis species have been sequenced to examine the phyletic position of the genus, with an emphasis on the eastern Himalayan taxa (Nie et al., 2013). Their results suggested that the monophyly of Anaphalis was weakly supported. Nie et al., (2013) identified two clades in Anaphalis based on the shape of the leaf base rather than the morphology of the capitula and phyllaries used by Chen et al., (1966) and Lin (1979).

Achene features have been widely used for taxonomic clarification in Asteraceae (Abid & Qaiser, 2002, 2007a, 2007b, 2007c, 2008a, 2008b; Abid & Zehra, 2007; Blanca & Guardia, 1997; Bruhl & Quinn, 1990; Ghimire *et al.*, 2016; Melahat, 2017; Roque & Funk, 2013; Singh & Pandey, 1984; Zhang *et al.*, 2013). Achene micro-morphological characteristics have played an important role in the systematics of Asteraceae (Abid & Qaiser, 2002, 2007a, 2007b, 2007c, 2008a, 2008b; Abid & Zehra, 2007; Ritter & Miotto, 2006).

Anaphalis was distinguished among all other genera of Gnaphalieae due to the presence of short clavate hairs

on the achene surface (Anderberg, 1991; Bremer, 1994; Qaiser & Abid, 2003). Abid & Qaiser (2007a) divided 17 *Anaphalis* taxa of Pakistan into two groups: sparsely or densely papillate-clavate hairy on the achene surface. Zhang & Chen (2008) found that the achene length and width variation coefficients of *Anaphalis* were smaller than the other genera and indicated that *Anaphalis* species was relatively primitive. Achene micro-morphological characteristics of six genera in the tribe Gnaphalieae in Pakistan have been examined, and Gnaphalieae were divided into two groups, achenes monomorphic or dimorphic, based on achene morphology (Abid & Qaiser, 2008b). Therefore, achene features have been useful for assessing the taxonomic delimitation both at the generic and specific levels in Gnaphalieae.

Chinese Anaphalis species contain about half of the number of all Anaphalis species worldwide and thus play a crucial role in understanding the phylogenetic relationships within this genus. Macro-morphological characteristics, chromosome numbers, karyotypes, and molecular phylogeny based on nrDNA of the Chinese Anaphalis have been studied (Chen et al., 1966; Meng et al., 2010, 2014; Nie et al., 2013; Wu et al., 2011). However, achene characteristics of Chinese Anaphalis have not received much attention, and the previous studies on the achene morphology of Anaphalis were only focused on one or a small group of Anaphalis taxa (Chen & Jing, 2007; Zhang & Chen, 2008). For a better understanding of Anaphalis taxonomy, more taxa and evidence must be included. Therefore, the current study described, for the first time, the detailed achene micromorphology of 39 Anaphalis taxa distributed in China. Using this achene micro-morphology, we resolve taxonomic relationships in Chinese Anaphalis and discuss the relationships between Anaphalis and closely related genera.

Materials and Methods

The achenes of 39 *Anaphalis* taxa representing 34 *Anaphalis* species were used in this study. Voucher specimens were deposited at Zhengzhou University (ZZU) and PE Herbarium (Table 1).

Before SEM imaging, achenes were dehydrated in gradient alcohol and fixed onto the sample platform using electric adhesive tape. Then, the achene surfaces were coated with gold (approximately 20 nm thick). SEM imaging was performed using a Phenom Prox scanning electron microscope at 5 kV. The following characteristics of the achene were studied and compared: shape, size, cellular arrangement, cell shape, surface ornamentation, and epicuticular secretion. In most cases, 10 achenes per species were studied. Morphological terms used in this study are from Abid & Qauser (2007a) and Liu *et al.*, (2004).

Results

General achene characteristics of Chinese *Anaphalis: Anaphalis* achenes were elliptic or oblong, and several achenes were subcylindrical, 0.6–1.5 mm long, and 0.25–0.6 mm wide. Epidermal cells were neatly arranged and

parallel to their longitudinal axis. The achene surfaces, with clear cellular outlines, were reticulate-claviform or ligulate protuberant. The hilum was circular, 0.05-0.15 mm in diameter, and constricted at the base. The density of the wax layer varied in different species. Individual achene morphological parameters and their features are presented in Table 2. Based on surface ornamentation, the Chinese Anaphalis were divided into two groups. Group 2 contained those taxa whose achene surface ornamentation were reticulate-claviform (Table 2, Fig. 1), including A. acutifolia; A. adnata; A. busua; A. contorta; A. margaritacea; A. nepalensis, and A. triplinervis. In Group I, the surface ornamentation of the achenes was ligulate protuberant (Table 2, Figs. 2, 3, 4) and included the remaining studied Chinese Anaphalis species studied in this work. A key to the species of Chinese Anaphalis also was generated based on the morphology, size, and microcharacteristics of achenes.

Table 1. Voucher details of taxa used in this study.

Taxa	Locality	Voucher specimen
A acutifolia	Sichuan Muli	S X Zhu et al DS15043 (ZZU)
A adnata	Yunnan Kunming	T N Liou 14340 (PF)
A aureopunctata	Shanxi Liuba	$S = X = Zhu \ et \ al \ DS13459 (ZZU)$
A bicolor	Yunnan Lijiang	S X Zhu et al DS11457 (ZZU)
A bullevana	Sichuan Muli	S X Zhu et al DS13580 (ZZU)
A busua	Yunnan Lijiang	S X Zhu et al. DS11458 (ZZU)
A chlamydophylla	Sichuan Daocheng	$D \in Boufford et al. 37391 (ZZU)$
A cinerascens	Yunnan Zhongdian	K M Feng 02394 (PE)
A. contorta	Yunnan, Chuxiong	$S_{1}X_{1}Z_{1}Z_{2}Z_{2}Z_{1}Z_{2}Z_{2}Z_{2}Z_{2}Z_{2}Z_{2}Z_{2}Z_{2$
A. contortiformis	Yunnan, Xinping	S. X. Zhu et al. DS11523 (ZZU)
A corvmbifera	Sichuan Jiuzhaigou	S X Zhu et al DS13504 (ZZU)
A delavavi	Sichuan Xinlong	$D \in Boufford et al. 37286 (ZZU)$
A. deserti	Sichuan, Litang	S. X. Zhu et al. DS13590 (ZZU)
A. elegans	Yunnan, Xianggelila	S. X. Zhu et al. $DS11438$ (ZZU)
A. flaccida	Yunnan, Xianggelila	S. X. Zhu et al. DS13599 (ZZU)
A. flavescens	Sichuan, Litang	S. X. Zhu et al. $DS13592$ (ZZU)
A. gracilis	Sichuan, Rangtang	D. E. Boufford et al. 38867 (ZZU)
A. gracilis var. ulophylla	Sichuan. Dajin	X. Li 78308 (PE)
A. lactea	Sichuan, Rangtang	D. E. Boufford et al. 39074 (ZZU)
A. larium	Yunnan. Degin	S. X. Zhu et al. DS11434 (ZZU)
A. latialata	Sichuan, Baoxing	S. X. Zhu et al. DS13533 (ZZU)
A. likiangensis	Yunnan, Xianggelila	S. X. Zhu et al. DS13597 (ZZU)
A. margaritacea	Sichuan, Chengkou	S. X. Zhu et al. DS11456 (ZZU)
A. margaritacea var. angustifolia	Unknown	Anonymous 3859 (PE)
A. nepalensis	Yunnan, Deqin	S. X. Zhu et al. DS11429 (ZZU)
A. nepalensis var. corymbosa	Sichuan, Xiaojin	S. S. Chang et al. 6837 (PE)
A. nepalensis var. monocephala	Xizang	Y. T. Zhang et al. 2731 (PE)
A. nepalensis var. nepalensis	Yunnan, Gongshan	S. X. Zhu et al. DS13598 (ZZU)
A. pachylaena	Sichuan, Muli	S. X. Zhu et al. DS13575. (ZZU)
A. pannosa	Yunnan, Deqin	S. X. Zhu et al. DS11433 (ZZU)
A. rhododactyla	Sichuan, Litang	S. X. Zhu et al. DS13591 (ZZU)
A. sinica var. lanata	Unknown	Anonymous 4608 (PE)
A. souliei	Sichuan, Muli	S. X. Zhu et al. DS13576 (ZZU)
A. spodiophylla	Sichuan, Muli	S. X. Zhu et al. DS13574 (ZZU)
A. surculosa	Sichuan, Baoxing	S. X. Zhu et al. DS13533 (ZZU)
A. triplinervis	Sichuan, Yajiang	D. E. Boufford et al. 35925 (ZZU)
A. virens	Sichuan, Xinlong	D. E. Boufford et al. 37279 (ZZU)
A. xylorhiza	Xizang, Changdu	D. E. Boufford et al. 41132 (ZZU)
A. yunnanensis	Yunnan, Zhongdian	D. E. Boufford et al. 42019 (ZZU)

	Ta	ible 2. Acher	<u>ie micro-morphologi</u>	cal characteristic	cs of Chinese Anaphalis.			
Town	Chana	(mm) (22)	Surface		Hilum	Epidern	nal cells	Wax layer
LAXA	adanc	(IIIIII) azıc	ornamentation	Diameter (µm)	Shape	Shape	Size (µm)	
A. acutifolia	Oblong	1.2×0.3	reticulate-claviform	120	Base constricted	Narrowly oblong	65 imes 10	Sparse
A. adnata	Subcylindrical	0.6×0.25	reticulate-claviform	80	Base constricted	Oblong	50 imes 15-20	Dense
A. aureopunctata	Oblong, slightly curved	0.8×0.3	ligulate protuberant	80	Base slightly constricted	Ovate	$20-25 \times 5$	Without
A. bicolor	Subcylindrical	0.5 imes 0.2	ligulate protuberant	50	Base constricted	Broadly ovate	25 imes 10	Dense
A. bulleyana	Elliptic	0.8 imes 0.35	ligulate protuberant	100	Base constricted	Broadly ovate	30 imes 15-20	Dense
A. busua	Subcylindrical	0.6×0.28	reticulate-claviform	80	Base constricted	Oblong	50 imes 5-10	Sparse
A. chlamydophylla	Elliptic	1.3 imes 0.6	ligulate protuberant	50	Base constricted	Narrowly ovate	$10{-}15 imes 5$	Sparse
A. cinerascens	Elliptic	1.2×0.6	ligulate protuberant	50	Slant, base constricted	Narrowly ovate	$20-25 \times 5$	Sparse
A. contorta	Subcylindrical	0.5 imes 0.15	reticulate-claviform	75	Base constricted	Ovate	20-25 imes 10	Dense
A. contortiformis	Elliptic	0.8×0.38	ligulate protuberant	80	Base constricted	Ovate	$50 \times 20 - 25$	Dense
A. corymbifera	Subcylindrical	0.8×0.3	ligulate protuberant	100	Base constricted	Narrowly ovate	$25-30 \times 20$	Sparse
A. delavayi	Oblong, slightly curved	1.5 imes 0.5	ligulate protuberant	150	Curved, base constricted	Broadly ovate	$20 - 30 \times 20$	Sparse
A. deserti	Oblong	1.5×0.3	ligulate protuberant	120	Slightly curved, base constricted	Narrowly ovate	3035×1015	Dense
A. elegans	Elliptic, slightly curved	0.9×0.35	ligulate protuberant	80	Base constricted	Narrowly ovate	$25-30 \times 20$	Sparse
A. flaccida	Elliptic	0.75 imes 0.4	ligulate protuberant	110	Base constricted	Ovate	$25-35 \times 10$	Dense
A. flavescens	Oblong, slightly curved	1.0 imes 0.3	ligulate protuberant	60	Slightly curved, base constricted	Narrowly ovate	$15-20 \times 5$	Dense
A. gracilis	Oblong, slightly curved	1.0 imes 0.5	ligulate protuberant	150	Slightly curved, base constricted	Ovate	$25-35 \times 15-20$	Dense
A. gracilis var. ulophylla	Oblong	0.9 imes 0.35	ligulate protuberant	100	Base constricted	Ovate	2025×1520	Dense
A. lactea	Oblong, slightly curved	1.2 imes 0.4	ligulate protuberant	80	Elongate, base constricted	Narrowly ovate	$25 - 30 \times 10 - 15$	Sparse
A. larium	Elliptic	1.0 imes 0.5	ligulate protuberant	110	Slightly curved, base constricted	Ovate	$25-30 \times 20-23$	Dense
A. latialata	Elliptic, slightly curved	0.75×0.3	ligulate protuberant	90	Curved, base constricted	Narrowly ovate	$40-50 \times 20$	Dense
A. likiangensis	Oblong	0.9×0.3	ligulate protuberant	100	Slightly curved, base constricted	Narrowly ovate	$30-40 \times 15-20$	Dense
A. margaritacea	Oblong	0.7 imes 0.25	reticulate-claviform	40	Curved, base constricted	Ovate	10×5	Dense
A. margaritacea var. angustifolia	Oblong	0.9×0.25	reticulate-claviform	100	Curved, base constricted	Oblong	$45-50 \times 10-15$	Without
A. nepalensis	Obovate	0.8×0.3	reticulate-claviform	80	Base constricted	Oblong	4045×1015	Without
A. nepalensis var. corymbosa	Oblong	0.8×0.3	reticulate-claviform	80	Slightly curved, base constricted	Oblong	$55-75 \times 15-20$	Without
A. nepalensis var. monocephala	Oblong	0.8×0.3	reticulate-claviform	80	Slightly curved, base constricted	Oblong	$45-50 \times 5-10$	Sparse
A. nepalensis var. nepalensis	Oblong	0.9×0.3	reticulate-claviform	50	Base constricted	Oblong	$20-25 \times 5-10$	Without
A. pachylaena	Elliptic	0.6×0.3	ligulate protuberant	100	Curved, base constricted	Ovate	$25-30 \times 15-20$	Without
A. pannosa	Oblong	1.2 imes 0.5	ligulate protuberant	120	Curved, base constricted	Ovate	$30-40 \times 10-15$	Without
A. rhododactyla	Elliptic	0.9×0.45	ligulate protuberant	100	Curved, base constricted	Ovate	$40-50 \times 15-20$	Dense
A. sinica var. lanata	Elliptic	0.8 imes 0.4	ligulate protuberant	150	Base constricted	Ovate	$30-40 \times 15$	Dense
A. souliei	Oblong	1.0 imes 0.5	ligulate protuberant	130	Elongate, base constricted	Ovate	$30-40 \times 10-15$	Dense
A. spodiophylla	Elliptic	0.8 imes 0.4	ligulate protuberant	100	Slightly curved, base constricted	Ovate	$35-45 \times 20$	Dense
A. surculosa	Elliptic	0.8×0.3	ligulate protuberant	120	Slightly curved, base constricted	Ovate	$30-40 \times 15-20$	Dense
A. triplinervis	Elliptic	0.65×0.4	reticulate-claviform	80	Slightly curved, base constricted	Oblong	$25-30 \times 15$	Without
A. virens	Oblong	0.8×0.35	ligulate protuberant	150	Base constricted	Narrowly ovate	$35-45 \times 20-23$	Dense
A. xylorhiza	Elliptic	1.0 imes 0.45	ligulate protuberant	80	Slightly curved, base constricted	Narrowly ovate	$35-45 \times 15-20$	Sparse
A. yunnanensis	Elliptic	0.9×0.5	ligulate protuberant	120	Base constricted	Ovate	$25-30 \times 15-20$	Dense

Key of Chinese Anaphalis species based on achene characteristics

1a. Surfaces of achenes reticulate-claviform	
10. Surfaces of achieves ingulate protuderant	8
2a. Achenes subcylindrical	
2b. Achenes oblong, obovate of elliptic	
3a. Achenes 0.5×0.15 mm, filum 75 µm in diameter, epidermal cells ovate, $20-25 \times 10$ µm	A. contorta
3b. Achenes $0.6 \times 0.25 - 0.28$ mm, hilum 80 µm in diameter, epidermal cells oblong, $50 \times 5 - 20$ µm	
4a. Epidermal cells $50 \times 15-20 \ \mu\text{m}$, with dense wax layer	A. adnata
4b. Epidermal cells $50 \times 5-10 \ \mu\text{m}$, with sparse wax layer	A. busua
5a. Achenes 1.2×0.3 mm, hilum 120 μ m in diameter	A. acutifolia
Sb. Achenes $0.65-0.9 \times 0.25-0.4$ mm, nilum $40-100 \mu\text{m}$ in diameter	
6a. Achenes elliptic, 0.65×0.4 mm	A. triplinervis
bb. Achieves oblong or obovate, $0.7-0.9 \times 0.25-0.3$ mm	······ /
7a. Achenes $0.7-0.9 \times 0.25$ mm, mium curved	A. margaritacea
/b. Achenes $0.8-0.9 \times 0.3$ mm, filum slightly curved or not	A. nepalensis
8a. Achenes surfaces without wax layer	
8b. Achenes surfaces with sparse or dense wax layer	11 7
9a. Hilum 80 μ m in diameter, base slightly constricted; achenes slightly curved; epidermal cells 20–25 ×	5 μm
	<i>aureopunctata</i>
9b. Hilum 100–120 μ m in diameter, base constricted; achenes not curved; epidermal cells 25–40 × 10–20	μm 10
10a. Achenes elliptic, 0.6×0.3 mm, hilum 100 µm in diameter, epidermal cells $25-30 \times 15-20$ µm	A. pachylaena
10b. Achenes oblong, 1.2×0.5 mm, hilum 120 µm in diameter, epidermal cells $30-40 \times 10-15$ µm	A. pannosa
I la. With sparse wax layer	
11b. With dense wax layer	
12a. Achenes subcylindrica	. A. corymbifera
12b. Achenes elliptic or oblong	
13a. Hilum 150 μm in diameter, epidermal cells broadly ovate	A. delavayi
13b. Hilum 50–80 μm in diameter, epidermal cells narrowly ovate	
14a. Achenes oblong, hilum elongate	A. lactea
14b. Achenes elliptic, hilum not elongate	
15a. Hilum 50 μm in diameter	
15b. Hilum 80 μm in diameter	
16a. Hilum slant, epidermal cells $20-25 \times 5 \mu\text{m}$. A. cinerascens
16b. Hilum not slant, epidermal cells $10-15 \times 5 \mu\text{m}$	chlamydophylla
17a. Achenes slightly curved, 0.9×0.35 mm, hilum not curved, epidermal cells $25-30 \times 20 \ \mu\text{m}$	A. elegans
17b. Achenes not curved, 1.0×0.45 mm, hilum slightly curved, epidermal cells $35-45 \times 15-20$ µm	A. xylorhiza
18a. Achenes subcylindrical, 0.5×0.2 mm, hilum 50 µm in diameter	A. bicolor
18b. Achenes elliptic or oblong, $0.75-1.5 \times 0.3-0.5$ mm, hilum 60–150 µm in diameter	
19a. Hilum elongate	A. souliei
19b. Hilum not elongate	
20a. Achenes oblong	
20b. Achenes elliptic	
21a. Epidermal cells ovate	A. gracilis
21b. Epidermal cells narrowly ovate	
22a. Achenes slightly curved, hilum 60 μ m in diameter, epidermal cells 15–20 × 5 μ m	A. flavescen
22b. Achenes not curved, hilum 100–150 μ m in diameter, epidermal cells 30–45 × 10–23 μ m	
23a. Hilum slightly curved	
23b. Hilum not curved	A. virens
24a. Achenes 1.5×0.3 mm, 120 µm in diameter, epidermal cells $30-35 \times 10-15$ µm	A. deserti
24b. Achenes 0.9×0.3 mm, 100 µm in diameter, epidermal cells $30-40 \times 15-20$ µm	. A. likiangensis
25a. Achenes slightly curved, epidermal cells narrowly ovate	A. latialata
25b. Achenes not curved, epidermal cells broadly ovate or ovate	
26a. Hilum curved or slightly curved	
26b. Hilum not curved	
27a. Achenes 1.0×0.5 mm, epidermal cells 25–30 μm long	A. larium
27b. Achenes 0.8–0.9 \times 0.3–0.45 mm, epidermal cells 30–50 μm long	
28a. Achenes 0.9×0.45 mm, hilum curved, epidermal cells 40–50 μ m long	A. rhododactyla

28b. Achenes 0.8×0.3 –0.4 mm, hilum slightly curved, epidermal cells 30–45 μ m long	
29a. Hilum 100 μm in diameter	
29b. Hilum 120 µm in diameter	A. surculosa
30a. Epidermal cells broadly ovate	A. bulleyana
30b. Epidermal cells ovate	
31a. Hilum 80 μm in diameter, epidermal cells 50 $\mu m \times 20{-}25 \ \mu m$	A. contortiformis
31b. Hilum 110–150 μm in diameter, epidermal cells 25–40 \times 10–20 μm	
32a. Achenes 0.75 \times 0.4 mm, hilum 110 μm in diameter, epidermal cells 25–35 \times 10 μm	A. flaccida
32b. Achenes 0.8–0.9 \times 0.4–0.5 mm, hilum 120–150 μm in diameter, epidermal cells 25–40 \times 15	5–20 μm 33
33a. Achenes 0.8×0.4 mm, hilum 150 μm in diameter, epidermal cells 30–40 \times 15 μm	A. sinica var. lanata
33b. Achenes 0.9 \times 0.5 mm, hilum 120 μm in diameter, epidermal cells 25–30 \times 15–20 μm	A. yunnanensis

Discussion

The genus Anaphalis is distinguished among all genera of Gnaphalieae because of short clavate hairs on the achene surface (Anderberg, 1991, Bremer, 1994; Qaiser & Abid, 2003). However, Abid & Qaiser (2007a) indicated that the achene surface of Anaphalis was covered by papillate-clavate hair, not just the clavate hair, and they were the first to consider the density of hair as crucial characteristic. Based on the density of achene surface hairs, Abid & Qaiser (2007a) divided all Anaphalis species in Pakistan into two groups: sparsely or densely papillate-clavate hairs. Our results demonstrated two types of surface ornamentation of Chinese Anaphalis achene: reticulate-claviform and ligulate protuberant. The micro-morphological characteristics of the achene surfaces were distinct among species in Chinese Anaphalis. In the study based on nuclear DNA sequences (Nie et al., 2013), A. adnata, A. margaritacea, A. nepalensis, and A. triplinervis had a close relationship with well support, and the surfaces of these four species had reticulate-claviform achene surfaces. Species in Group II are assembled into a wellsupported clade in the study of molecular systematics (Nie et al., 2013).

Based on macro-morphological characteristics, Chen et al., (1966) divided Anaphalis into two subgenera: Subgen. I Gnaphaliops Ling, with only one species (A. bulleyana), and Subgen. I Anaphalis. A. bulleyana is closely related to Gnaphalium due to the ratio of male flowers to female flowers and the characteristics of the involucre and pappus (Chen et al., 1966). Our current study suggests that A. bulleyana, belonging to Group ${\rm I\!I}$, should not be treated as a separate species in Subgen. Gnaphaliops. Furthermore, the results of molecular phylogeny also support this view (Nie et al., 2013). According to Chen et al., (1966), A. busua belongs to Ser. Busuae Ling; A. contorta and A. margaritacea are in Ser. Margaripes (DC.) Boiss.; and A. acutifolia, A. nepalensis, and A. triplinervis belong to Ser. Nepalenses Ling. In the present study, all species mentioned in Chen et al., (1966) fall into our Group I. Species in our Group II belonged to Ser. Flavescentes Ling, Ser. Margaripes (DC.) Boiss., Ser. Pannosae Ling, Ser. Sinicae Ling, Ser. Suffruticosae Ling and Ser. Xylorhizae Ling (Chen et al., 1966). Therefore, the traditional partition of subgenus, section, and series in

Anaphalis was not supported from the view of achene micro-mophological characteristics in this study.

Wu *et al.*, (2011) indicated that the middle flowers in the capitulum of *A. adnata* were bisexual, so they transferred *A. adnata* to *Pseudognaphalium* as *Pseudognaphalium adnatum* (DC.) Y.S. Chen. However, based on achene micro-morphology in our study and molecular phylogeny (Nie *et al.*, 2013), *A. adnata* has a close relationship with *A. margaritacea*, *A. nepalensis*, and *A. triplinervis*. Therefore, transferring *A. adnata* to *Pseudognaphalium* is not supported in the present study.

Anaphalis was closely related to Gnaphalium, Pseudognaphalium, and Helichrysum. Abid & Qaiser (2007a) described, the achene surface ornamentation of Anaphalis was papillate-clavate hairy. Additionally, Abid & Qaiser (2008a) also indicated that achene of Gnaphalium and Pseudognaphalium were oblong or oblong-oblanceolate, sparsely papillose, or papilloseclavate hairy. Based on achene features, Pseudognaphalium could not be distinguished from Gnaphalium (Abid & Qaiser, 2008a). The papillateclavate hairs were similar to the characteristics of Group I in this study. Therefore, Anaphalis could not be separated from Gnaphalium and Pseudognaphalium due to their similar achene characteristics. However, to date, there have been no reports about the achene morphological characteristics of Helichrysum. The previous studies on achene morphological characteristics of Anaphalis and closely related genera have focused only on Pakistani species (Abid & Zehra, 2007; Abid & Qaiser, 2008a, 2008b). Thus, to understand the relationships of these related genera, it is necessary to include more taxa in further studies.

Conclusions

Based on achene surface ornamentation, Chinese *Anaphalis* can be divided into two groups: Group I with reticulate-claviform surfaces, and Group II with ligulate protuberant achene surface ornamentation. Based on these criteria, *A. adnata*, *A. margaritacea*, *A. nepalensis*, and *A. triplinervis* had a close relationship, with good support from micro-morphology. Therefore, *A. adnata* should be retained in *Anaphalis*. Micro-morphological characteristics of achene do not support the traditional classifications of subgenus, section, and series of Chinese *Anaphalis*.

Fig. 1. Scanning Electron micrographs of Group I: A. acutifolia: 1A-E; A. adnata: 2A-E; A. busua: 3A-E; A. contorta: 4A-E; A. margaritacea: 5A-E; A. margaritacea var. angustifolia: 6A-E; A. nepalensis: 7A-E; A. nepalensis var. nepalensis: 8A-E; A. nepalensis var. corymbosa: 9A-E; A. nepalensis var. monocephala: 10A-E; A. triplinervis: 11A-E.

Fig. 2. Scanning Electron micrographs of Group II: A. aureopunctata: 12A-E; A. bicolor: 13A-E; A. bulleyana: 14A-E; A. chlamydophylla: 15A-E; A. cinerascens: 16A-E; A. contortiformis: 17A-E; A. corymbifera: 18A-E; A. delavayi: 19A-E; A. deserti: 20A-E; A. elegans: 21A-E; A. flaccida: 22A-E.

Fig. 3. Scanning Electron micrographs of Group II: A. flavescens: 23A-E; A. gracilis: 24A-E; A. gracilis var. ulophylla: 25A-E; A. lactea: 26A-E; A. larium: 27A-E; A. latialata: 28A-E; A. likiangensis: 29A-E; A. pachylaena: 30A-E; A. pannosa: 31A-E; A. rhododactyla: 32A-E; A. sinica var. lanata: 33A-E.

Fig. 4. Scanning Electron micrographs of Group II: A. souliei: 34A-E; A. spodiophylla: 35A-E; A. surculosa: 36A-E; A. virens: 37A-E; A. xylorhiza: 38A-E; A. yunnanensis: 39A-E.

Acknowledgments

The authors thank the National Natural Science Foundation of China (31670188) and the project "Flora of Pan-Himalayas" (2013FY112100) for financial support. We appreciate Professor Boufford *et al.*, from Harvard University for collecting the plant materials. Thanks to PE herbarium for providing material for study. Finally, we greatly appreciate the reviewers for their helpful comments and suggestions.

References

- Abid, D.R and M. Qaiser. 2002. Achene morphology of *Inula* L. (s.str.) and its allied genera (Inuleae-Compositae) from Pakistan and Kashmir. *Pak. J. Bot.*, 34: 207-223.
- Abid, R. and M. Qaiser. 2007a. Achene morphology of the genus Anaphalis DC. (Gnaphalieae-Asteraceae) from Pakistan. Pak. J. Bot., 39: 1897-1906.
- Abid, R. and M. Qaiser. 2007b. Micromorphology of achene in the Tribe Plucheeae from Pakistan. *Pak. J. Bot.*, 39: 671-677.
- Abid, R. and M. Qaiser. 2007c. Achene Morphology of the Genus *Pulicaria* Gaertn., (Inuleae-Asteraceae) from Pakistan. *Pak. J. Bot.*, 39: 991-997.
- Abid, R. and N. Zehra. 2007. Micromorphology of achene and its Taxonomic Significance of some Genera in the Tribe Inuleae (Asteraceae) from Pakistan. *Pak. J. Bot.*, 39: 1407-1416.
- Abid, R. and M. Qaiser. 2008a. Achene morphology of *Gnaphalium* L. and its allied genera (Gnaphalieae-Asteraceae) from Pakistan. *Pak. J. Bot.*, 40: 25-31.
- Abid, R. and M. Qaiser. 2008b. Achene morphology of some genera in the tribe Gnaphalieae (Asteraceae) from Pakistan. *Pak. J. Bot.*, 40: 473-485.
- Anderberg, A.A. 1991. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). *Opera Bot.*, 104: 1-195.
- Blanca, G. and C.D.D.L. Guardia. 1997. Fruit morphology in *Tragopogon L.* (Compositae: Lactuceae) from the Iberian Peninsula. *Bot. J. Linn. Soc.*, 125: 319-329.
- Bremer, K. 1994. Asteraceae Cladistics & classification. Timer Press, Portland.
- Bruhl, J.J. and C.J. Quinn. 1990. achene anatomy in the 'Cotuleae' (Asteraceae-Anthemideae). *Bot. J. Linn. Soc.*, 102: 37-59.
- Chen, F.H., Y. Ling and Y.L. Chen. 1966. De genere *Anaphalis* DC. familiae compositarum e florae sinicae. *Acta Phytotax. Sin.*, 11: 91-113.
- Chen, X.L. and G.H. Jing. 2007. A study on fruit coats micromorphological characters of thirty-six species of Compositae from alpine meadow in eastern Qinghai Tibet Plateau. *Pratacul. Sci.*, 24: 9-15.
- Ghimire, B., M.J. Jeong, K.M. Lee, K. Heo, C.H. Lee and G.U. Suh. 2016. Achene morphology of *Saussurea* species

(Asteraceae, Cardueae) in Korea and its systematic implications. *Bot. J. Linn. Soc.*, 181: 692-710.

- Lin, R. 1979. Flora Reipublicae Popularis Sinicae, Compositae II, Vol. 75. Science Press, Beijing.
- Lin, Y.R. 1993. On the primary study of the systematics and floristics of compositae from china. *Bull. Bot. Res.*, 13: 151-201.
- Lin, Y.R. 1997. On the primary study of the systematics and floristics of compositae from china. *Bull. Bot. Res.*, 17: 6-20.
- Liu, C.J., Q. Lin and J.X. He. 2004. Methods and terminology of study on seed morphology from China. Acta Bot. Boreal.-Occident. Sin. 24: 178-188.
- Melahat, O. 2017. achene micromorphology and anatomy in *Cirsium* sect. *Epitrachys* (Asteraceae, Carduoideae) and its taxonomic implications. *Nord. J. Bot.*, 35: 653-668.
- Meng, Y., H. Sun, Y.P. Yang and Z.L. Nie. 2010. Polyploidy and new chromosome counts in *Anaphalis* (Asteraceae: Gnaphalieae) from the Qinghai-Tibet Plateau of China. J. Syst. Evol., 48: 58-64.
- Meng, Y., Y.P. Yang, H. Sun, T. Deng and Z.L. Nie. 2014. Chromosome numbers, karyotypes, and polyploidy evolution of *Anaphalis* species (Asteraceae: Gnaphalieae) from the Hengduan Mountains, SW China. *Caryologia*, 67: 238-249.
- Nie, Z.L., V. Funk, H. Sun, T. Deng, Y. Meng and J. Wen. 2013. Molecular phylogeny of *Anaphalis* (Asteraceae, Gnaphalieae) with biogeographic implications in the Northern Hemisphere. J. Plant Res., 126: 17-32.
- Qaiser, M. and R. Abid. 2003. Asteraceae (II) Inuleae, Plucheeae and Gnaphalieae. In Ali, S.I. & M. Qaiser. (Eds). Flora of Pakistan. Department of Botany, University of Karachi and Missouri Botanical Press, Missouri, pp. 1-215.
- Ritter, M.R. and S.T.S. Miotto. 2006. Micromorphology of fruit surfaces in species of *Mikania* Willd. (Asteraceae) occurring in Rio Grande do Sul State, Brazil. Acta. Bot. Bras., 20: 241-247.
- Roque, N. and V.A. Funk. 2013. Morphological characters add support for some members of the basal grade of Asteraceae. *Bot. J. Linn. Soc.*, 171: 568-586.
- Singh, R.P. and A.K. Pandey. 1984. Development and structure of seeds and fruits in Compositae-Cynareae. *Phytomorphology*, 34: 1-10.
- Wu, Z.Y., A.M. Lu, Y.C. Tang, Z.D. Chen and D.Z. Li. 2003. *The Fami. & Gen. Angiosp. China*. Science Press, Beijing.
- Wu, Z.Y., P.H. Raven and D.Y. Hong. 2011. Flora of China. Vol. 20-21 (Asteraceae). Science Press & Missouri Botanical Garden Press, Beijing & St. Louis.
- Zhang, D.C., S.Z. Li, X.H. Hou and M.Q. Zhang. 2013. Morphology and germination features of achenes of 12 species of the genus *Saussurea* (Asteraceae) in Western Sichuan Plateau. *Pl. Diver. Res.*, 35: 273-279.
- Zhang, X.C. and X.L. Chen. 2008. Studies on achene size and variations' evolutionary ecology of six genera of Compositae from eastern Qinghai-Tibetan Plateau. J. NWA & F Univ. (Nat. Sci. Ed.). 36: 207-214.

(Received for publication 21 October 2019)