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ABSTRACT 

 

Sorghum Introgression Breeding Utilizing S. macrospermum.  

(August 2007) 

Leslie Charles Kuhlman, B.S., Kansas State University; M.S. Texas A&M University 

Co-Chairs of Advisory Committee: Dr. William L. Rooney 
 Dr. David M. Stelly 

 
 
 

 Sorghum has been improved by plant breeders for yield, biotic and abiotic stress 

resistance, as well as quality traits by using germplasm from within the species.  

Interspecific hybridization can greatly increase the amount of genetic variation available 

to plant breeders for improvement.  Interspecific hybrids between sorghum and the 19 

species in the tertiary gene pool have, until recently, not been successful.  The Australian 

species, S. macrospermum, was recently successfully hybridized with sorghum by using 

germplasm homozygous for the iap allele, which eliminated reproductive isolation 

barriers.  The objectives of this research were to evaluate the potential for use of S. 

macrospermum in an introgression breeding program, determine the map position of the 

Iap locus, and backcross the iap allele into elite Texas A&M germplasm.  Interspecific 

hybrids between S. bicolor and S. macrospermum revealed moderate levels (2.6 II per 

PMC) of allosyndetic recombination, indicating that introgression through genetic 

recombination is possible.  Genomic relationships were sufficient to assign S. 

macrospermum the genomic formula AAB1B1YYZZ, Y and Z remain unknown.  In 

backcrosses to S. bicolor using the female interspecific hybrid gamete and embryo 
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rescue, BC1F1 plants were recovered.  They had high chromosome numbers (2n = 35-70) 

and were male-sterile but three plants set backcross seed.  Ninety-five percent of BC2F1 

plants were 2n = 20 chromosomes and 75% of them contained S. macrospermum 

introgression.  BC2F1 plants carried between 0-18.5% S. macrospermum introgression; in 

total 26% of the S. macrospermum genome was detected in the BC2 generation.  Three 

types of introgression germplasm were created: alien addition lines; alien substitution 

lines; and introgression lines.  Recombinant chromosomes, containing S. macrospermum 

introgression sites, were identified in multiple introgression lines.  The Iap locus was 

genetically mapped to sorghum chromosome 2 (SBI-02), flanking AFLP markers were 

2.1 and 2.7cM away, one AFLP marker shared the same map position (0.0cM).  A 

genetic stock, Tx3361, was created which has iap iap genotype and improved agronomic 

qualities such as short plant height, white seed color, non-pigmented testa, no awns, 

reduced lodging, early maturity, and backcross segregation of male-sterility (ms3).  This 

research shows that S. macrospermum is now available to plant breeders for sorghum 

improvement.                      
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CHAPTER I 

 

INTRODUCTION 

 

Sorghum (Sorghum bicolor [L.] Moench) is an important food, feed, and forage 

crop with worldwide grain production in 2005 of 56,957,314 metric tons which ranks 

fifth among cereal grains (FAOSTAT data, 2006).  Production in the U.S. accounted for 

approximately 10,000,000 metric tons of that crop which was valued at $715,000,000 

(USDA 2006).  Production limitations for sorghum in the U.S. include abiotic stresses 

such as drought and biotic stresses including insect and disease pressure.  Plant breeders 

continually make progress in improving the crop for these and many other traits, 

including yield potential, but are ultimately limited by the amount of genetic variation 

available to them for the desired trait.  Genetic variation is the lifeblood of plant 

breeding and without it genetic improvement is not possible.  Identifying valuable new 

sources of germplasm is a key component to supply plant breeders with the genetic 

variation they need for improvement.   

Wild species can be valuable sources of novel genetic variation for the 

improvement of yield, disease and insect resistance, and abiotic stresses (Goodman et 

al., 1987; Jiang et al., 1994; Jones et al., 1995; Jauhar and Chibbar, 1999).  Interspecific 

hybridization can dramatically widen the available genetic pools so that novel genetic 

variation can be utilized by plant breeders.  Sorghum breeders have traditionally used 

germplasm within the cultivated species for improvement (Duncan et al., 1991) but some 

_______________ 
This dissertation follows the style and format of Crop Science. 
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work with S. halepense (L.) Persh. and S. propinquum (Kunth) Hitch. has occurred 

(Dweikat, 2005; Wooten, 2001).  Interspecific hybrids with these two species are 

relatively easy to make and backcrosses can be produced that contain wild species 

introgression.  Hybrids between sorghum and the 19 other species in the genus Sorghum 

had previously not been possible.  Hodnett et al. (2005) determined that pollen-pistil 

incompatibilities were one cause of reproductive isolation within the genus.  Wild 

species pollen on sorghum stigmas could germinate but their pollen tubes were inhibited 

stigmatically, thus fertilization did not occur.  Price et al. (2006) showed that using 

germplasm homozygous for the iap allele reduced such incompatibilities and made 

recovery of previously unrecoverable hybrids relatively simple.  One species in 

particular showed promise, interspecific hybrids with S. macrospermum Garber, a 

species native to Australia, grew vigorously and successfully reached maturity.  No 

information is available regarding the feasibility of using S. macrospermum in an 

introgression breeding program.  If introgression of S. macrospermum genetic variation 

is to be easily recovered in backcrosses with S. bicolor, genetic recombination between 

the parental genomes is required.  The interspecific hybrid must also express enough 

fertility to recover backcrosses, which then must be evaluated to determine if and how 

much introgression is occurring.  Thus, these and other questions need to be answered 

before S. macrospermum can be used in an introgression breeding program.  The 

objectives of the research reported herein are: 
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(1) Produce interspecific hybrids between fertile S. bicolor (iap iap) and the wild 

species S. macrospermum.  Analyze meiotic chromosome pairing and 

recombination in interspecific hybrids and determine if allosyndetic 

recombination occurs.    

(2) Produce advance generation backcrosses of the interspecific hybrid using S. 

bicolor as the recurrent parent.  Determine if introgression from S. 

macrospermum is present in advance backcrosses and localize detected 

introgression blocks to chromosomes.   

(3) Map the genome location of the Iap gene in S. bicolor using existing genetic 

linkage maps and identify suitable molecular markers which can be used in 

marker-assisted selection to move the iap allele into other more complex genetic 

backgrounds. 

(4) Backcross the iap allele into elite Texas Agricultural Experiment Station (TAES) 

germplasm for use as the parent in future interspecific crosses.   
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Structure of the Genus Sorghum 

 The genus Sorghum consists of 22 species taxonomically classified into five 

sections: Eusorghum, Heterosorghum, Chaetosorghum, Parasorghum, and 

Stiposorghum (Garber, 1950; de Wet 1978; Lazarides et al., 1991).  Section Eusorghum 

is composed of S. bicolor, S. propinquum, and S. halepense, these three species are 

native to Africa and Southern Asia (de Wet, 1978).  Sections Chaetosorghum and 

Heterosorghum are monotypic and consist of species S. macrospermum and S. 

laxiflorum Bailey, respectively.  Sorghum macrospermum is found in a single region in 

the Northern Territory of Australia, north west of Katherine.  Sorghum laxiflorum is 

more broadly dispersed and is found in Australia, Papua New Guinea, and the Philippine 

Islands (Garber, 1950; Lazarides et al., 1991).  Ten species compose the section 

Stiposorghum: S. amplum Lazarides; S. angustum S.T. Blake; S. brachypodum 

Lazarides; S. bulbosum Lazarides; S. escarinatum Lazarides; S. extans Lazarides; S. 

interjectum Lazarides; S. intrans F. Muell. Ex Benth.; S. plumosum (R. Br.) P. Beauv.; 

and S. stipoideum (Ewart & Jean White) C.A. Gardner and C.E. Hubb.  All of these are 

indigenous to Australia (Garber, 1950; Lazarides et al., 1991).  The seven species of 

Parasorghum include: S. grande Lazarides; S. leiocladum (Hack) C.E. Hubb.; S. 

matarankense E.D. Garber & Snyder; S. nitidum (Vahl) Pers.; S. purpureo-sericeum 
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(Hochst. Ex. A. Rich.) Asch. & Schweinf.; S. timorense (Kunth) Buse; and S. versicolor 

Andersson.  These species occur in Asia, Australia, Africa, and Central America 

(Garber, 1950; Lazarides et al., 1991). 

 The species S. bicolor contains three subspecies, subsp. bicolor, which contains 5 

morphologically distinct cultivated sorghum races, subsp. arundinaceum (desv.) de Wet 

et Harlan, a widely distributed wild African complex, and subsp. drummondii (Steud.) de 

Wet, a complex of stabilized derivatives between cultivated sorghum and weedy 

relatives (de Wet, 1978).  Cultivated sorghum was likely domesticated from subsp. 

arundinaceum, at least 2000-4000 BCE (Murdock, 1959; de Wet, 1978; Doggett 1988).   

 It is unknown what evolutionary sequence took place within the genus to firmly 

establish S. bicolor in Africa while 17 other species are endemic to Australia.  There is 

some doubt as to whether the five sections within the genus correspond to evolutionarily 

relationships or are abstract constructions (Spangler et al., 1999; Dillon et al., 2001).  

Spangler (2003) used RFLP and multi-gene sequence data to suggest that Sorghum be 

divided into three separate genera containing only 13 species.  Dillon et al. (2004) used 

combined ITS1/ndhF sequence data to construct a phylogenetic tree, and the results did 

not support the separation of the genus but did agree that three distinct clades existed 

within the genus.  Price et al. (2005a) combined genome size and chromosome numbers 

with the ITS1/ndhF data and concluded that two distinct lineages exist within the genus.  

One lineage contains species that are x = 5 (2n = 10, 20, 30, and 40) and have large 

genomes containing large chromosomes; whereas, the second lineage has species with x 

= 10 (2n = 20 and 40) and have smaller genomes and chromosomes.  According to this, 
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S. macrospermum and S. laxiflorum are the most closely related species to the 

Eusorghum section, all of which form the x = 10 lineage, and species from sections 

Parasorghum and Stiposorghum form the x = 5 lineage (Dillon et al., 2004; Price et al., 

2005a).  To date, this represents the most detailed description of the structure of the 

genus.   

 

Genomic Relations within the Genus 

 The genus Sorghum contains species belonging to two separate lineages based on 

chromosome morphology and genome size: x = 5 and x = 10.  The x = 5 lineage is 

typified by a large genome size and large chromosomes while the x = 10 lineage has 

smaller chromosomes and genome size.  The evolutionary relationships between these 

two lineages and between species within the lineages have not been resolved.  The 

Eusorghum section has received the most attention in elucidating the genomic 

relationships between species.  To attempt introgression breeding, the genomic 

relationships between parental species must be understood, and without homology there 

will be little to no genetic recombination from which to recover introgression.   

 Sorghum bicolor (2n = 20) belongs to the x = 10 chromosome lineage within the 

genus, as do all species within Eusorghum, Chaetosorghum, and Heterosorghum; 

however, the name of the lineage does not accurately describe the genomic makeup of 

the species.  Sorghum bicolor is generally regarded as a diploid and regularly displays 

normal meiosis with the chromosomes forming 10 bivalents at metaphase (Durra and 

Stebbins, 1952; de Wet, 1978; Sangduen and Hanna, 1984; Doggett, 1988).  At low 
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frequencies, abnormalities do occur and they are usually observed as quadrivalents 

(Chin, 1946).  During meiosis in haploid plants (2n = 10), chromosomes form one or 

more bivalents in approximately 10% of the pollen mother cells (PMCs) while the 

remaining chromosomes are univalents (Brown, 1943; Kidd, 1952; Endrezzi and 

Morgan, 1955).  Multivalent formation in diploid plants and bivalent formation in 

haploid plants indicates that some homology exists between the chromosomes of the 

haploid genome.  So while S. bicolor functions as a diploid, it is most likely tetraploid 

(2n = 4x = 20) in origin (Garber, 1950; Endrizzi and Morgan 1955; Celarier, 1958; 

Doggett, 1988).  Recently, cytological evidence supported the conclusion that S. bicolor 

is a disomic tetraploid.  Fluorescence in situ hybridization (FISH) of a large-insert 

genomic clone, BAC 22B2 and later a 1047-bp subclone, pCEN38, showed differential 

hybridization near the centromere.  Ten homologous chromosomes had a strong FISH 

signal while the ten remaining homologous chromosomes had a weak but detectable 

signal, which led the authors to conclude that S. bicolor is composed of two 

subgenomes, AbAbBbBb (Gomez et al., 1998; Zwick et al., 2000).   

 Sorghum halepense (2n = 40) is a rhizomatous species and is considered to be 

one of the most noxious weeds found in U.S. and world agriculture (Holm et al., 1977; 

McWhorter, 1989).  It has long been proposed to be a polyploid although the exact 

nature of its genomic constitution is still not resolved.  Many authors have proposed 

genomic formulas for S. halepense: an autotetraploid (Casady and Anderson; 1952; 

Durra and Stebbins, 1952), an autooctoploid (Bennett and Merwine, 1966), and a 

segmental auto-allo-octaploid (Hadley, 1953; Tang and Liang, 1988).  The difficulty in 
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assigning genomic constitution to S. halepense results from the lack of sharp 

differentiations between its polyploid genomes, i.e. significant homology exists between 

its subgenomes.  Its meiotic behavior is not normal and multivalent frequencies vary 

widely between PMCs, its chromosomes associate primarily as bivalents and 

quadrivalents, which indicates S. halepense is at minimum an allo-polyploid (Hadley, 

1953; Endrizzi, 1957; Bhatti et al., 1960; Tang and Liang, 1988).  In crosses with S. 

bicolor, the hybrid (2n = 30) shows approximately equal numbers of univalents, 

bivalents, and trivalents (~ 4 I + 4 II + 6 III), which led Hadley (1953) to propose a 

genomic formula of AABB for S. bicolor and AAAABBCC for S. halepense.  This 

formula predicts the interspecific hybrid (AAABBC) would form chromosome 

associations as: 5 III within the A subgenome, 5 II within the B subgenome, and 5 I with 

the remaining C subgenome.  The hypothetical pairing is roughly close to the empirical 

results obtained by multiple researchers (Hadley, 1953; Endrizzi, 1957; Tang and Liang, 

1988).  This hypothesis breaks down when considering 40 chromosome hybrids 

AAAABBBC (2n + n) and 60 chromosome amphiploids AAAAAABBBBCC as fewer 

than expected trivalents (5 III) and quadrivalents (5 IV) form, respectively (Tang and 

Liang, 1998).  Tang and Liang (1998) modified Hadley’s model slightly by replacing 

genomes B and C with B1 and B2, respectively.  Accordingly, the B1 and B2 genomes 

share high amounts of homology but are still distinct subgenomes; they also share some 

homology, though much less, with subgenome A.  This modification allows the 

chromosomal associations to vary somewhat more in that it is allowable for B1 and B2 

chromosomes to interact and pair more frequently as well as rarely to pair with A 
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chromosomes.  An explanation for the 40 chromosome hybrid example that produces a 

deficiency of trivalents could be that the affinity to form B1-B2 bivalents is stronger than 

the affinity to form both B1 trivalents and exclude B2 chromosomes as univalents.  This 

seems to be the most plausible explanation for the chromosome pairing observed in all 

ploidies of interspecific hybrids.  Accordingly, S. halepense is considered (2n = 8x = 40) 

AAAAB1B1B2B2 and S. bicolor is considered (2n = 4x = 20) AAB1B1 (Tang and Liang, 

1988).                

Sorghum propinquum (2n = 20) is a rhizomatous species within Eusorghum that 

is native to Asia.  It hybridizes readily with S. bicolor and produces fertile hybrids and 

F2 progeny and shows normal chromosome pairing (Celarier, 1958; Doggett, 1988).  

There is a cytogenetic difference between the two species.  The smallest chromosome in 

S. propinquum contains the nucleolar organizing region; whereas, it is present in the 

largest chromosome of S. bicolor (Magoon and Shambulingappa, 1961; Doggett 1988).  

It is considered a separate species from S. bicolor because of its markedly different 

rhizomatous habit and distinct geographic distribution (de Wet, 1978).  It had been 

thought to be a progenitor of S. halepense, possibly hybridizing with S. bicolor followed 

by a doubling of chromosomes (Celarier, 1958; Magoon and Shambulingappa, 1961; 

Doggett, 1970), but this hypothesis is currently not resolved.  Attempts to recreate S. 

halepense by doubling the chromosomes of S. bicolor x S. propinquum hybrids have not 

created plants that show similar chromosome associations.   Molecular evidence 

tentatively suggests that S. propinquum shares little homology with S. halepense as very 

few RFLP fragments are shared between the two species (Chittenden et al., 1994).  The 
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same authors produced a genetic map using RFLPs on F2 progeny from a S. bicolor x S. 

propinquum cross and observed S. bicolor specific low-copy probes.  They suggested 

that these species have diverged considerably from their most recent ancestor.   

Genomic relationships between species in the rest of the genus have not been 

established, partly because hybridization between the species has previously not been 

possible.  The plasmid pCEN38 offers the most data on relationships within the genus.  

Taxonomic distribution of pCEN38 is quite narrow.  It is not detectable in maize, Zea 

mays L., and rice, Oryza sativa L., but is detected on most chromosomes of the 

sugarcane, Saccharum officinarum L., genome (Zwick et al., 2000).  Research on its 

distribution within the genus Sorghum revealed that the sequence is present in S. 

halepense and S. propinquum, although at slightly lower copy number in the latter, lowly 

present in other species including S. macrospermum and S. laxiflorum and not detectably 

present in the remaining species (Anderson, 2005).  This agrees with the close 

evolutionary relationships in the Eusorghum section and the considerable divergence of 

the other species.                            

 

Barriers to Interspecific Hybridization 

 Hybridization is a complex interaction between pollen and pistils that 

successfully culminates in fusion of male and female nuclei.  Each step requires 

sensitive cellular coordination, including nutrient exchange, distinct guidance cues, and 

molecular communication to succeed (de Nettancourt 1997; Wheeler et al., 2001; 

Swanson et al., 2004).  Simply described, pollination begins when pollen lands on the 



 11

stigma.  It adheres to the stigmatic tissue and begins hydration.  Then the pollen grain 

germinates and forms a pollen tube that penetrates the stigma tissue.  Upon entering the 

stigma, the pollen tube grows intercellularly through the stigma transmitting tissue 

which leads from the outer stigma branches through the style and into the ovary.  

Passage through the micropyle allows access into the female gametophyte in the ovule 

for penetration and fertilization.   

Not all pollen is treated equally, however, as the overall function of the pistil is to 

control the mating process.  Some species suffer severe inbreeding depression, thus 

optimum mating would be exclusively cross pollination.  In such species, self-

incompatibility (SI) mechanisms serve to ensure cross fertilization by actively 

recognizing self pollen and rejecting it in favor of cross pollen carrying different genetic 

information.  The multiallelic S-locus controls the specificity of pollen rejection in the 

widespread SI mechanisms present in the Solanaceae, Rosaceae, and Scrophulariaceae 

(de Nettancourt, 1997, 2001; Igic and Kohn, 2001).  In the gametophytic SI system, 

pollen is rejected when the S-locus it carries matches the S-alleles in the diploid pistil (de 

Nettancourt, 1997).  The SI system allows plants to identify pollen of the same genotype 

and reject it to ensure cross pollination.   

Other species, growing among wild relatives, may need to avoid interspecific 

fertilization because the resulting progeny are less fit.  Interspecific incompatibilities 

operate in these pistils to identify and reject pollen grains that are too distantly related.  

Interspecific cross incompatibility has been less studied than the SI interactions common 

in plants.  Two main paradigms exist for understanding interspecific cross 
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incompatibility: incompatibility and incongruity.  Incompatibility, as summarized by 

Hogenboom (1973), is a mechanism that through the inhibiting action of incompatibility 

genes, the reproductive relationship is nonfunctional.  Incompatibility relies on active 

rejection of pollen identified as ‘foreign’, similar to the SI system previously described.  

Alternatively, incongruity does not rely on active rejection of pollen but is essentially a 

passive process in which non-functioning occurs due to a lack of genetic information 

about one of the partners.  Incongruity is an isolating mechanism that results from 

evolutionary divergence.  Hogenboom (1973) describes this as gene interactions between 

pistil and pollen; the female partner contains genes for barriers in the pistil and 

congruous male partners contain genes for penetrating those barriers by the pollen.  An 

incongruous relationship exists when the male partner lacks a penetrative mechanism to 

overcome a certain barrier that exists in the female.  Species that evolve new barrier 

mechanisms exert selection pressure on the male partners to contain new penetrative 

measures.  Species that evolve in isolation from one another are more likely to be 

incongruent partners due to evolutionary divergence (Hogenboom, 1973).  Barriers to 

interspecific crosses that are late-acting, those that do not inhibit pollen tube growth 

immediately, are more likely to be the result of incongruity as well (Heslop-Harrison, 

1982).  Barriers to interspecific hybridization are common in crop species and 

overcoming them is a prerequisite for utilizing wild species germplasm.     

 Multiple gametophyte loci, which cause cross-incompatibility within the species, 

have been described in maize.  The gametophyte-1 locus, whose Ga1-s allele confers 

nonreceptivity to ga1 pollen, is used in popcorn varieties to prevent pollination by 
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nearby dent corn (Nelson 1993).  In this system, Ga1-s silks inhibit ga1 pollen tube 

growth in the style while allowing Ga1 pollen to grow normally through the style and 

complete fertilization (House and Nelson, 1958).  Similarly, Teosinte Crossing Barrier1 

(Tcb1) was identified in wild teosinte populations and prevents seed set from tcb1 pollen 

while allowing fertilization by pollen carrying Tcb1.  Tcb1 inhibition acts pre-

zygotically and is a gametophytic incompatibility system similar to Ga1-s (Evans and 

Kermicle, 2001).  Kermicle and Evans (2005) used translocation stocks to produce 

heteroallelic pollen (containing both Ga1 and ga1 or Tbc1 and tcb1), which functioned 

in the presence of Ga1-s and Tcb1, respectively, to determine that both crossing barriers 

are based on incongruity and not active rejection.  That is both systems did not identify 

and actively reject the ga1 and tcb1 alleles, but instead both pistil barriers were 

overcome by the Ga1 and Tcb1 alleles.  This supports the incongruity model for the 

manifestation of cross-incompatibility and not an S-locus type system of active rejection 

in maize.            

 Interspecific hybridization between pearl millet (Pennisetum glaucum [L.] R. 

Br.) and wild species within Pennisetum is very low (Dujardin and Hanna, 1989).  Wild 

species pollen tube growth was inhibited by pearl millet stigmas and the lack of 

penetration into the micropyle was cause of the cross-incompatibility.  The pollen 

inhibition manifested itself in two ways: stylar inhibition prevented pollen tubes from 

growing past the base of the style into the ovary for four species, while stigmatic 

inhibition reduced pollen penetration into stigmatic hairs and prevented tubes from 

reaching the base of the style for two other species (Mohindra and Minocha, 1991).  
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Pearl millet pollinated with sorghum inhibited pollen tube growth largely between the 

style and top of ovary although inhibition occurred in the stigmatic hairs and axis in 

progressively younger aged pistils (Reger and Sprague, 1983).  The barriers preventing 

wide hybridization within Pennisetum may also inhibit sorghum pollen tube growth 

(Reger and Sprague, 1983).               

 Interspecific hybridization between wheat (Triticum aestivum L.) and rye (Secale 

cereale L.) has long been known to be genetically controlled (Backhouse, 1916; Taylor 

and Quisenberry, 1935; Riley and Chapman, 1967).  Lein (1943) concluded that two 

genes, Kr1 and Kr2, controlled interspecific hybridization between rye and wheat and 

that Kr1 reduces hybridization more than Kr2 (Riley and Chapman, 1967; Jalani and 

Moss, 1981).  Riley and Chapman (1967) determined that hybridization is actively 

inhibited by the dominant alleles and not enhanced by the recessive alleles.  Study into 

the site of action of the genes revealed that rye pollen tube growth is largely inhibited 

between the style base and the top of the ovary due to the Kr-genes and failure of seed 

set was a direct result of a lack of pollen tubes to enter the micropyle (Jalani and Moss, 

1980, 1981).  When pollinated with rye, Kr2 reduces pollen tube growth but less severely 

than Kr1.  When pollinated with Hordeum bulbosum L., Kr2 does not affect pollen tube 

growth while Kr1 still strongly reduces pollen tube growth (Falk and Kasha, 1983).  The 

Kr-genes are additive in effect and suppress pollen tube growth at different intensities, 

but interaction between species indicates the Kr-genes are likely independent 

hybridization barriers instead of duplications of the same.  Hybridization barriers 

controlled by the Kr-genes are not always complete as some Kr1Kr1 Kr2Kr2 genotypes 
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can set limited hybrid seed when pollinated with rye (Riley and Chapman 1967; Jalani 

and Moss, 1981; Falk and Kasha, 1983).  This effect indicates that multiple alleles or 

modifier genes also affect variation in crossability (Falk and Kasha, 1983). 

 Hybridization barriers are present in the genus Sorghum as evidenced by the 

multiple unsuccessful attempts at obtaining hybrids between sorghum and wild species 

beyond the section Eu-sorghum (Karper and Chisholm, 1936; Ayyanger and Ponnaiya, 

1941; Garber, 1950; Endrizzi, 1957; Tang and Liang, 1988; Wu, 1990; Sun et al., 1991; 

Huelgas et al., 1996).  Sun et al. (1991) showed that in reciprocal crosses between 

sorghum and S. versicolor pollen tube growth was largely inhibited in the stigma and 

style of both crosses.  Hodnett et al. (2005) studied pollen tube growth of 16 wild species 

beyond the Eu-sorghum section in crosses with sorghum.  Pollen tubes were found to be 

inhibited at all points following germination prior to entry into the micropyle.  The most 

frequent site of inhibition occurred between the stigma branches and the stigma axis 

while the remaining pollen tube growth was inhibited in the style prior to entry into the 

ovary.  Laurie and Bennett (1989) found that when sorghum was pollinated with maize 

pollen, tube growth was inhibited in the stigmas.  They identified a single accession 

(NR481) that lacked this barrier which allowed maize pollen tube growth to continue 

through the ovary to the micropyle.  They designated the gene controlling this behavior 

Iap (Inhibition of Alien Pollen), and designated NR481 to be homozygous recessive for 

iap.  Using this accession Price et al. (2006) reported that the iap iap genotype reduced 

pollen-pistil incompatibilities in the genus Sorghum and allowed hybrids to be recovered 

involving three wild species.                
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Interspecific Hybridization in Other Crops 

 Interspecific hybridization has proven to be a valuable tool in capturing genetic 

variation for improving traits in many important species.  Plant breeders normally utilize 

elite and exotic germplasm within the cultivated species for trait improvement.  These 

accessions form the primary gene pool, those that cross readily and produce fertile 

hybrids and progeny with the cultivated type (Harlan and de Wet, 1971).  A secondary 

gene pool normally encompasses other species that hybridize with some difficulty; 

however, hybrids exhibit deleterious effects including partial sterility and low genetic 

recombination between genomes making gene transfer difficult.  The tertiary gene pool 

encompasses other related species that exhibit significant barriers to recovering 

introgression due to difficulty in hybridization, hybrid lethality or sterility, and lack of 

genetic recombination.  Thus, gene transfer is impossible without extreme techniques.  

Plant breeders routinely utilize germplasm in the closest gene pool that contains the 

necessary variation.  Sometimes the primary gene pool does not contain variation for the 

desired traits; therefore, use of more distant gene pools becomes a necessity. 

 As previously discussed, significant interspecific hybridization barriers may exist 

between the cultivated species and members of the secondary and tertiary gene pools.  If 

these sexual barriers can be overcome, there remain cytological barriers to recovering 

genetic variation from the wild species in the cultivated type.  Introgression of genetic 

variation from wild species into cultigens through interspecific hybridization can occur 

in three ways: genetic recombination, alien translocations, and alien chromosome 
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additions.  Alien chromosome addition and substitution lines are formed when the 

recurrent parent genome is recovered with either an addition of alien chromosomes or 

substitution of alien chromosomes for recurrent parent chromosomes (Singh, 2003).  

Alien translocation lines are formed when segments of alien chromosomes break and 

fuse to the recurrent parent’s chromosomes.  This process can occur naturally or be 

synthesized using radiation to induce chromosomal breaks (Sears, 1993; Singh, 2003).  

Genetic recombination occurs when the parental genomes share enough homology for 

homoeologous chromosomes to pair and recombine during meiosis.  Chromosome 

pairing in the interspecific hybrid may occur in two forms: (1) autosyndesis, pairing 

occurs between members of the same parental genome, and (2) allosyndesis, pairing 

occurs between members of different parental genomes (Burnham, 1962).  If 

chromosomes behave as univalents, do not pair during meiosis, or pair autosyndetically 

DNA is not exchanged between genomes and introgression through genetic 

recombination will not be possible.  A requisite amount of homology between the 

different genomes will allow homoeologous chromosomes to recombine during meiosis, 

resulting in recombinant chromosomes carrying both donor and recurrent parent genetic 

material.  All forms of introgression have been successful in transferring agronomically 

useful traits from wild relatives into cultivated species (Jiang et al., 1994; Pickering et 

al., 1995; Brar and Khush, 1997; Singh, 2003). 

The interspecific hybrid must also display some level of gamete fertility if 

introgression is to be recovered.  Interspecific hybrid fertility is not solely dependent on 

chromosome behavior at meiosis but may be influenced by cryptic structural differences, 
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complementary lethal genes, or differentiation in genes and chromosome structures 

(Stebbins, 1950).  An example is a hybrid between Primula verticillata Forrsk. and P. 

floribunda Wall. which showed loosely paired bivalent chromosomes but was 

completely sterile (Newton and Pellew, 1929).  Only after spontaneous chromosome 

doubling did the hybrid regain fertility.  Complete chromosome pairing was seen in 

hybrids between Triticum monococcum L. and T. urarta Thum. ex Gandil. but again the 

hybrids were completely sterile (Dhaliwal and Johnson, 1982).  Some level of 

interspecific hybrid fertility is required to recover introgression in backcross progeny.  

 Interspecific hybridization has been very successful in transferring useful traits 

from wild species in many crops including rice, wheat, oat (Avena sativa L.), cotton 

(Gossypium hirsutum L.), maize, tomato (Solanum lycopersicum L.), and soybean 

(Glycine max (L.) Merr.) (Brar and Khush, 1997; Shi, Leath, and Murphy, 1998; Sharma 

and Forsberg, 1977; Meredith, 1991; Stalker et al., 1977; Stamova and Chetelat, 2000; 

Riggs et al., 1998).  In rice alone, at least 26 genes conferring disease and insect 

resistance, cytoplasmic male-sterility, and acid soil tolerance have been introgressed 

from distant Oryza species through interspecific hybridization.  Homoeologous 

recombination has been implicated as the mechanism of introgression in this system 

(Brar and Khush 1997).   

 Few species have been more successful in exploiting interspecific hybridization 

as a means to novel genetic variation than wheat (Triticum ssp.); utilizing high 

crossability genotypes, wheat has been hybridized with over 50 species belonging to the 

Agropyron complex (Sharma, 1995).  Bread wheat is an allohexaploid with three 
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genomes: A, B, and D (2n = 6x = 42, AABBDD) (Waines and Barnhart, 1992).  Wild 

species with common genomes are found in T. monococcum (2n = 2x = 14, AA), T. 

turgidum L. (2n = 4x = 28, AABB), and T. tauschii (Coss.) Schmal. (2n = 2x = 14, DD).  

These wild genomes are fully homologous and pair normally during meiosis with bread 

wheat chromosomes of the same genome making them readily amenable to interspecific 

hybridization and recovery of introgression (Pathak, 1940; Gill and Kimber, 1974; 

Sharma, 1995; Jauhar and Chibbar, 1999).  These species have contributed many genes 

for disease resistance that have contributed to wheat improvement (Feldman and Millet, 

1995; Rong et al., 2000).  Other species that contain genomes that are less homologous 

to those of wheat are still useful in transferring valuable genes.  More distantly related 

genomes that exhibit lower rates of homoeologous recombination have still been useful 

as multiple disease resistance genes have been recovered (Sears, 1973; Riley et al., 1966; 

Ceoloni et al., 1988).  A genetic system that controls homoeologous pairing in wheat can 

be used to induce such pairing.  The Ph1 locus in common wheat suppresses 

homoeologous recombination between the three genomes (A, B, and D), thereby making 

hexaploid wheat behave like a diploid during meiosis (Okamoto, 1957; Riley and 

Chapman, 1958; Sears and Okamoto, 1958).  This locus also suppresses recombination 

between distant genomes that share some homology.  The use of deletion lines which 

functionally renders the plants to ph1 have been used to elevate the amount of genetic 

recombination between wild and cultivated genomes (Feldman, 1993; Jauhar and 

Chibbar, 1999).    
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Interspecific hybrids with parental genomes that do not recombine during 

meiosis can produce naturally occurring as well as irradiation induced translocation 

lines.  These lines contain segments of alien chromatin interspersed in the cultivated 

genome.  Fitness of alien-translocation stocks are normally reduced since alien segments 

are randomly incorporated with no respect to homology.  Alien segments have reduced 

recombination in the cultivated parent; this makes the reduction of linkage drag difficult 

or impossible (Jiang et al., 1994; Jones et al., 1995; Singh 2003).  Introgression progeny 

of this type have been a source for novel disease and insect resistance as well abiotic 

stress tolerance and male fertility (Friebe et al., 1993, 1996; Jiang et al., 1994; Jauhar 

and Chibbar, 1999; Singh 2003).          

Many important crops have utilized wild species as a source of useful genetic 

variation.  Introgression can occur through multiple mechanisms although 

homoeologous genetic recombination allows facile transfer of genetic variation.          

  

Current Status of Interspecific Hybridization with S. bicolor 

 Interspecific hybridization with S. bicolor is not a new prospect.  Within the Eu-

Sorghum section, S. bicolor will readily hybridize with S. propinquum.  Meiosis is 

normal in the hybrid (2n = 20) and fertile backcrosses are readily produced (Celarier, 

1958; Chittenden et al., 1994).  Wooten (2001) analyzed BC3 lines and hybrids and 

determined that S. propinquum does contain useful alleles that could be used in the 

improvement of cultivated grain sorghum.  Germplasm containing S. propinquum 
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introgression is still present in the TAES sorghum improvement program, but it has not 

yet been used in released and improved germplasms, lines, or hybrids.     

Successful hybridization of S. bicolor with the other species in Eusorghum, S. 

halepense, has been reported numerous times; interspecific hybrids can be 2n = 30 (n + 

n) or 2n = 40 (2n + n) (Hadley, 1953; Endrezzi, 1957; Hoang-Liang and Tang, 1988).  

Chromosome pairing in the hybrids is irregular but gene transfer into 2n = 20 backcross 

progeny is possible (Hadley, 1953; Hadley and Mahan, 1956).  More recently, an 

interspecific hybrid with 2n = 20 chromosomes was produced between a genetic male-

sterile S. bicolor and S. halepense.  The chromosome number was likely generated from 

fertilization by a rare monohaploid S. halepense pollen grain (Dweikat, 2005).  This 

plant was fertile and showed normal segregation of polymorphic SSR markers in the F2 

generation.  Interspecific hybrids between tetraploid sorghum (2n = 40) and S. halepense 

are more easily made and have been used in attempts to create perennial grain sorghums 

(Piper and Kulakow, 1994; Cox et al., 2002).  None of the efforts to date have succeeded 

in producing agronomically useful germplasm.   

 Until recently, hybridization between S. bicolor and species outside the section 

Eu-Sorghum have been unsuccessful (Karper and Chisholm, 1936; Ayyanger and 

Ponnaiya, 1941; Garber, 1950; Endrizzi, 1957; Tang and Liang, 1988; Wu, 1990; Sun et 

al., 1991; Huelgas et al., 1996).  This can easily be explained based on the recent results 

identifying pollen-pistil incompatibilities as the cause of reproductive isolation in the 

genus.  A single hybrid was recovered between S. bicolor and S. macrospermum using 

standard cytoplasmic male-sterile (CMS) germplasm after much effort (Price et al., 
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2005b).  The interspecific hybrid was confirmed cytologically to be 2n = 30 and was 

intermediate in phenotype.  Unfortunately this hybrid was male-sterile and meiotic 

recombination could not be studied.  The recovery of this hybrid indicates that 

reproductive isolation barriers are strong but not absolute within the genus.  Price et al. 

(2006) later used a CMS S. bicolor accession with genotype iap iap, which allows the 

growth of pollen tubes from foreign species into its pistils (Laurie and Bennett, 1989).  

This gene dramatically increased the ease and frequency of recovering interspecific 

hybrids.  They reported, supported with cytological evidence, the production of three 

different interspecific hybrids between S. bicolor and S. macrospermum, S. nitidum, and 

S. angustum.  Interspecific hybrids between S. bicolor and both S. nitidum and S. 

angustum did not survive to maturity, but the hybrids with S. macrospermum were 

vigorous.  It was not possible to determine the meiotic chromosome pairing behavior of 

the interspecific hybrid and the genomic relationships between S. bicolor and S. 

macrospermum because of male-sterility in the hybrids.  Intergeneric hybridization, 

specifically crosses between S. bicolor and sugarcane, has been successful.  Most crosses 

used sugarcane as the female parent and sorghum as the pollen parent (Thomas and 

Venkatraman, 1930; Janakiammal and Singh, 1936); however, reciprocal hybrids have 

more recently been recovered (Nair, 1999).  The compatibility of sorghum and 

sugarcane is less surprising since results involving the Eusorghum specific repeat 

CEN38 implicate related genomes in the polyploidy of sugarcane (Zwick et al., 2000).   

Compared to other species such as wheat, rice, oat, barley, cotton, and soybeans 

where interspecific hybridization has produced tangible results; interspecific 
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hybridization in sorghum is in its infancy.  Interspecific hybrids have just become a 

reality in species beyond Eusorghum and much research remains to prove its usefulness.            

 

Description of S. macrospermum 

 Sorghum macrospermum (2n = 40) is the sole member of the Chaetosorghum 

section within Sorghum (Garber, 1950).  It belongs to the x = 10 chromosome lineage 

within Sorghum, which are characterized by relatively small chromosomes, and it is one 

of two species most closely related to the Eusorghum section (Wu, 1980, Dillon et al., 

2004; Price et al., 2005a).  It is a robust annual plant that grows 1.8-3.8m tall, has a large 

loose panicle with long drooping branches, and large ovoid caryopses.  Only a single 

population is known; it is distributed in a relatively small area of limestone outcrops 

north west of Katherine in the Northern Territory of Australia.  The plants grow in soil 

pockets and crevices between boulders (Lazarides et al., 1991).  The species has large 

seeds, relative to other wild sorghums, and is the only of the Australian wild species that 

has similar grain N and P concentrations to S. bicolor (Cook and Andrew, 1991).  

Coincidentally, or perhaps not, S. macrospermum played an important part in the diet of 

the Tagoman Aboriginal Tribe in the Katherine district (Arndt, 1961).  The Tagoman 

gathered grains off the ground, which had shattered from the panicle, and they prepared 

the ground meal as grits after dehulling and cleaning.  It is unknown whether the species 

underwent any selection by the aboriginal tribes, or if it only served as a wild source of 

cereal grain.         
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 Research into agronomically useful traits held by Australian wild species has 

been limited as until recently because the genetic variation was inaccessible due to cross-

incompatibilities.  Some research has focused on the disease and insect resistance 

potential of the wild species.  Sorghum macrospermum was shown to be either a non-

host or has ovipositional non-preference to sorghum midge (Stenodiplosis sorghicola 

Coquillett) (Franzmann and Hardy, 1996; Sharma and Franzmann, 2001).  It is not 

susceptible to sorghum downy mildew (Peronosclerospora sorghi Weston and Uppal 

(Shaw)) (Kamala et al., 2002) and has high tolerance to shoot fly (Atherigona soccata 

Rond.) (Sharma et al., 2005).  Until recently research into useful traits from this species 

has had no direct application as hybridization was impossible.  This species deserves 

more scrutiny if introgression into S. bicolor becomes possible.           

 

Summary 

 A genetic system for producing interspecific hybrids with species beyond the 

Eusorghum section is now available.  Using germplasm recessive for the iap allele 

allows pollen from foreign species to grow through the stigma, style, and successfully 

complete fertilization.  Interspecific hybrids between S. bicolor and S. macrospermum 

display vigor and successfully reach maturity.  No information is available about the 

genomic relations between the species and whether the interspecific hybrid retains 

enough fertility to recover backcross progeny.  The present research will investigate the 

feasibility of using S. macrospermum in an introgression breeding program and 

determine methods for such research.  
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CHAPTER III 

 

GENETIC RECOMBINATION IN THE INTERSPECIFIC HYBRID 

 

Introduction 

 Sorghum is an important food, feed and forage crop in the U.S and around the 

world.  The genus Sorghum contains five sections, of which S. bicolor is a member of 

the Eu-Sorghum section along with S. propinquum and S. halepense.  The remaining 

four sections contain 19 species which are native to Africa, Australia, and Asia (Garber, 

1950; de Wet, 1978; Lazarides et al., 1991).  Breeding efforts have mainly used the 

primary gene pool of diverse germplasm within the S. bicolor species (Duncan et al., 

1991).  Limited efforts have been made to utilize the secondary gene pool consisting of 

the remaining species within Eusorghum.  Interspecific hybrids are easily made with S. 

propinquum and with some effort S. halepense; however, few breeding programs have 

utilized the germplasm (Wooten, 2001; Dweikat, 2005).  The tertiary gene pool contains 

all the remaining species within the genus, and despite many efforts to produce 

interspecific hybrids, hybridization was not successful until recently (Karper and 

Chisholm, 1936; Ayyanger and Ponnaiya, 1941; Garber, 1950; Endrizzi, 1957; Tang and 

Liang, 1988; Wu, 1990; Sun et al., 1991; Huelgas et al., 1996).   

 Hodnett et al. (2005) determined that pollen-pistil incompatibilities were the 

reason for reproductive isolation between S. bicolor and species in the tertiary gene pool.  

Pollen tube growth of the wild species was arrested in the stigma and style preventing 
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successful fertilization.  A single interspecific hybrid between cytoplasmic male-sterile 

S. bicolor (2n = 20) and the Australian species S. macrospermum (2n = 40) was 

recovered by Price et al. (2005b) which indicates that the barriers to hybridization were 

strong but not complete.  Further research determined that interspecific hybridization 

efficiency could be improved by an order of magnitude simply by using S. bicolor 

homozygous for the iap allele.  The Iap gene locus (Inhibition of Alien Pollen) causes 

pollen-pistil incompatibilities between S. bicolor and alien pollen species (Laurie and 

Bennett, 1989).  Using this allele, Price et al. (2006) reported interspecific hybrids 

between S. bicolor and three tertiary gene pool species: S. macrospermum; S. nitidum; 

and S. angustum.  Interspecific hybrids were verified morphologically and cytologically, 

but only hybrids with S. macrospermum survived to maturity.   

 The genus Sorghum is divided into two distinct lineages, x = 5 and x = 10 (Price 

et al., 2005a).  The x = 5 lineage (2n = 10, 20, 30, and 40) consists of species with large 

genomes and chromosomes, while the x = 10 lineage (2n = 20 and 40) is characterized 

by small genomes and chromosomes.  Both S. macrospermum and S. bicolor belong to 

the x = 10 lineage.  The base chromosome number in Sorghum is generally regarded as x 

= 5, and research has shown that S. bicolor is likely an ancient tetraploid (2n = 4x = 20) 

with distinct but related subgenomes (Garber, 1950; Hadley 1953; Endrizzi and Morgan 

1955; Celarier, 1958; Doggett, 1988; Tang and Liang 1988; Gomez et al., 1998; Zwick 

et al., 2000).  Tang and Liang (1988) reviewed the data regarding genomic relationships 

between S. halepense and S. bicolor, and they designated the former as having the 

genomic formula AAAAB1B1B2B2 and the latter as AAB1B1.  They also concluded that 
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subgenomes B1 and B2 share enough homology that homoeologous chromosome pairing 

can occur.  Subgenome A shares much less homology with B1 and B2, but multivalents 

involving members of all three genomes are possible.  Utilizing FISH, the most recent 

cytogenetic research assigned S. bicolor the genomic formula AbAbBbBb with the 

subscript “b” representing bicolor, based on differential probe hybridization (Zwick et 

al., 2000).  For this discussion, S. bicolor will be designated as AAB1B1.  Little is known 

about the genomic relationships between S. bicolor and S. macrospermum.  Wu (1980) 

studied the karyotype of S. macrospermum and suggested it was a polyploid with high 

amounts of similarity to the S. bicolor genome.  That research found that the 

chromosome size of both species was similar and overlapped, and that S. macrospermum 

appeared to have two chromosomes for each individually identifiable S. bicolor 

chromosome.  During meiosis S. macrospermum behaved as a diploid forming 20 II, 

although quadrivalents were observed.  This suggests S. macrospermum is likely 2n = 8x 

= 40, with an unknown genomic formula of WWXXYYZZ. 

Sorghum macrospermum is the only member of the Chaetosorghum section and 

is native to the Katherine area in the Northern Territory of Australia (Lazarides et al., 

1991).  It is either a non-host or has ovipositional non-preference to sorghum midge 

(Stenodiplosis sorghicola Coquillett) (Franzmann and Hardy, 1996; Sharma and 

Franzmann, 2001).  It is immune to sorghum downy mildew (Peronosclerospora sorghi 

Weston and Uppal (Shaw)) (Kamala et al., 2002) and is highly tolerant to shoot fly 

(Atherigona soccata Rond.) (Sharma et al., 2005).  There is interest in using this newly 

compatible species in an interspecific breeding program for the improvement of S. 
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bicolor.  The goal of an interspecific breeding program is to transfer useful S. 

macrospermum genetic variation to the S. bicolor genome.  The most direct way for such 

introgression to occur is through allosyndetic recombination during meiosis, which is 

recombination between chromosomes of different parental genomes (Burnham, 1962; 

Jauhar and Chibbar, 1999).  The level of allosyndetic recombination will largely be a 

function of the amount of genetic similarity between the different genomes (Singh, 

2003).  Homoeologous chromosomes, genetically related through ancestry, will pair if 

they retain sufficient homology with one another.  Backcross progeny containing such 

recombinant chromosomes would possess S. macrospermum genetic variation.  

Autosyndetic recombination, which is recombination between chromosomes from the 

same parental genome, does not result in introgression within the S. bicolor genome 

because no exchange occurs between the chromosomes of the different genomes.  

Therefore, determining whether allosyndetic recombination occurs in a S. bicolor x S. 

macrospermum hybrid will provide insight as to the possibility of introgression 

occurring.          

 The objectives of this research were to determine the genomic relationship 

between S. bicolor and S. macrospermum, measure the frequency of allosyndetic 

recombination during meiosis, and recover backcrosses to the S. bicolor parent.                         
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Materials and Methods 

Plant Material 

Interspecific hybrids were produced using S. bicolor accession ‘NR481’ (iap iap) 

as the hand-emasculated female parent and the wild species S. macrospermum (AusTRC 

Accession no. 302367) as the male parent.  NR481 was the genotype in which the Iap 

gene was first identified (Laurie and Bennett, 1989).  Pollinated florets set 

approximately 25% seed with a shrunken endosperm.  Approximately 60% of the seeds 

germinated on agar media and the seedlings were subsequently transplanted into soil.  

The hybrids were identified at an early stage by their pubescent leaves, a trait absent in 

S. bicolor but present in both S. macrospermum and the interspecific hybrid.  The 

putative hybrids were confirmed by determining their chromosome numbers (2n = 30).  

Morphology of the interspecific hybrids did not differ from previously published 

descriptions (Price et al., 2005b).  Six hybrids, as well as control plants of the two 

parents, were grown in a greenhouse in the summer of 2004 in College Station, TX for 

cytological studies.  Backcrosses were attempted by collecting anthers (non-dehiscent) 

from the interspecific hybrids, disrupting the anthers in a glass Petri dish, and dusting 

pollen onto CMS S. bicolor (iap iap) stigmas with a fine bristle paintbrush.   

 

Traditional Cytogenetic Analysis 

Immature panicles, with the flag leaf collar extended 3-4 inches above the last 

leaf collar, were harvested and fixed whole in Carnoy’s solution (6 Ethanol : 3 

Chloroform : 1 Glacial Acetic Acid) for a minimum of 24 hours and then transferred to 
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70% ethanol for storage.  Florets were dissected and the anthers macerated on a glass 

slide in a drop of acetocarmine stain.  A coverslip was placed over the stain and the slide 

heated over an alcohol flame before being squashed on a hard surface between filter 

paper.  Pollen mother cells (PMCs) were examined under phase contrast microscopy 

using a Zeiss Axiophot microscope (Carl Zeiss Inc., Gottingen, Germany) at 1000-

2000X magnification.  Meiotic analysis of both parents and the interspecific hybrids 

consisted of counting the number of univalents, bivalents (both rod and ring 

conformation), trivalents, and quadrivalents in each PMC.  Note of laggard 

chromosomes at anaphase was also taken.  Images were taken using a Nikon Coolpix 

4500 digital camera with a 57 to 38mm stepdown adapter through the microscope 

eyepiece.  Data was analyzed using GLM in SPSS v11.5.     

 

Fluorescent in situ Hybridization 

 Slides to be used with FISH (fluorescent in situ hybridization) were prepared in 

the same manner as above except the anthers were macerated in 20% acetic acid, and 

after squashing were immediately frozen at -80ºC.  Plasmid CEN38, present on all S. 

bicolor chromosomes and visually absent from the S. macrospermum chromosomes, was 

used as a probe to visually differentiate the genomes (Zwick et al., 2000; Anderson 

2005).  Detection of the FISH probe followed a modified protocol of Jewell and Islam-

Faridi (1994), as described by Hanson et al. (1995) and Kim et al. (2002).  Purified 

CEN38 DNA was nick-translated with digoxigenin-11-dUTP (Roche Diagnostics, 

Indianapolis, IN).  Meiotic chromosomes on glass slides were denatured in 70% 
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formamide in 2X SSC for 1.5 min at 70ºC, then dehydrated in 70 (-20ºC), 85 (RT), 95 

(RT), and 100% (RT) ethanol, for 2 min each.  The hybridization mixture (25ul per 

slide) contained 50ng labeled probe DNA, 50% formamide and 10% dextran sulfate in 

2XSSC.  The hybridization mixture was denatured for 10 min at 95ºC and chilled on ice.  

It was then added to the slide, sealed with rubber cement around a glass coverslip and 

incubated overnight at 37ºC.  Following incubation, the slides were washed at 40ºC in 

2XSSC and room temperature in 4XSSC plus 0.2% Tween-20, for 5 min each.  Slides 

were blocked with 5% (w/v) BSA in 4XSSC plus 0.2% Tween-20 at room temperature.  

The digoxigenin-labeled probe was detected with CY3™-conjugated anti-digoxigenin 

anti-body.  Slides were washed in 37ºC 4XSSC plus 0.2% Tween-20.  Chromosomes 

were counterstained with 25ul DAPI with Vectashield®.  Slides were viewed through an 

Olympus AX-70 epifluorescence microscope and images captured with a Macprobe® 

v4.2.3 imaging system (Applied Imaging Corp., Santa Clara, CA).  Meiotic analysis of 

the interspecific hybrids consisted of counting the number of bivalents (rods or rings) 

and multivalents in each PMC as well as associations with CEN38.   

  

Molecular Markers 

 DNA was extracted from fresh leaf tissue from 11 BC1F1 plants, their parents, 

and genetic map parents BTx623 and IS3620C using FastDNA Spin Kits (MP 

Biomedicals, Solon, OH).  AFLP templates, using both EcoRI/MseI and PstI/MseI 

restriction enzyme combinations, were created using a modified procedure from Vos et 

al., (1995).  The AFLP template, preamplification, and selective amplification reactions 
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of the EcoRI/MseI and PstI/MseI fragments were as described by Klein et al (2000) and 

Menz et al (2002), respectively.  Thirty PstI/MseI and 15 EcoRI/MseI primer 

combinations were used to amplify fragments in the DNA samples.  Amplification 

products were analyzed on a LI-COR model 4200 dual-dye automated DNA sequencing 

system.  Electrophoresis conditions were as described by Klein et al (2000).  Gels were 

analyzed by hand, bands were scored as unique to S. macrospermum if they were not 

present in the CMS female parents, unique bands shared between the putative 

backcrosses and S. macrospermum were identified as introgression bands.  Percent 

introgression was calculated as the total number of introgression bands found for a 

particular plant divided by the total number of unique S. macrospermum bands found.  

This number is an estimate of the amount of the S. macrospermum genome that is 

present in the backcross plant.          

 

Results and Discussion 

Meiotic analysis of the parents revealed mostly normal meiosis.  Sorghum 

bicolor (acc. NR481) had a mean chromosome pairing behavior of 10 bivalents per PMC 

and no multivalents were observed (Table 1; Fig. 1a).  The S. macrospermum parent had 

an average of 19.96 bivalents per PMC with a single quadrivalent observed over 48 cells 

(Table 1; Fig. 1b).  Some level of quadrivalent formation was expected in the S. 

macrospermum parent, although the level observed was lower than previously reported 

(Wu, 1980).  Analyses of the interspecific hybrids reveal a mean of 3.54 bivalents per 

PMC, with 98% forming rods (Table 1; Fig. 1c).  The number of bivalents ranged from  
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Table 1. Chromosome pairing behavior in parents and  S. bicolor x S. macrospermum 
interspecific hybrids 

   Bivalents  
Multivalent 

Totals 

Genotype 2n N Mean† Range % Rod  Tri Quad 

S. bicolor 20 48 10.00B 0 42B  0 0 

S. macrospermum 40 48 19.96A 18-20 NA  0 1 

S. bicolor x S. macrospermum 30 312 3.54C 0-8 98A  2 0 

Hybrid 1 30 54 3.59C 0-7 99A  1 0 

Hybrid 2 30 53 3.96C 1-8 100A  0 0 

Hybrid 3 30 28 1.68D 0-3 96A  0 0 

Hybrid 4 30 48 3.58C 1-7 98A  0 0 

Hybrid 5 30 115 3.95C 0-7 98A  1 0 

Hybrid 6 30 14 2.07D 1-4 98A  0 0 

  LSD.05 0.82  6    

  CV 26%  1%    

†Means followed by different superscript letters are significantly different (p<.05) 
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Figure 1. Pollen mother cells (PMCs) during meiosis of S. bicolor, S. macrospermum, and the 
interspecific hybrid (A-F).  PMCs stained with acetocarmine used for the traditional analysis (A-C).  
FISH of hybrid PMCs using CEN38 which hybridizes strongly to the A subgenome and weakly to the 
B1 subgenome of S. bicolor and does not hybridize to any chromosomes in S. macrospermum (D-F). 
(A) Metaphase I in S. bicolor showing 10 II, (B) Diakinesis in S. macrospermum showing 20 II, (C) 
Metaphase I in the interspecific hybrid with 8 II + 14 I, all bivalents are rod shaped, arrows show 3 
rod bivalents. (D) FISH of hybrid PMC at metaphase I with (1) two allosyndetic bivalents, (2) one S. 
macrospermum autosyndetic bivalent, (3) one S. bicolor autosyndetic bivalent (B1-B1), the remaining 
chromosomes are univalents. (E) FISH of hybrid PMC at metaphase I showing five allosyndetic 
bivalents, four involving S. bicolor subgenome A and one involving B1, two S. macrospermum 
autosyndetic bivalents, and 16 univalents. (F) FISH of hybrid PMC at metaphase I showing five 
allosyndetic bivalents, four involving S. bicolor subgenome B1 and one involving A, two S. 
macrospermum autosyndetic bivalents, and 16 univalents.          
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0-8 with the most common configuration being 3 II + 24 I (26% of PMCs), and 

multivalents were rare.  Two interspecific hybrids had significantly lower bivalent 

formation than the others, indicating that recombination may be influenced by factors 

such as environment or genetic background (Table 1).  The observed range of bivalent 

formation in the interspecific hybrid rules out exclusive autosyndetic S. bicolor pairing 

as only five such bivalents are possible.  Exclusive S. macrospermum autosyndetic 

pairing cannot be ruled out since some homology within the genome exists and 10 such 

bivalents are possible.  Preferential formation of rod shaped bivalents is associated with 

less homology between genomes (Singh, 2003), which would likely be the case if such 

recombination were allosyndetic.  With such a low amount of quadrivalent formation in 

the S. macrospermum parent, it is unlikely that all the bivalent formation in the hybrid 

can be attributed to autosyndesis within this parental genome.  Traditional cytogenetic 

analysis cannot confirm allosyndetic recombination as discrimination of these parental 

genomes is not possible.  This data does confirm that some recombination is occurring 

within the interspecific hybrid. 

 The FISH probe CEN38 does not visually hybridize to S. macrospermum 

chromosomes and differentially hybridizes to 10 of 20 somatic S. bicolor chromosomes 

(Zwick et al., 2000; Anderson 2005).  Ten homologous S. bicolor chromosomes (SBI) 

show strong CEN38 signal, SBI-01, 02, 03, 05, and 06, and ten show weak signal, SBI-

04, 07, 08, 09, and 10 (Kim et al., 2005b; J.S. Kim, Personal Communication).  Zwick et 

al. (2000) suggested the differential hybridization corresponds to the subgenomes that 

make up S. bicolor; strong signal identifies subgenome A and weak signal identifies 
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subgenome B1.  The designation of CEN38 signal strength to subgenome was arbitrary 

since it was not based on genome homology to S. halepense, which was used to assign A 

and B1 subgenomes (Hadley, 1953; Tang and Liang, 1988), but such designations will be 

used in this discussion.  Meiotic FISH analysis of the interspecific hybrid revealed 4.3 

bivalents per PMC, an estimate not significantly different from the traditional 

cytogenetic analysis.  More importantly, it confirmed the presence of allosyndetic 

recombination between S. bicolor and S. macrospermum chromosomes, one 

chromosome with and one without CEN38 signal (Fig. 1, D-1).  In fact, all three types of 

recombination were detected: allosyndetic; autosyndetic S. macrospermum; and 

autosyndetic S. bicolor (Table 2; Fig. 1, D-1-3).  The frequency of allosyndetic 

recombination, 61% of bivalents or 2.6 II per PMC, indicates that significant homology 

exists between some chromosomes of S. bicolor and S. macrospermum.  This agrees 

with Wu, (1980) who suggested that S. bicolor may be one of two ancestors of S. 

macrospermum.   

Since the strong and weak CEN38 FISH signals differentiate S. bicolor 

subgenomes A and B1, their behavior can be compared.  In two different cells (Fig. 1, E 

and F), four A and four B1 allosyndetic bivalents were separately detected.  Together 

these represent 8 different S. bicolor chromosomes which are participating in 

recombination with the S. macrospermum genome.  Sorghum macrospermum 

chromosomes cannot be differentiated in the present analysis; therefore, no definitive 

estimate can be given to the percentage of its genome that is subject to recombination  
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Table 2. Allosyndetic (B-M) and autosyndetic (B-B and M-M) recombination in a S. 
bicolor x S. macrospermum hybrid as revealed using FISH probe CEN38 
 Bivalents Trivalents 

 B-M† B-B M-M Total Total 

Sum (N = 46) 121 4 72 197 3 

Mean‡ 2.63A 0.09C 1.57B 4.28 .07 

% of Total 61.4 2.0 36.5   

† B and M represent S. bicolor and S. macrospermum chromosomes, respectively 
‡ Means with different superscript letter are significantly different (p<.05) 
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with S. bicolor.  It is likely that the 8 S. bicolor chromosomes are recombining with 8 

different S. macrospermum homoeologous chromosomes.  Therefore, at minimum 

approximately 80% of the S. bicolor genome and possibly 40% of the S. macrospermum 

genome is subject to allosyndetic recombination.  Clearly, the moderate level of 

allosyndetic recombination makes recovering introgression in backcross progeny very 

likely.       

 A and B1 S. bicolor chromosomes do not form allosyndetic bivalents with S. 

macrospermum at the same frequency.  Chromosomes in subgenome A account for 70% 

of the allosyndetic bivalents in the interspecific hybrid (Table 3).  So, while a majority of 

the genome has the capacity to recombine with S. macrospermum, subgenome A 

chromosomes are more likely to be involved in recombination.  Thus, those 

chromosomes will be the likeliest to carry introgression into progeny. 

 Autosyndetic recombination occurred at a relatively high frequency within the S. 

macrospermum genome, 37% of the bivalents or 1.6 II per PMC, and at a very low 

frequency in the S. bicolor genome, 2% of the bivalents or 0.1 II per PMC (Table 2).  

This indicates there is significant homology within the S. macrospermum haploid 

genome, and relatively little within the S. bicolor haploid genome.  The relative 

differences in autosyndesis are likely a result of multiple factors.  Sorghum bicolor may 

have undergone significantly more diplodization, which reduced homology within its 

genome, than has S. macrospermum (Liu and Wendel, 2002).  This may also indicate an 

older evolutionary age for the tetraploid nature of S. bicolor and a relatively more recent 

polyploidization event in S. macrospermum.  It could indicate that the polyploidization  
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Table 3. Allosyndetic recombination involving subgenomes A and B1 in a S. bicolor x S. 
macrospermum hybrid as revealed using FISH probe CEN38 
 A-M† B1-M Total 

Sum (N = 19) 39 16 55 

Mean‡ 2.05A 0.84B 2.89 

% of Total 70.9 29.1  

†M represents S. macrospermum chromosomes, A and B1 represent chromosomes within 
subgenomes of S. bicolor  
‡Means followed by different superscript letters are significantly different (p<.05) 
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of S. bicolor involved two separate genomes with very little homology, while the nascent 

genomes of S. macrospermum were much more related.  Most likely all three describe 

the evolutionary history of these species.  Sorghum macrospermum has been 

hypothesized to be an allooctaploid originating from chromosome doubling of two 

related Eusorghum species (Wu, 1980).  S. bicolor is regarded as a highly diplodized 

allotetraploid originating from a chromosome doubling of two more divergent genomes 

(Tang and Liang, 1988; Gomez et al., 1998; Zwick et al., 2000).   

 Significant homology exists between the genomes of S. bicolor (2n = 4x = 20; 

AAB1B1) and S. macrospermum (2n = 8x = 40; WWXXYYZZ).  Meiosis in the 

interspecific hybrid (2n = 6x = 30; AW B1XYZ) shows recombination.  FISH analysis 

reveals allosyndetic recombination between a minimum of 4 chromosomes from each S. 

bicolor subgenome.  Recombination between the S. bicolor subgenomes and their S. 

macrospermum homoeologs is not regular; subgenomes A and B1 average 2.1 and 0.8 

allosyndetic bivalents per PMC, respectively (Table 3).  Multivalents in the interspecific 

hybrid are very rare indicating that only the homoeologous chromosomes from the 

related subgenomes of the two species have the potential to pair during meiosis.  From 

this data, it is suggested that the genomic formula for S. macrospermum is 

AAB1B1YYZZ.  Subgenomes Ab and Am, from now on additionally denoted by their 

species, share more homology than subgenomes B1b and B1m, indicated by the difference 

in pairing.  Pairing between and within S. bicolor subgenomes in the interspecific hybrid 

was rare; one Ab – B1b bivalent, zero Ab – Ab bivalents, and two B1b – B1b bivalents were 

observed in 46 cells.  A moderate level of S. macrospermum autosyndetic pairing does 
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occur in the hybrid, 1.6 II per PMC.  If meiotic behavior of the Ab and Bb genomes is a 

guide, it is unlikely that the S. macrospermum autosyndetic pairing in the hybrid can be 

explained by Am – B1m, Am – Am, and B1m – B1m chromosome associations.  Therefore, 

they are likely occurring through the associations of the unknown subgenomes Y and Z.  

Autosyndetic pairing may be between these two subgenomes, Ym-Zm, or between one 

and either Am or B1m.  Much like in S. halepense, in which Tang and Liang (1988) 

hypothesized moderate levels of B1 – B2 pairing, subgenomes Y or Z may be analogous 

to subgenome B2.  Thus, B1m – B2m associations could explain the observed level of 

autosyndetic S. macrospermum pairing.  Such conclusions about genomic relationships 

of subgenomes Y and Z are hypothetical.  Research on the genomic relations between S. 

macrospermum and S. halepense could provide an answer.               

Interspecific hybrid male fertility, measured by observing I2-KI pollen 

stainability, indicated that normal pollen formation was rare; five fully stained pollen 

grains were observed in approximately 20,000 examined.  Approximately, 3050 CMS S. 

bicolor florets were pollinated with interspecific hybrid pollen over 4 months; 13 

putative BC1F1 seeds developed.  All the putative backcross progeny developed on three 

heads that were pollinated in a 2 week period that coincided with low light intensity, an 

environmental condition known to affect the stability of the male-sterility.  Thus, it is 

possible that “BC1F1” plants were the result of self-pollination or stray S. bicolor pollen, 

and not interspecific pollination.  The putative BC1F1 progeny were grown to maturity 

and they did not differ morphologically from their maternal parent.  Molecular markers 

were used in hopes of proving their interspecific paternity.  DNA samples from 11 
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putative BC1F1 plants, their respective female CMS parents, S. macrospermum, and 

mapping parents BTx623and IS3620C were used to evaluate the presence or absence of 

S. macrospermum introgression.  A total of 825 unique S. macrospermum bands were 

scored and some were found in the putative BC1F1 progeny.  Introgression estimates 

were between 0-1%, and none of the introgression bands were shared by the mapping 

parents.  Thus, the genomic location of the potential introgression is unknown (Data not 

presented).   

 Presence of introgression bands in these male produced backcrosses is not 

irrefutable evidence of their backcross status.  All introgression bands were AFLP 

markers, and nothing is known regarding their sequence similarity, only that the 

fragments had similar mobility through the gel.  Comigration of non-sequence related 

bands can be a problem for AFLP markers when comparing different biological species 

(Menchanda et al., 2004).  It is possible that stray S. bicolor pollen from a genotype that 

produces non sequence-related AFLP bands of the same size as S. macrospermum was 

the male parent of the putative BC1F1s, thus making “introgression bands” not indicative 

of introgression.  It is equally possible that these plants are actually backcrosses that 

contain between 0-1% S. macrospermum introgression.  Regardless, “BC1F1” plants 

were male sterile like their CMS parent, and restoring fertility would require another 

cross and selfing generation.  It was decided that recovering introgression in this manner 

was not ideal and another approach would be pursued.  It may be necessary to use the 

interspecific hybrids as females in combination with embryo rescue, to avoid questions 

of pedigree in recovered backcrosses.              
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Summary 

 Allosyndetic recombination occurred between S. bicolor and S. macrospermum 

chromosomes at a moderate frequency (2.6 II per PMC) in the interspecific hybrid.  

Genome relationships were sufficient to suggest that S. macrospermum has two genomes 

which share homology with the genomes of S. bicolor and that the wild species has the 

genomic formula AAB1B1YYZZ, with Y and Z being unknown genomes.  Interspecific 

backcrosses were sought among putative BC1F1 plants after pollinating sorghum with the 

interspecific hybrid, but irrefutable evidence of their hybridity remained elusive.  Only 

extremely low levels (1%) of putatively alien AFLPs were observed, i.e., too low to 

confirm recovered progeny were different from selfs.  Future research should focus on 

recovering introgression backcross progeny as the current research predicts recovering S. 

macrospermum introgression is probable.             
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CHAPTER IV 

 

 INTROGRESSION BREEDING AND ANALYSIS OF GERMPLASM 

 

Introduction 

 Sorghum is an important food and feed crop around the world.  The 2006 U.S. 

grain sorghum crop was valued at approximately $715,000,000 (USDA, 2006) and 

worldwide is the 5th most grown cereal grain.  Plant breeders continuously improve the 

crop for yield potential, drought tolerance, disease and insect resistance, and other biotic 

and abiotic stresses.  Genetic variation is the lifeblood of plant breeding so identification 

of useful new sources is a worthwhile endeavor.     

Taxonomically, the genus Sorghum is separated in to 5 sections: Eusorghum, 

Chaetosorghum, Heterosorghum, Parasorghum, and Stiposorghum (Garber, 1950; de 

Wet, 1978).  The cultivated species is grouped within section Eusorghum along with S. 

propinquum and the noxious weed S. halepense.  Genetic improvements in sorghum 

have been made by utilizing genetic variation from within the primary gene pool, which 

contains all of the germplasm in the three subspecies of S. bicolor: ssp. arundicum, 

bicolor, and drumondii (de Wet, 1978; Cox et al., 1984; Duncan et al., 1991).  The 

secondary gene pool is composed of the remaining two species in Eusorghum.  Crosses 

between sorghum and S. propinquum are easily made, meiosis is normal in the 

interspecific hybrids, and progeny are fertile, but there has been little to no use of this 

germplasm in applied sorghum improvement (Wooten, 2001).  Hybrids between 
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sorghum and S. halepense are more difficult to produce but are possible.  Most efforts in 

utilizing S. halepense as a genetic resource have been devoted to developing perennial 

grain crops (Piper and Kulakow, 1994; Cox et al., 2002; Dweikat, 2005).  The tertiary 

gene pool contains the 17 remaining species within the four other sections.  Until 

recently, this gene pool was completely inaccessible and no hybrids had ever been 

recovered despite numerous efforts (Karper and Chisholm, 1936; Ayyanger and 

Ponnaiya, 1941; Garber, 1950; Endrizzi, 1957; Tang and Liang, 1988; Wu, 1990; Sun et 

al., 1991; Huelgas et al., 1996). 

The cause of reproductive isolation between sorghum and the tertiary gene pool 

was unknown until Hodnett et al. (2005) determined that it was due to pollen-pistil 

incompatibilities.  Pollen tube growth of wild species was inhibited in the stigma and 

style which prevented successful fertilization.  The reproductive barriers proved to be 

strong but not complete as Price et al. (2005b) finally recovered one interspecific hybrid 

between cytoplasmic male-sterile (CMS) sorghum and S. macrospermum.  The 

efficiency of producing this hybrid improved dramatically by using a S. bicolor genotype 

homozygous for the iap allele.  The Iap locus controls a pistil barrier that prevents 

foreign species pollen tube growth; whereas, the recessive genotype (iap iap) allows 

pollen tube growth of maize as well as wild sorghum species (Laurie and Bennett, 1989; 

Price et al., 2006).  Price et al. (2006) recovered hybrids between sorghum and S. 

macrospermum, S. nitidum, and S. angustum but only the hybrids with S. macrospermum 

survived to maturity. 
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Sorghum macrospermum (2n = 40) is the only member of the Chaetosorghum 

section and it is native to the Katherine area in the Northern Territory of Australia 

(Lazarides et al., 1991).  While this species does not possess any obvious phenotypic 

agronomically desirable traits, it does have significant pest resistance characteristics.  It 

is either a non-host or has ovipositional non-preference to sorghum midge (Stenodiplosis 

sorghicola Coquillett) (Franzmann and Hardy, 1996; Sharma and Franzmann, 2001).  It 

is not susceptible to sorghum downy mildew (Peronosclerospora sorghi Weston and 

Uppal (Shaw)) (Kamala et al., 2002) and has high tolerance to shoot fly (Atherigona 

soccata Rond.) (Sharma et al., 2005).  These beneficial traits, as well as the possibility 

that it holds other valuable unique genetic variation, make it attractive to use in an 

introgression breeding program.   

Until recently, the genomic relationship between S. macrospermum and S. 

bicolor was not known.  Several authors have described S. bicolor (2n = 4x = 20; 

AAB1B1) as an ancient tetraploid; its genomic formula was derived by analyzing meiosis 

in hybrids with S. halepense (2n = 8x = 40; AAAAB1B1B2B2) (Hadley, 1953; Celerier, 

1958; Tang and Liang, 1988).  Meiotic chromosome pairing behavior in interspecific 

hybrids between S. bicolor and S. macrospermum revealed that moderate levels of 

allosyndetic recombination occurred and the genomic formula AAB1B1YYZZ was 

proposed for S. macrospermum (2n = 8x = 40) (Kuhlman et al., in review).  Allosyndetic 

recombination was observed in subgenomes A and B1, but the frequency was 2.5 times 

higher in subgenome A.  The authors attempted to produce backcrosses using the 

interspecific hybrid as a male, but were not successful.     
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The tertiary gene pool species S. macrospermum is now available to plant 

breeders because hybrids can now be recovered by using specific S. bicolor germplasm 

(iap iap).  The sorghum and wild species genomes undergo moderate levels of 

allosyndetic recombination; therefore, recovering introgression in backcross progeny is 

likely (Kuhlman et al., in review).  The remaining obstacle to using this species in an 

introgression program is determining how to recover backcrosses.  The objectives of this 

research were to produce 2n = 20 introgression germplasm through backcrossing and to 

analyze introgression content in backcross progeny molecularly and cytologically.    

 

Materials and Methods 

Plant Material 

 Interspecific hybrids were produced by hand emasculating ‘NR481’, the S. 

bicolor parent, and pollinating it with the wild species S. macrospermum (AusTRC 

Accession no. 302367).  Female plants set approximately 25% hybrid seed, which had 

shrunken endosperm.  Approximately 60% of hybrid seed germinated on agar 

germination media and were transplanted into soil in small pots in a greenhouse during 

April, 2005 in College Station, TX.  They were transplanted as growth demanded up to a 

final pot size of 15 gallons.  Interspecific hybrids were tall (>4.5m) and photoperiod 

sensitive (initiating anthesis in September).  Backcrosses were made using pollen from 

both the recurrent parent NR481 and BTx623.   

Embryo rescue was necessary to recover backcrosses and was performed 15 to 

20 days after pollination.  Enlarged ovaries were removed from the florets and surface 
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sterilized in 30% bleach for 20 minutes.  The soft pericarp tissue was removed and the 

immature embryos were placed in sealed Petri dishes on culture medium containing 

Murashige-Skoog basal salts and vitamins (Murashige and Skoog, 1962) supplemented 

with 10mg L-1 glycine, 10mg L-1 L-arginine, 10mg L-1 L-tyrosine, 100mg L-1 inositol, 

and 50 g L-1 sucrose, solidified with 0.7% plant tissue culture grade agar (Sharma, 

1999).  The dishes were placed in a growth chamber with 16 h light/8 h dark at 24ºC.  

Germinated embryos with good root growth and 2-3 leaves were removed from the 

media and transplanted into a fine textured soil mixture in pots.  These were placed in a 

plastic tray with a clear dome lid inside the growth chamber with wet paper towels to 

ensure high humidity.  As the plants grew, they were hardened off and transferred to the 

greenhouse. 

    

Germplasm Evaluation 

Male gamete viability was estimated by collecting anthers from flowering plants 

and macerating them in a drop of 1% I2-KI stain on a glass slide.  Slides were analyzed 

under a light microscope, and the numbers of pollen grains were counted and classified 

as fully stained, greater than 50% stained, less than 50% stained, and unstained.  Plant 

height was measured in inches from the soil surface to the tip of the mature panicle.  

Some plants were also characterized for plant color, seed color, presence of awns, mid-

rib type, number of days to 50% anthesis, and seed set.  Field evaluation of selected 

BC2F1 progeny from family 101 was conducted in Weslaco, TX during the fall, 2006.  

Plants were self-pollinated and at harvest were evaluated for plant height and seed color.  
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Specific measure of seed set was not taken even though no plants were identified as 

sterile.  Evaluation of BC2F1 progeny from all three families was done in a greenhouse in 

the winter of 2006 in College Station, TX.    

 

Molecular Marker Evaluation 

 DNA was extracted from introgression backcross progeny and their parents using 

the FastDNA Spin Kits (MP Biomedicals, Solon, OH).  AFLP templates, using both 

EcoRI/MseI and PstI/MseI restriction enzyme combinations, were created using a 

modified procedure from Vos et al. (1995).  The AFLP template, preamplification, and 

selective amplification reactions of the EcoRI/MseI and PstI/MseI fragments were as 

described by Klein et al. (2000) and Menz et al. (2002), respectively.  Twenty Pst/Mse 

and 12 EcoRI/Mse AFLP primer combinations were used to amplify fragments in the 

DNA samples.  IRD-labeled SSR primers, obtained from LI-COR (LI-COR Inc, Lincoln, 

NE), were used in amplification reactions as previously described (Klein et al., 1998).  

Twenty-eight SSR primer combinations were run on the DNA samples, but only 11 

(39%) showed transferability by producing a band in the wild species.  Amplification 

products were analyzed on a LI-COR model 4200 dual-dye automated DNA sequencing 

system.  Electrophoresis conditions were as described by Klein et al. (2000).  Gels were 

scored manually; AFLP bands that were present in S. macrospermum and absent in the 

recurrent S. bicolor parents were scored as unique.  Unique bands that were also shared 

by the backcross progeny were scored as introgression bands.  The percent introgression 

was calculated by dividing the number of introgression bands a particular backcross 
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produced by the total number of unique S. macrospermum bands.  This number is an 

estimate of the amount of the S. macrospermum genome that is present in the backcross 

progeny.  Since backcrosses were produced using the female interspecific hybrid 

gamete, there is no question as to their authenticity as true backcrosses.  Thus, 

introgression bands can be interpreted as actually representing transfer of S. 

macrospermum DNA into the progeny.       

          

Cytogenetic Evaluation 

 Somatic chromosome spreads were prepared from root tips using a modified 

procedure from Andras et al. (1999).  Root tips were harvested into a saturated aqueous 

solution of α-bromonapthalene for 1.75 h at room temperature in the dark.  Pretreated 

root tips were fixed in 95% ethanol/glacial acetic acid (4:1 v/v) for 24 h and stored in 

70% ethanol.  Root tips were graded based on size standards of 0.0 – 1.0 mm.  The 

terminal 1mm of several same sized root tips were dissected into a 0.5ml epitube, rinsed 

in water several times, hydrolyzed for 10 min in 0.2M HCl, and rinsed 10 min in distilled 

water.  Cell walls were digested by adding 100ul of an aqueous solution of 3% cellulase 

(Onozika R-10, Yakult Honsha Co. Ltd., Tokyo) and 1% pectolyase Y-23 (Seishin 

Corp., Tokyo) at pH 4.5 for 1-2 h at 37ºC.  Digestion times were based on empirically 

determined values for a particular size standard.  Digestion was stopped by adding 400ul 

distilled water and centrifuging the cell suspension at 2500rpm (~400G) for 10 min.  

Using a drawn glass pipette, the supernatant was removed being careful not to disturb 

the pellet of cells.  The cells were washed with water and centrifuged as at 2500rpm for 
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10 min., twice.  After removal of the final wash water, 400ul of methanol/glacial acetic 

acid (4:1 v/v) was used to wash the cells followed by centrifugation at 2500rpm for 10 

min., twice.  After the final wash, all but ~50ul of the fixative was removed.  The cells 

were resuspended in the remaining fixative, 2-8ul drops were placed on clean glass 

slides suspended over wet filter paper and allowed to dry.  For chromosome counts, 

slides were stained with Azure Blue, made permanent with Permount, and analyzed with 

a Zeiss Universal II microscope (Carl Zeiss Inc., Gottingen, Germany).  A minimum of 

four quality spreads of highly condensed chromosomes was used to determine the 

somatic chromosome number of individual plants.      

           Fluorescent and Genomic in situ hybridization (FISH and GISH) were used to 

visualize introgression in backcross progeny.  Plasmid CEN38 was used as a FISH probe 

to visually differentiate S. bicolor subgenomes A and B1 (Gomez et al., 1998; Zwick et 

al., 2000).  Genomic S. macrospermum and S. bicolor DNA were used as GISH probes 

to detect introgression DNA in the backcrosses and to determine whether the 

chromosomes were recombinant.  Detection of probes followed a modified protocol of 

Jewell and Islam-Faridi (1994), as described by Hanson et al. (1995) and Kim et al. 

(2002).  Purified probe DNA was nick-translated with digoxigenin-11-dUTP or biotin-

16-dUTP (Roche Diagnostics, Indianapolis, IN).  Slides with somatic chromosome 

spreads were prepared as described above.  Chromosomes on glass slides were denatured 

in 70% formamide in 2X SSC for 1.5 min at 70ºC, then dehydrated in 70 (-20ºC), 85 

(RT), 95 (RT), and 100% (RT) ethanol, for 2 min each.  The hybridization mixture (25ul 

per slide) contained 50ng labeled probe DNA, 50% formamide, and 10% dextran sulfate 
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in 2XSSC.  The hybridization mixture was denatured for 10 min at 95ºC and chilled on 

ice.  It was then added to the slide, sealed with rubber cement around a glass coverslip, 

and incubated overnight at 37ºC.  Following incubation, the slides were washed at 40ºC 

in 2XSSC and room temperature in 4XSSC plus 0.2% Tween-20, for 5 min each.  Slides 

were blocked with 5% (w/v) BSA in 4XSSC plus 0.2% Tween-20 at room temperature.  

The digoxigenin and biotin-labeled probes were detected with CY3™-conjugated anti-

digoxigenin anti-body and fluorescein isothiocyanate (FITC)-conjugated streptavidin, 

respectively.  Slides were washed in 37ºC 4XSSC plus 0.2% Tween-20.  Chromosomes 

were counterstained with 25ul DAPI with Vectashield® (Vector Laboratories, 

Burlingame, CA).  Slides were viewed through an Olympus AX-70 epifluorescence 

microscope and images captured with a Macprobe® v4.2.3 imaging system (Applied 

Imaging Corp., Santa Clara, CA).    

 

Results and Discussion 

Breeding Methodology, Cytology, and Germplasm Phenotypic Evaluation 

 Twenty interspecific hybrids were produced and their identity was confirmed by 

morphology and chromosome number (2n = 30).  At maturity, the hybrids flowered but 

the anthers were non-dehiscent.  Normal I2-KI staining pollen grains were rare and F2 

seed did not develop on 15 selfed panicles (approximately 3,000 florets).  Previous 

attempts to recover backcross progeny using the male hybrid gamete were difficult and 

inconclusive (Kuhlman et al., in review).  Interspecific hybrid panicles were pollinated 

with S. bicolor pollen, mostly from NR481 but a few also with BTx623.  Backcross seed 
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development was rare; a single seed with well developed endosperm was observed but it 

was not viable.  Thus, embryo rescue was used to recover backcross progeny.  In total, 

7009 florets were pollinated and dissected revealing 86 (1.2%) had embryo development 

of which 15 (0.2%) survived into adult BC1F1 plants (Figure 2).   

All BC1F1s had awns and red plant color but varied in their height and vigor.  

BC1F1 108 was very short, extremely weak, and died shortly after producing a single 

panicle, while most of the BC1F1s showed moderately strong growth, produced multiple 

tillers, and were tall – some growing up to 5 meters at maturity (Table 4).  BC1F1 plants 

had low male fertility with non-dehiscent anthers and non-viable pollen.   

BC1F1 plants were backcrossed using NR481 pollen and embryo rescue was not 

needed as three BC1F1 plants (101, 102, and 107) set viable backcross seed (Table 4).  

Two other plants, 105 and 115, produced a single backcross seed that was not viable 

(Table 4). 

BC1F1 101 was morphologically distinct from the others; it had wider leaves, 

larger florets, and features reminiscent of BTx623.  It was rescued from a panicle that 

had been pollinated with a mixture of NR481 and BTx623 pollen.  DNA was extracted 

from leaf tissue and SSR markers used to determine the parentage of the three seed 

producing BC1F1 plants.  Multiple SSR and AFLP markers confirmed that BC1F1 101 

arose from fertilization by BTx623 of the interspecific hybrid, instead of NR481.  

Evidence indicated that BC1F1 102 and 107 resulted from fertilization by the recurrent 

parent, NR481.  Both BC1F1s produced solely with the recurrent parent had significantly 

less backcross seed set than did the BC1F1 with a mixed pedigree (Table 4).  The  
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Figure 2. Interspecific BC1F1 generation with pedigree: (S. bicolor x S. macrospermum) 
x S. bicolor.  (A) Vigorous growth of adult BC1F1 101 with (B) large panicle at maturity.  
(C) Somatic chromosome spread of BC1F1 106 with 2n = 38 chromosomes. 
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Table 4. Chromosome number and phenotypic data of BC1F1 individuals ((S. bicolor x S. 
macrospermum) x S. bicolor) recovered using embryo rescue   

BC1F1 (2n)   Ht† Pl Sd Aw Total Seed Seed Set (%) 
101 37   244 R R Y 126 2.99A

102 36   305 R R Y 28 1.65B

103 70   244 R - Y 0 0 
104 60   198 R - Y 0 0 
105 39   457 R R Y 1 0.06 
106 38   305 R - Y 0 0 
107 38   366 R R Y 36 1.94B

108    61 R - Y 0 0 
109 38   366 R - Y 0 0 
110 39   366 R - Y 0 0 
111    183 R - Y 0 0 
112 36   305 R - Y 0 0 
113 38   274 R - Y 0 0 
114 35   198 R - Y 0 0 
115    183 R R Y 1 0.36 

†Ht, Pl, Sd, Aw are height (cm), plant color, seed color, and awns respectively.  Seed set 
is after pollination by S. bicolor.  
Seed set percentages followed by different letters are significantly different (p<.05) 
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increased seed set in BC1F1 101 may be due to increased heterozygosity resulting from 

its mixed pedigree. 

Chromosome numbers of the BC1F1 plants ranged from 35 to 70 (Table 4; Figure 

2).  Such high chromosome numbers resulted from irregular meiosis in the interspecific 

hybrid (Kuhlman et al., in review).  BC1F1 plants with chromosome numbers between 35 

and 39 likely resulted from the transmission of 25-29 chromosomes through the female 

gamete and 10 chromosomes through the S. bicolor gamete.  Transmission of 25-29 

chromosomes from plants with 2n = 30 is best explained by the formation of a restitution 

nucleus composed of the univalents during meiosis.  Under this hypothesis, some 

chromosomes would pair at meiosis, and those undergoing recombination would form 

bivalents at metaphase I and subsequently separate and move to the spindle poles.  The 

remaining chromosomes would form univalents, some of which might distribute 

themselves to the poles via spindle attachment, while others would remain at the 

metaphase I plate and other intermediate positions.  In cells with a pole-to-pole 

distribution of univalents, a restitution nucleus would sometimes form between the two 

poles, and the product would contain all or most chromosomes.  Meiosis II typically 

conserves chromosome numbers of meiosis I products, so variable chromosome numbers 

among restitution and partial-restitution products from meiosis I would translate to 

megagametophytes with various chromosome numbers.  Restitution nuclei have been 

implicated in transmission of univalents in multiple species (Singh, 2003).  The two 

plants with 2n = 60 and 70 chromosomes may have been produced due to meiotic 

irregularities (Singh, 2003) resulting in tetraploid (2n = 60) female gametes.  
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Parthenogenesis of such a “4n” egg would result in 2n = 60 progeny or fertilization of 

such an egg would result in 2n = 70 progeny.  BC1F1 104 (2n = 12x = 60), is 

hypothesized to be a naturally produced allododecaploid.  It displayed slow growth and 

very stiff leaves, but unfortunately it did not show any fertility and backcrosses were not 

recovered.                  

Three BC2F1 families consisting of 45 seed from the three partially fertile BC1F1s 

(101, 102, 107) were planted and evaluated.  Pollen samples were taken from plants of 

each family and scored for pollen stainability.  All three BC2 families had significantly 

lower mean pollen stainability than NR481.  Family 101 had higher pollen stainability 

than 102 and 107, which were not different (Table 5).  BC2F1 families 102 and 107 

displayed significantly lower seed set (1.3% and 1.4%) than family 101 and NR481 

(87% and 94%), which were not different (Table 5).  The vastly lower seed set from 

families 102 and 107 made obtaining selfed seed difficult and limited the evaluation of 

the BC2F2 generation.  Lower pollen stainability and high sterility for two BC2 families 

may be a manifestation of S. macrospermum introgression.  These two families have 

only NR481 in their pedigree and are different from the recurrent parent; thus, 

introgression is a likely candidate to cause the altered phenotype.  Another explanation 

could be that genetic or epigenetic DNA changes in the recurrent parent genome which 

resulted from interspecific hybridization, are responsible for the sterility and not 

introgressed DNA from S. macrospermum.  Separating these hypotheses is impossible 

with the present data, regardless the phenotypic change resulted from the interspecific 

hybridization. 

 



 

Table 5. Phenotypic data and S. macrospermum introgression estimates of BC2F1 individuals ((S. bicolor x S. macrospermum) x S. bicolor) and the recurrent parent.  Phenotypic data for BC2F2 
progeny are given for some individuals 

  Individual BC2F1 Plant Data  BC2F2 Progeny Data 
BC1 

Family BC2F1 2n Dy† Pl Sd Aw Ht Mr % INT‡ % PS % SS  Ht§ Aw Sd Mean % SS¶ 

101            201 20 62 R R Y 102 D 0.38 62.6 95.0 S - R -
         
        
                 
         
                 
         
                 
                 
                 
          
         
          
          
          
                 
         
                 
         
          
          
          
          
                 
                 

                

202 20 57 R R N 193 J 0.00 - 95.0  SEG - R -
203 20 55 R R N 183 D 0.57 63.0 73.0  SEG - SEG -
204 - 55 R R Y 180 D 0.00 70.4 95.0 SEG - SEG -
205 - - R R N 196 D 0.19 72.7 80.0 T - R -
206 20 - R R N 168 D 1.72 40.4 56.0 T - R -
207 20 56 R R N 175 D 0.00 55.8 95.0 T - SEG -
208 - 55 R R N 157 D 0.00 - 95.0 SEG - SEG -
209 20 - R R Y 168 D 18.56 - 72.0 T - SEG -
210 - 56 R R N 124 D 0.19 - 95.0 SEG - SEG -
211 20 58 R R Y 180 D 0.19 - 95.0 T - SEG -
212 20 43 R R N 160 J 0.19 56.8 95.0 
213 20 41 R R N 224 D 0.00 - 88.0 
214 20 41 R R Y 206 D 0.00 - 95.0 
215 20 39 R R Y 201 D 0.00 - 75.0 
216 - 48 R R N 211 D 0.39 - 95.0
217 - 40 R W N 165 D 0.00 - 95.0  SEG SEG W 57
218 - 43 R R N 163 D 0.00 57.1 84.0
219 - 41 R W Y 224 D 0.00 - 95.0  SEG Y W 52
220 20 39 R W Y 198 D 0.00 - 82.0 T Y W 63
221 20 39 R R Y 193 D 0.19 - 95.0 
222 21 40 R R N 206 D 3.66 - 85.0 
223 20 40 R R N 135 D 0.19 - 95.0 
224 - 41 R R N 241 D 0.19 - 78.0
225 - 45 R R N 249 D 0.19 49.4 82.0

 Mean 47 R 183 1.07 58.7 87.4 >50
                 

                 
         

102 226 - 41 R R Y 234 D 1.14 - 0.1 T Y - 0
227 - 44 R - Y 188 D 1.17 17.9 0.0 58
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Table 5 Continued

Individual BC2F1 Plant Data  BC2F2 Progeny Data 
BC1 

Family BC2F1 2n Dy† Pl Sd Aw Ht Mr % INT‡ % PS % SS  Ht§ Aw Sd Mean % SS¶ 

         228 20 41 R R Y 201 D 1.14 15.2 2.1 T Y - 0
                 
                 
                 
                 
                 
                 
         
                 

                

229 - 43 R R N 178 D 0.57 - 0.6 T Y - 0
230 - 45 R R Y 224 D 0.38 - 0.1 T Y - 0
231 - 43 R R Y 229 D 0.95 51.5 1.5 T Y - 0
232 - 42 R R N 226 D 0.76 11.5 4.5 T Y - 0
233 - 42 R R N 173 D 0.76 4.0 0.1
234 - 44 R R Y 211 D 1.14 22.1 3.0 T Y - 0
235 20 45 R R Y 224 D 0.97 10.0 1.3 T Y - 0
247 - 43 R R N 170 D 0.76 - 1.0 T Y - 0

 Mean 43 R R 206 D 0.88 18.9 1.3 0
                 

                 
                 
                 
                 
                 
          
                 
          

                

107 237 - 44 R R Y 221 D 0.38 - 0.1 T Y - 0
238 - 44 R R N 203 D 1.16 41.6 5.5 T SEG - 0
239 - 43 R R Y 170 D 0.76 13.4 1.3 T Y - 0
240 - 43 R R N 203 D 0.58 35.1 3.4 T SEG - 0
241 - 46 R R N 218 D 0.95 - 0.3 T SEG - 0
242 20 45 R - N 216 D 0.76 - 0.0 
243 - 44 R R Y 196 D 0.77 8.6 0.5 T Y - 0
244 20 43 R R N 216 D 0.57 0.0 0.1 T Y - 0

 Mean 44 R R 191 D 0.74 19.7 1.4
                 

                NR481 Mean 20 57 R R Y 206 D 0.00 88.3 94.2
                 

               LSD(.05) 6.1 36.6 2.68 15.8 8.4   
              ANOVA# ** NS NS ** **   

† Dy, Pl, Sd, Aw, Ht, Mr, PS, SS are days to flowering, plant color, seed color, awns, height (cm), midrib, pollen stainability, and seed set respectively 
‡ % INT is introgression, the percent of the S. macrospermum genome detected via AFLP markers in the respective plant  
§ HT in the BC2F2 generation potentially segregated for dwarfing genes, S is short, T is tall, and SEG is segregating  
¶ Seed set was not measured for BC2F2 progeny from plants 201-211 as these were field evaluated in Weslaco, TX, however seed was harvested from each plant and no sterile plants were 
found.  All other BC2F2 evaluation was carried out in the greenhouse.   
# Analysis of variance between mean values for families and check, not individuals 
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Chromosome numbers for plants within family 101 were 2n = 20 for 14 of the 15 

plants analyzed and one plant had 21 chromosomes.  Two plants each from families 102 

and 107 also had 2n = 20 chromosomes (Table 5).  BC2F1 progeny (2n = 20) were 

produced without embryo rescue from parents that had 36, 37, and 38 chromosomes.  

Whereas the restitution nucleus conferred survivability to the rescued BC1F1 embryos, it 

appears that it was selected against when embryos were not rescued and seeds were 

produced.  Of those surveyed, 95% of BC2F1 plants had 20 chromosomes.            

All BC2 individuals were tall, had red plant and seed color, and a dry midrib 

similar to the recurrent S. bicolor parent (NR481), except the BC2s in family 101 in 

which three individuals had white seed color, two individuals had juicy midribs, and one 

was short (102cm) (Table 5).  These traits are recessively inherited and should not be 

expressed in a population of BC2F1 individuals whose pollen parent (NR481) is tall, red 

seeded, has a dry midrib, and has not segregated for these traits.  Pollen contamination 

from a different genotype was impossible because other genotypes were not grown in the 

greenhouse during that time.  These phenotypic classes are shared by BTx623, which as 

discussed earlier was the pollen parent of this specific BC1F1; therefore, self-pollination 

could explain the recessive phenotypes.  Alternatively, it is possible that S. 

macrospermum introgression is causing the unexpected phenotypes.  The wild species 

has red seed color, dry midrib, and tall plant height, but genetic control of these traits is 

not necessarily the same between the species.  Sorghum macrospermum introgression 

acting in a dominant manner could explain the phenotypes in the BC2F1s, but the traits 

would be expected to segregate in selfed progeny, which did not occur (Table 5).  If, 
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however, some backcross progeny actually resulted from self pollination (BC1F2), then it 

is possible that homozygous introgression is causing the phenotypes.  Unfortunately, 

with the available data this possibility cannot be separated from normal segregation of 

BTx623 alleles that could also cause the phenotypes in selfed progeny.  It had been 

noted that their female parent, BC1F1 101, occasionally set seed on panicles that had not 

been directly pollinated with NR481 pollen.  It was initially thought that these resulted 

from open pollination from adjacent NR481 plants, but given the phenotypes, this is not 

possible.  Further complicating the matter, fertile pollen was never observed for any 

BC1F1 plants which makes self-pollination unlikely.  Thus, it is unknown whether these 

“BC1F2” individuals were produced from self-pollination or were the result of some 

form of asexual reproduction.  Asexual reproduction could operate in the absence of 

functional sexual reproduction.  Schertz and Stephens (1965) observed that diploid and 

triploid plants were produced 14 days after hot-water emasculation from non-pollinated 

panicles.  They concluded that in the absence of pollination there is an occasional 

doubling of an egg cell that parthenogenically resulted in diploid seeds, in effect natural 

doubled haploids.  If “BC1F2” plants were in fact naturally produced doubled haploids, 

they would be expected to be 100% homozygous.  Segregation was observed in selfed 

progeny of 9 of 13 analyzed BC2F1 individuals (Table 5), making this possibility highly 

unlikely.   

Diploid gametes (n = 20) could alternatively be produced via failed cytokinesis 

of the dyads during the second stage of meiosis (Singh, 2003).  As an example, a PMC 

possessing 36 chromosomes with 10 II and 16 I at metaphase I could produce two dyad 
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cells with 10 and 26 chromosomes, assuming the univalents segregated as a restitution 

nucleus.  If cytokinesis failed during meiosis II, the sister chromatids would separate, 

and following megagametogenesis form an egg cell with 20 chromosomes.  If this cell 

developed into an embryo parthenogenically, it would not necessarily be 100% 

homozygous since the chromosomes underwent recombination during meiosis I resulting 

in the sister chromatids being genetically different.  This 2n = 20 progeny plant could 

not be differentiated from a selfed plant, and since fertile pollen was very rarely 

observed, this forms the best hypothesis for reproduction matching the present data.  

This hypothesis indicates that BC2F1 progeny produced from BC1F1 101 are a mix of 

possible pedigrees: backcross derived BC2F1s; possibly selfed BC1F2s; and very likely 

parthenogenic diploid progeny.  As separation of all individuals into these classes is not 

possible, this generation will still be referred to as BC2F1.          

BC2F2 progeny were evaluated for visual expressions of introgression in both the 

field and greenhouse.  Overall, BC2F2 progeny deriving from family 101 had adequate 

seed set and segregated for traits polymorphic between BTx623 and NR481, such as 

seed color and plant height.  This significant variability in the population made 

identifying phenotypic evidence of introgression virtually impossible.  No conclusive 

phenotypic signs of introgression were evident in this family.  BC2F2 plants in families 

102 and 107 showed one obvious sign of introgression: male-sterility.  Female fertility 

was unaffected as backcross seed set was normal.  Partial male sterility in the BC2F1 

plants in these families was hypothesized to be caused by S. macrospermum 

introgression acting in a dominant manner, and the plants were presumed to be 
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heterozygous for any introgression.  BC2F2 plants were expected to segregate for male-

sterility, but lack of segregation suggests that the BC2F1 plants were homozygous for 

such introgression (Table 5).  Again, this is not possible if the plants were actually the 

result of backcrossing.  But, as seen in family 101, some form of reproduction, likely 

asexual, is occurring other than backcrossing.  Selfing again seems unlikely since 

stainable pollen was rarely seen, but F2 progeny from 3 of the 16 BC2F1s segregated for 

awns indicating they were not 100% homozygous.  These progeny could not be naturally 

produced doubled haploids, but very well could have been produced parthenogenically 

as explained for family 101 above.  Given their apparent homozygosity for introgression, 

all BC2F1 plants in families 102 and 107 were likely produced exclusively asexually.         

     

Molecular Marker Analysis of Introgression     

The amount of the S. macrospermum genome that was introgressed into the BC2 

generation was evaluated using AFLP markers.  In total, 32 primer combinations 

produced 528 AFLP markers unique to S. macrospermum.  The total amount of the S.  

 



 64

macrospermum genome detected in the BC2F1 generation was 26% (138 of 528 unique 

S. macrospermum markers).  Most introgression bands (82%) were found in single 

individuals, while 5% were shared by between 6 and 14 BC2F1s.  Each family possessed  

three types of introgression: unique to that family; shared between two families; and 

shared by all three families (Figure 3).  Estimates for introgression on an individual basis 

ranged widely from 0-18.6% (Table 5), although the amount of introgression did not 

significantly differ on a family mean basis (0.75% - 1.07%).   

Eleven of the BC2F1s from family 101 (44%) did not have detectable levels of 

introgression, while two had the highest levels (3.7% and 18.6%).  The total amount of 

introgression detected within family 101 was high (22.9%), although most derived from 

the two outstanding individuals.  Introgression was detected in all BC2F1 individuals 

within families 102 and 107, but the range was narrow, from 0.38%-1.17% (Table 5).  

The total amount of introgression detected in families 102 and 107 were 3.4% and 1.5%, 

respectively.  A majority of the introgression markers detected in families 102 and 107  
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Figure 3. Graph depicting S. macrospermum introgression, as detected using AFLP 
markers, of BC2F1 individuals summed by family.  Stacked bars represent introgression 
that is unique to a family, shared by two families, or common to all three families.    
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(9/16 and 7/8, respectively) were present in multiple (4 to 6) individuals within the 

family, indicating that common introgression sequences were inherited.  Thus, 

inheritance of introgression in these two families does not appear to be random.  This 

data in combination with the phenotypic male-sterility that is expressed by all 

individuals in these two families indicates there was selection of gametes carrying a 

common block of introgression.  In contrast, almost half of individuals within family 101 

had no detectable introgression and few markers were present in multiple family 

members (4/117, excluding individuals 206, 209, and 222).  Common introgression was 

found between the three excluded individuals, but overall introgression in the family 

appeared random.      

The two individuals that were distinctly different from the rest were BC2F1s 209 

and 222, both of which were from family 101 and had 18.6% and 3.7% of the S. 

macrospermum genome detected within their DNA.  Selected SSR markers were run on 

these DNA samples to confirm introgression.  Two different SSRs confirmed 

independent introgression of S. macrospermum DNA in these plants.  Txp482 confirmed 

introgression in BC2F1 209 but was absent in BC2F1 222, while the opposite 

confirmation occurred with Txp523.  Txp482 and Txp523 are located on SBI-01 of the 

genetic map by Menz et al. (2002) at approximately 31cM and 28cM, respectively 

(http://sorgblast3.tamu.edu).  SSR markers surrounding these two locations showed that 

introgression had not occurred in both plants.  This indicates that if the introgressed SSR 

sequences are on SBI-01, they are part of a small introgression segment.  Alternatively, 

the S. macrospermum SSR sequence may not have been homoeologous to SBI-01, and 
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thus be on another S. bicolor chromosome, or it was not introgressed into the S. bicolor 

genome at all and be located on a whole S. macrospermum addition chromosome.   

 

Molecular Cytogenetic Analysis                     

  GISH was used on somatic chromosome spreads to visualize S. macrospermum 

introgression.  Recombinant chromosomes were found in both the BC1 and BC2 

generations.  BC1F1 109 (2n = 38) is clearly composed of 20 S. bicolor chromosomes 

and 18 S. macrospermum chromosomes and shows a single chromosome with evidence 

of recombination.  The unique morphology of the recombinant chromosome, the only 

chromosome to contain a satellite region (Kim et al., 2005b), identifies the introgression 

to be on the short arm of SBI-01.  This BC1 was not fertile, but it does show recombinant 

chromosomes present in the BC1 generation.   

Multiple types of S. macrospermum introgression were found in the BC2 

generation.  BC2F1 209 (18.6% introgression) (2n = 20) visibly shows two S. 

macrospermum chromosomes and 18 S. bicolor chromosomes in its genome (Figure 4, 

A).  Visualization of the S. bicolor genome reveals that the S. macrospermum 

chromosomes are non recombinant (Figure 4, B).  The S. bicolor chromosomes, 

evidenced by the CEN38 probe, are 10 from the A subgenome and 8 from the B1 

subgenome.  This plant is an alien substitution line; two B1 S. bicolor chromosomes have 

been replaced with two S. macrospermum chromosomes.  The introgression detected by 

molecular markers, including Txp482, is primarily located on two S. macrospermum 

alien substitution chromosomes.  The cytogenetic evidence cannot disprove the existence  
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Figure 4. Genomic in situ hybridization of somatic chromosome spreads from introgression 
BC2F1 generation.  (A, C, E) Chromosomes hybridized with S. macrospermum GISH probe (red) 
and stained with DAPI (blue). (B, D, F) Chromosomes hybridized with S. bicolor GISH probe 
(green).  (A) BC2F1 209 (2n = 20) showing two chromosomes with significant S. macrospermum 
hybridization (red), (B) lack of S. bicolor hybridization (circles) indicates they are non 
recombinant whole S. macrospermum chromosomes.  (C) BC2F1 222 (2n = 21) showing one 
chromosome with significant S. macrospermum hybridization (red), (D) lack of S. bicolor 
hybridization (circle) indicates it is a non recombinant whole S. macrospermum chromosome.  
(E) BC2F1 244 (2n = 20) showing two chromosomes with S. macrospermum hybridization sites 
(arrows) which also show (F) S. bicolor hybridization (circles) indicating these are recombinant 
chromosomes with S. macrospermum introgression.  
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of small introgression blocks within the S. bicolor genome.  This type of introgression 

has been used extensively in wheat breeding where alien substitution is well tolerated by 

the genome (Jiang et al., 1994; Jones et al., 1995; Jauhar and Chibbar, 1999).  Seed set 

was slightly lower than the check but still reasonably high (72%).  Morphologically this 

plant appeared to be in the range of that for segregation between BTx623 and NR481; 

therefore, no phenotypic trait can presently be assigned to the alien chromosomes, 

although analysis of progeny likely will.  It is surprising that the plant tolerates this level 

of alien substitution as S. bicolor trisomic lines have been recovered (Schertz, 1966) but 

monosomic lines have not, presumably due to their lethality.  This indicates that 

homoeologous chromosomes from the S. macrospermum genome sufficiently 

compensate for the missing S. bicolor chromosomes which results in relatively normal 

plant function.               

GISH using S. macrospermum DNA as probe revealed that BC2F1 222 (3.7% 

introgression) (2n = 21) had one whole S. macrospermum chromosome along with 20 S. 

bicolor chromosomes (Figure 4, C).  GISH using S. bicolor as probe showed that the S. 

macrospermum chromosome is non recombinant (Figure 4, D).  This plant is an alien 

addition line containing a single S. macrospermum chromosome along with the full S. 

bicolor genome.  The introgression in this plant as detected using molecular markers is 

most likely all located on a single S. macrospermum alien addition chromosome; 

however, the presence of small introgression blocks cannot be disproven.  Txp523, 

which detected introgression in this plant, most likely is homoeologous to a sequence on 

the S. macrospermum chromosome.  This plant displays no deleterious effects of the 

 



 70

introgression in that seed set was high (85%) and the plant was vigorous.  One potential 

phenotype influenced by introgression was the presence of normal and shriveled 

endosperm seeds produced by selfing.  The approximate ratio of normal to shriveled 

seed was not different from a 3:1 ratio (X2 = 1.12ns).  This would be consistent with 

reduced seed size for progeny inheriting two copies of the alien chromosome.  This 

presumes, however, that normal segregation of an alien chromosome occurs through 

both gametes.  The fitness of gametes carrying an extra chromosome is normally 

reduced; thus, the transmission rate of an alien chromosome would likely also be low.  It 

is possible that this phenotype is controlled by the transmission of an alien chromosome, 

but this hypothesis needs cytological verification.   

SSR markers Txp482 and Txp523 were detected in BC2F1s 209 and 222, 

respectively, but neither marker was present in both plants.  This indicates that the alien 

addition chromosome in 222 is different from both substitution chromosomes in 209.  

AFLP data is consistent with this hypothesis because only three introgression markers 

are shared out of 98 present in BC2F1 209 and 19 present in 222.  Both SSR markers map 

to chromosome 1 in the S. bicolor genome, which may indicate that the two detected S. 

macrospermum chromosomes are both homoeologous to SBI-01, perhaps the related 

chromosomes from subgenomes Am and B1m (Kuhlman et al., in review).  The 

introgression estimate for 209 is much higher than 222.  Introgression estimates were 

based on AFLP markers which are mostly dominant; therefore, being homozygous for an 

introgression marker does not increase the introgression estimate.  Thus, it would be 

unlikely for BC2F1 209 to contain two homologous S. macrospermum substitution 
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chromosomes and still have a five fold increase in estimated introgression.  Neither S. 

bicolor nor S. macrospermum karyotypes show that broad of range for chromosome size; 

therefore, inheritance of larger homologous chromosomes does not explain the increased 

introgression (Wu, 1990; Kim et al., 2005a).  BC2F1 209 most likely contains two 

different S. macrospermum substitution chromosomes, both of which are different from 

the addition chromosome in BC2F1 222. 

GISH using S. macrospermum DNA as probe revealed BC2F1s 228 and 244 (2n = 

20, 20; 1.1% and 0.57% introgression, respectively) both contain two chromosomes with 

S. macrospermum introgression.  The introgression chromosomes also show 

hybridization with the S. bicolor probe (Fig. 3, F) and strong hybridization with CEN38; 

therefore, they are members of the A subgenome.  Using morphology to identify somatic 

chromosomes, the introgression sites appear to be located on SBI-01 homologous 

chromosomes.  These two plants are examples of introgression backcrosses, and they 

contain S. macrospermum DNA introgressed into the S. bicolor genome.  These two 

plants show phenotypic evidence of introgression like all members of their respective 

families (102 and 107).  Individuals 228 and 244 had low selfed seed set (2.1% and 

0.1%, respectively) and all their BC2F2 progeny were completely male-sterile.  

Backcross seed set was normal.  This strongly supports the hypothesis that these plants, 

and possibly all plants in these families, are homozygous for the introgression that they 

contain.  

Sixty-six percent of the AFLP introgression bands in BC2F1 244 are common to 

BC2F1 228.  In fact, 17 of 19 BC2F1 plants from families 102 and 107 share some 
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common introgression with BC2F1 244.  A portion of the introgression block present in 

BC2F1 244 seems to have been preferentially transmitted to most progeny deriving from 

BC1F1s 102 and 107.  None of the 25 BC2F1 progeny from BC1F1 101 share any of the 

introgression block found in BC2F1 244.  This molecular evidence along with the 

suggestion that both 228 and 244 have introgression blocks on homologous SBI-01 

chromosomes strongly supports the hypothesis that inheritance of this introgression 

block was not random.  It appears that strong selection was operating to transmit 

portions of this introgression block to apparently all BC2F1 progeny in these two 

families.  

 BC2F1 206 (2n = 20; 1.72% introgression) contains common introgression with 

BC2F1 209.  Seven of its 9 introgression AFLP markers are also detected in BC2F1 209.  

Although not analyzed with GISH, this individual likely contains a recombinant 

introgression block homologous to a portion of one of the alien substitution 

chromosomes present in 209. 

 

Summary 

 Introgression breeding utilizing the tertiary gene pool species S. macrospermum 

has resulted in the recovery of 2n = 20 chromosome backcrosses that contain wild 

species introgression.  BC1F1s were successfully recovered using the female hybrid 

gamete in combination with embryo rescue.  Chromosome numbers were high and 

sterility was a problem; however, viable BC2F1 seed was set from backcrossing on 20% 

of the BC1 plants.  It is unclear what proportion of the BC2F1 individuals were produced 
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through sexual backcrossing versus parthenogenesis of 20 chromosome egg cells, but 

both likely occurred.   

 Molecular markers verified that BC2F1 individuals contained S. macrospermum 

introgression and measurements were between 0 and 18.6%.  Molecular cytogenetic 

techniques, FISH and GISH, revealed that the introgression in the BC2F1 plants was of 

three types: alien substitution; alien addition; and alien introgression lines.  Male-

sterility was the only obvious phenotypic trait observed that is likely caused by the 

introgression DNA.   

 Family differences were apparent in this germplasm.  BC1F1 101 and its BC2 

progeny showed the highest levels of fertility compared with families 102 and 107.  

BC2s from this family were the only examples of alien substitution and addition lines 

observed.  It is unknown whether the mixed pedigree of BC1F1 101 is the cause of the 

increased fertility but it is reasonable to hypothesize.  The family may have possessed a 

mix of alleles that facilitated recovery of alien addition and substitution lines as well as 

buffered the deleterious effects of recovered introgression.  Such a hypothesis would 

suggest that using a complex highly heterozygous population in introgression breeding 

may maximize the amount of recovered introgression as well as reduce the associated 

fertility problems.         

   The germplasm produced from this investigation opens up a vast number of 

potential future research projects not limited to the following suggestions.  Characterize 

the phenotypic effect of the alien substitution and addition chromosomes in various 

genetic backgrounds.  In crosses with S. bicolor trisomic or monosomic lines, attempt to 
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induce homoeologous recombination with the alien addition and substitution 

chromosomes.  Analyze BC3F1 and BC3F2 progeny of alien introgression lines from 

families 102 and 107 to determine if the sterility was caused by homozygous 

introgression blocks.  Make field selections of short agronomically acceptable BC2F2 

progeny from family 101 and characterize for phenotypic effects.   

The true value of using S. macrospermum in an introgression breeding program 

will be known only if valuable introgression is characterized.  One severe limitation of 

this research was that the S. bicolor recurrent parent used, acc. NR481, is very poor 

agronomically, and thus field evaluation of introgression is difficult.  If valuable 

introgression is found, it would need to be moved into a more acceptable agronomic 

background before being used in a breeding program.  One immediate need is for the iap 

iap genotype to be backcrossed into an elite germplasm line that can serve as the 

recurrent parent in future introgression projects.   

 The current research shows that the wild species S. macrospermum is now 

available to plant breeders and researchers for the improvement of cultivated sorghum.  

Using this research as a starting point, the true value of S. macrospermum genetic 

diversity can be determined.                           
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CHAPTER V 

 

EFFECTS AND GENETIC MAP POSITION OF THE IAP LOCUS 

 

Introduction 

 Sorghum is an important food and feed crop with worldwide grain production in 

2005 of 56,957,314 metric tons which ranks fifth among cereal grains (FAOSTAT data, 

2006).  The U.S. accounted for approximately 10,000,000 metric tons of that crop which 

was valued at $715,000,000 (USDA 2006).  Plant breeders continually make progress in 

improving the crop for traits like yield potential, disease and insect resistance, as well as 

abiotic stresses.  Their efforts are ultimately limited by the amount of genetic variation 

available to them for the desired trait.  Identifying valuable new sources of germplasm is 

a key component to supplying plant breeders with the genetic variation they need. 

Plant breeders have mainly used germplasm within the primary gene pool to 

improve the crop (Duncan et al., 1991).  There have been limited efforts to utilize the 

secondary gene pool, which includes S. halepense and S. propinquum (Wooten, 2001; 

Cox et al., 2002; Dweikat, 2005).  Until recently, hybridization between sorghum and 

the 19 wild species in the tertiary gene pool was impossible.  One reason for 

reproductive isolation was pollen-pistil incompatibilities between the species, wherein 

wild species pollen tube growth was inhibited in the S. bicolor stigma resulting in failure 

of fertilization of the gametes (Hodnett et al., 2005).  By utilizing germplasm 

homozygous for the iap allele (Laurie and Bennett, 1989), incompatibilities were 
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reduced thus allowing for the production of interspecific hybrids between sorghum and 

species in the tertiary gene pool (Price et al., 2006).     

The Iap gene was identified while attempting to produce sorghum x maize 

hybrids (Laurie and Bennett, 1989).  The authors discovered a single accession, NR481, 

which allowed maize pollen tubes to grow through the stigmas and style of sorghum into 

its ovary.  Based on Hogenboom’s (1973) theory of incongruity, the Iap gene likely 

controls a barrier mechanism operating in the pistil for which divergent species, like 

maize and wild sorghums, lack corresponding penetration genes.  The manifestation of 

the Iap barrier is inhibited pollen tube growth for pollen which does not contain 

penetration genes.  Thus, their pollen is unable to overcome the S. bicolor pistil barrier 

resulting in failed fertilization.  Sorghum bicolor does posses the corresponding 

penetration genes resulting in its pollen being completely functional on its pistils.  Under 

this hypothesis, the iap allele is a mutant nonfunctional allele which when homozygous 

results in the failed operation of the pistil barrier.  Pollen of wild species does not require 

corresponding penetration genes for normal pollen tube growth and successful 

fertilization.  This type of interspecific incompatibility is likely not related to the S-

RNase mediated self-incompatibility mechanisms operating in the Poaceae (Heslop-

Harrison, 1982), but it is more similar to the crossability genes found in wheat (Kr) and 

maize (Ga-S and TcB).  To study the gene function and sequence homology to other 

crossability genes, the genetic location of the Iap locus must first be determined.                 

Research on the introgression breeding potential of one tertiary species, S. 

macrospermum, has shown promising results.  Genetic recombination between the 
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parental genomes in a S. bicolor x S. macrospermum hybrid was observed, and 

subsequently 2n = 20 interspecific backcrosses revealed the presence of S. 

macrospermum introgression (Kuhlman et al., in review).  The availability of this wild 

species for sorghum improvement is no longer hypothetical, and efforts are progressing 

on determining the functionality of recovered introgression.  These rely on using S. 

bicolor germplasm homozygous for iap to recover the initial interspecific cross.  One 

limitation was the reliance on a single source of S. bicolor with the iap iap genotype.  

Results also indicated that using complex populations (iap iap) may increase recovered 

introgression by maximizing S. bicolor genetic factors which increase recoverability of 

introgression (Kuhlman et al., in review).  To efficiently move the iap allele into elite 

sorghum germplasm and heterozygous breeding populations, molecular markers linked 

to the Iap locus would be beneficial. 

The objectives of this research were to confirm the phenotypic reaction and 

inheritance of the iap allele, map its genetic location, and identify suitable molecular 

markers for use in marker assisted selection.         

 

Materials and Methods 

Plant Material 

 The accession used by Laurie and Bennett (1989) to identify the Iap locus, acc. 

NR481 (iap iap), was used as the control to develop the maize pollen tube growth 

phenotype used in this research.  BTx623 was used as the negative control since 

interspecific sorghum hybrids are difficult to produce with this parent and maize pollen 
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tube growth is minimal since its genotype is Iap Iap.  NR481 was crossed onto 

BTx623ms3 (an unreleased backcross version of BTx623 segregating for the male-

sterility allele ms3) and the hybrid was self-pollinated to create an F2 population 

segregating for both the iap and ms3 alleles.  Sterile plants (ms3 ms3) were phenotyped 

for pollen tube growth and used as a mapping population to identify the genetic map 

location of Iap. 

 A separate near-isogenic line population segregating for the ms3 allele was used 

to determine its genetic map location in order to prove selection of ms3 ms3 individuals 

in the F2 Iap mapping population did not affect the results.  The recurrent parent, 31945-

2-2, was crossed with male-sterile QL36ms3.  The hybrid was selfed and male-sterile 

(ms3 ms3) F2 progeny were backcrossed to the recurrent parent.  Five cycles of 

backcrossing were completed.  Fertile and sterile plants in the BC5F2 generation were 

sib-crossed; the resulting progeny rows were selected for 1:1 segregation of male-

fertility and male-sterility.  Bulk fertile by male-sterile crosses produced a backcross 

segregating population, fertile (Ms3 ms3) and male-sterile (ms3 ms3), that is near-

isogenic to 31945-2-2.  This population was created by Dr. David Jordan, fertility 

phenotypes and isolated DNA was kindly provided.         

          

Pollen Tube Growth Evaluation 

 Maize pollen was used to determine the pollen tube growth reaction of individual 

plants as described by Laurie and Bennett (1989).  Hand-emasculated or genetic male-

sterile sorghum florets were dusted with freshly collected maize pollen, cv. DK66-80, 
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one day after emasculation or anthesis.  Twenty-four hours post pollination, florets were 

harvested and placed into vials and fixed in 3:1 (95% ethanol : glacial acetic acid) for a 

minimum of one week; then the florets were transferred into 70% ethanol for long term 

storage at -20ºC.  Pistils were excised from the florets prior to processing.  Pistils were 

processed using a modified version of the protocol described by Kho and Baer (1968) 

which was recently described (Hodnett et al., 2005).  Briefly, pistils were softened 

overnight in 0.8M NaOH, stained with 0.025% (w/v) aniline blue in 0.1M K2PO4 for 

approximately 30 minutes in the dark.  Twelve intact pistils were mounted on a glass 

slide in 50% 0.1M K2PO4 buffer and 50% glycerol under a 24x50 mm coverslip.  Slides 

were observed with a Zeiss Universal II microscope (Carl Zeiss Inc., Gottingen, 

Germany).  Fluorescence of the callose in the pollen tubes was induced using 390 to 

420-nm light from a mercury lamp with a 450-nm emission filter.  Each stigma was 

counted for number of maize pollen grains that germinated and then the pollen tubes 

were quantified that reached the axis, top of the style, bottom ¼ of the style, and the 

ovary.  The phenotype used to identify iap iap genotype plants is discussed in the results 

section.             

 

Genetic Mapping 

 The genetic map location of the Iap and Ms3 loci were determined by using 

AFLP and SSR markers from the Menz et al. (2002) genetic map.  The F2 population 

used to map Iap consisted of 15 iap iap genotypes and 14 Iap __ genotypes.  The near-

isogenic line population used to map Ms3 consisted of 49 ms3 ms3 (sterile) and 47 Ms3 
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ms3 (fertile) individuals.  Genomic DNA from the Iap population was extracted from 

leaf tissue using the FastDNA Spin Kit (MP Biomedicals, Solon, OH).  Genomic DNA 

from the near-isogenic line population was provided by Dr. David Jordan.  AFLP 

markers, using both EcoRI/MseI and PstI/MseI restriction enzyme combinations, were 

generated using a modified protocol from Vos et al. (1995).  The AFLP template, 

preamplification, and selective amplification reactions of the EcoRI/MseI and PstI/MseI 

fragments were as described by Klein et al. (2000) and Menz et al. (2002), respectively.  

IRD-labeled SSR primers, obtained from LI-COR (LI-COR Inc, Lincoln, NE), were 

used in amplification reactions as previously described (Klein et al., 1998).  Bulk 

segregate analysis was used to identify putative genetic map locations of both loci 

(Michelmore et al., 1991), and markers were then run on the populations as individuals 

to generate genotypic data for linkage analysis.  The AFLP and SSR amplification 

products were analyzed on a LI-COR model 4200 dual-dye automated DNA sequencing 

system.  Electrophoresis conditions were as described by Klein et al. (2000).  Digital gel 

images were scored by hand and data was formatted for linkage analysis in 

Mapmaker/Exp v3.0b (Whitehead Institute, Cambridge, MA).  Genotypic data was 

analyzed using a minimum LOD of 3.0 and the ‘group’ and ‘compare’ commands were 

used to determine the best order of the loci.     
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Results and Discussion 

Pollen Tube Growth Phenotype and Segregation of Iap 

 Laurie and Bennett (1989) identified the Iap locus as controlling a barrier to 

maize pollen tube growth in sorghum stigmas.  They classified plants into two groups: 

those that allowed maize pollen tube growth to the base of the style (iap iap) and those 

that inhibited maize pollen tube growth in the stigma (Iap __).  In their research NR481 

(iap iap) allowed maize pollen tube growth in virtually all stigmas observed.  Only a 

single plant was found that had incomplete classification: 2 of 10 stigmas allowed maize 

pollen tube growth to the base of the style.  F1 hybrids (Iap iap) and all other accessions 

(Iap Iap) tested allowed only short maize pollen tubes to develop.  The pollen tube 

growth phenotype was consistent and showed little environmental variation.  

Classification reportedly was very obvious, either all stigmas allowed maize pollen tube 

growth or they did not.   

In this study, the maize pollen tube growth phenotype was much less consistent.  

Maize pollen tube growth observed in the control genotype NR481 (iap iap) was less 

than that reported by Laurie and Bennett (1989) in all environments studied.  Out of 575 

stigmas analyzed, 44% had maize pollen tube growth into the stigma axis and 29% had 

growth to the bottom ¼ of the style.  All NR481 plants would have had incomplete 

classification according to the phenotype reported by Laurie and Bennett (1989) because 

all had some stigmas that did not have maize pollen tube growth to the bottom ¼ of the 

style.  Genotypic variation was ruled out as a source of variation as this specific 

accession came directly from the previous authors.  Temperature, light intensity, and 
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timing of pollination have all been shown to affect pollen tube growth rate (Campbell et 

al., 2001; Sun et al., 1991), however, no environmental factors were identified that 

adequately explained the reduced pollen tube growth.  In the present study, none of 303 

stigmas from control negative genotypes, BTx623 and the F1, had maize pollen tube 

growth into the stigma axis.  Thus, the negative phenotype does not show variation and 

classification based on presence of maize pollen tube growth into the style can be 

confidently assigned.  The maize pollen tube growth phenotype used in the present 

research requires observation of twenty-four stigmas and plants are classified as positive 

if pollen tubes are observed in the bottom ¼ of the style and negative if maize pollen 

tubes are not observed beyond the stigma branches.  A false negative phenotype is 

tentatively assigned if growth is observed into the stigma axis but fails to reach the 

bottom ¼ of the style.  False negative plants most likely have the ability to allow maize 

pollen tube growth but are affected by environmental variation, making their expression 

of the phenotype incomplete.  This phenotypic classification is more likely to produce 

error in the form of truly iap iap plants classified as Iap __, based on lack of maize 

pollen tube growth, rather than falsely assigning an iap iap genotype to a truly Iap __ 

plant.                

 Segregation of the maize pollen tube growth phenotype, as controlled by a 

recessive allele at a single locus, does not differ from expected ratios in BC1F1 (1:1) and 

BC1F2 (1:7) generations (X2 = 0.84ns and 1.78ns, respectively) (Table 6).  Segregation in 

the F2 generation is different from a 3:1 ratio (X2 = 4.47*), but when likely false negative 

genotypes, those showing maize pollen tube growth into the stigma axis are included as 
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Table 6. Segregation of the maize pollen tube growth phenotype as controlled by the Iap gene 
in multiple populations and environments 

Genotype Env† N PTG (+) 

(iap iap)‡

PTG (-) 

(Iap __)

X2#

NR481 (iap iap)  FA 05 10 10 0  

 SU 05 4 3 1§  

 SP 05 21 18 3§  

F1 (BTx623ms3/NR481) (Iap iap) FA 05 8 0 8  

 SU 05 2 0 2  

 SP 05 6 0 6  

BC1F2 ((BTx623ms3//)NR481)-F1) FA 05 104 8 96 (5) (1:7) 1.78ns, 0.02ns

F2 ((BTx623ms3/NR481)-F1) SU 05 125 20 105 (9) (1:3) 4.47*, 0.13ns

BC1F1 ((ATx623)//NR481) SP 05 19 7 12 (1) (1:1) 0.84ns, 0.21ns

† Environments were in the greenhouse in Fall 2005 (FA 05) and Spring 2005 (SP 05) and 
field grown in Summer 2005 (SU 05).   
‡ PTG (+) and (-) are positive and negative pollen tube growth phenotypes.  Parenthesis in 
PTG (-) phenotype are number of false negative classifications. 
§ One plant in SU 05 and 3 plants SP 05 are false negative classifications  
# Critical region of X2

.05 is 3.84, parenthesis contain expected segregation ratios.  The first and 
second X2 values test the observed segregation ratios with false negative phenotypes classified 
as PTG (-) and PTG (+), respectively.  
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iap iap genotypes, segregation ratios do not differ from expected (X2 = 0.13ns).  The 

existence of false Iap __ genotypes is clear as 11% of NR481 plants did not have maize 

pollen tube growth (Table 6).  The segregation of the pollen tube growth phenotype 

agrees with the conclusion that it is controlled by a single genetic locus, previously 

identified as Iap (Laurie and Bennett, 1989).   

 

Genetic Map Location of Iap  

 Sixty-four PstI/MseI AFLP primer combinations produced 362 polymorphic 

markers between NR481 and BTx623ms3.  Twelve of those appeared to differentiate the 

two bulk pools, iap iap and Iap __.  Upon running the markers on the full mapping 

panel, three were linked to the Iap locus.  Two of the markers had been previously 

mapped and the third was subsequently scored in the RI population used to create the 

Menz et al. (2002) genetic map.  All three markers mapped to a 22cM region on SBI-02.  

Adjacent AFLP and SSR markers were then targeted and a genetic map of the region 

was created with the genotypic data (Figure 5).  Three AFLP markers were closely 

linked to the Iap locus.  These were Txa6647 (2.1cM) (Figure 6) and Txa4079 (2.7cM) 

flank Iap, and Txa13074 (0.0) shares the same position.  The closest SSR markers are 

Txp63 (10.8cM) and Txp50 (11.4cM) which flank the Iap locus (Figure 5).  This 

positions the Iap locus at between 17.0 and 18.2cM on SBI-02 on the Menz et al. (2002) 

genetic map.  Primer combinations and marker fragment size for linked markers are 

given in Table 7.  Since selection was practiced in the F2 mapping population, only 
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Figure 5. Genetic map of a region of S. bicolor Chromosome 2 (SBI-02).  (A) Published 
genetic map (Menz et al., 2002) corresponding to (B) a map created using 29 F2 
individuals, phenotyped for maize pollen tube growth, to determine the location of the 
Iap gene.     
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Figure 6. Gel image of AFLP marker Txa6647 (arrow).  Lanes 1-15 are (1) IS3620C, (2) 
BTx623, (3) NR481, (4) BTx623ms3, (5) BTx623ms3/NR481, (6-10) F2 individuals that 
allow maize pollen tube growth (iap iap), and (11-15) F2 individuals that inhibit maize 
pollen tube growth (Iap __). 
 

 

 

 



 

Table 7. Forward and reverse primer sequences (5’-3’) for SSR and AFLP markers identified as linked to the Ms3 and Iap 
loci  
Marker Name F-primer  R-primer Size (bp) 
Txp425   AAGGCCTAAAACTTGTTGAACG TCACTCATCTCCATCATTGTCA 186 
Txp426  

   
    
    

   
  
    
    

GCGTATGAATCTTCGTTTTATTCA
 

 CCATCATTTTGATGAAATGCAC 250
Txp427 CACGAGGGCAGTGTGGAC GCATCCCGTACAGCTTCAG 117
Txp63 CCAACCGCGTCGCTGATG GTGGACTCTGTCGGGGCACTG 204
Txp50 TGATGTTGTTACCCTTCTGG AGCCTATGTATGTGTTCGTCC 299
Txp211 TCAACGGCCAATGATTTCTAAC

  
AGGTTGCGAATAAAAGGTAATGTG

 
 216

Txa6647 M+CCC P+CTC 310
Txa4079 M+CTG P+CGT 268
Txa13074 M+CGA P+AGA 65
Additional information regarding markers is available at http://sorgblast3.tamu.edu
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male-sterile (ms3 ms3) individuals were used for ease in phenotyping; however, there 

was concern that this may have affected the map location of the Iap gene.  

 

Genetic Map Location of Ms3 

 A separate population, near-isogenic for ms3, was used to genetically map the 

location of Ms3.  The Ms3 locus has been reported to be linked approximately 7 map 

units from an awn gene (Doggett, 1970).  Presence or absence of awns is normally 

simply inherited but multiple genes are capable of control (Rooney, 2000).  Two linkage 

maps report the location of awn loci on SBI-03 (Tao et al., 2000; Hart et al., 2001).  A 

survey of SSR markers in the corresponding region was done.  Linkage of three SSR 

markers to the Ms3 loci was found in the near-isogenic line population.  Txp427, 

Txp425, and Txp426 are linked at 5.6cM, 13.6cM, and 16.8cM to the Ms3 loci, 

respectively (Figure 7).  These genetically mapped markers are located on SBI-03 

(http://sorgblast3.tamu.edu).  This positions the Ms3 locus at approximately 179-185cM 

on SBI-03 in the Menz et al. (2002) genetic map.  SSR markers flanking Ms3 on the 

other side of Txp427 were not polymorphic in the near-isogenic line population.  The 

linked SSR markers were run on the 29 F2 Iap mapping individuals (all male-sterile ms3 

ms3) and the same map order of loci was obtained, confirming the location of Ms3 to 

SBI-03 (data not presented).  The presence of the Ms3 locus on a different chromosome 

than Iap makes unlikely the possibility that segregation distortion, from selection of ms3 

ms3 individuals, affected the map position of Iap.     
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Figure 7. Genetic map of a region of S. bicolor chromosome 3 (SBI-03).  (A) Published 
genetic map (Menz et al., 2002) corresponding to (B) a map created using 96 backcross 
near-isogenic progeny, phenotyped for male-sterility and awns (AW), to determine the 
location of the Ms3 gene. 
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Summary 

 This research confirms that maize pollen tube growth in sorghum pistils is 

controlled by a single locus.  The phenotype observed by Laurie and Bennett (1989) for 

segregation of the iap allele is likely subject to environmental variation, and a modified 

phenotype provided suitable discrimination.  The map position of the Iap locus is 

approximately 17.0-18.2cM on SBI-02.  AFLP and SSR markers, suitable for marker-

assisted selection, were closely linked to Iap.  This information will allow marker-

assisted backcrossing of the iap allele into complex breeding populations as well as 

multiple elite backgrounds.  The map position provided can also be a starting point for 

fine mapping of Iap, required for gene cloning.             
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CHAPTER VI 

 

DEVELOPMENT OF SORGHUM GENETIC STOCK TX3361 

 

Introduction 

 Sorghum is an important food, feed, and forage crop with worldwide grain 

production in 2005 of 56,957,314 metric tons which ranks fifth among cereal grains 

(FAOSTAT data, 2006).  Production in the U.S. accounted for approximately 

10,000,000 metric tons of that crop which was valued at $715,000,000 (USDA 2006).  

Production limitations for sorghum in the U.S. include abiotic stresses such as drought 

and biotic stresses like insect and disease pressure.  Plant breeders continually make 

progress in improving the crop for these and many other traits, including yield potential, 

but are ultimately limited by the amount of genetic variation available for the desired 

trait.  Without genetic variation for a trait, genetic improvement is not possible.  

Identifying valuable new sources of germplasm is a key component to supply plant 

breeders with the genetic variation they need for improvement.  Wild species can be 

valuable sources of novel genetic variation for improvement of yield, disease and insect 

resistance, and abiotic stresses (Goodman et al., 1987; Jiang et al., 1994; Jones et al., 

1995; Jauhar and Chibbar, 1999).   

 Plant breeders have improved sorghum by utilizing germplasm within the 

primary gene pool, namely the species S. bicolor (Duncan et al., 1991).  The secondary 

gene pool contains S. propinquum and S. halepense and both can be crossed with 
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sorghum; however, only a few serious improvement efforts have utilized these genetic 

resources (Wooten, 2001; Dweikat, 2005).  The tertiary gene pool consists of the 

remaining 17 species within the genus Sorghum and, until recently, hybrids between S. 

bicolor and any of these species had never been recovered despite numerous efforts 

(Karper and Chisholm, 1936; Ayyanger and Ponnaiya, 1941; Garber, 1950; Endrizzi, 

1957; Tang and Liang, 1988; Wu, 1990; Sun et al., 1991; Huelgas et al., 1996).   

Hodnett et al. (2005) determined that one cause of reproductive isolation with the 

tertiary gene pool was pollen-pistil incompatibilities.  Pollen tube growth of wild species 

was inhibited in the stigma and style of sorghum preventing successful fertilization.  The 

reproductive barriers proved to be strong but not complete as Price et al. (2005b) finally 

recovered one interspecific hybrid between cytoplasmic male-sterile (CMS) sorghum 

and S. macrospermum.  The efficiency of producing this hybrid improved dramatically 

by using a S. bicolor genotype homozygous for the iap allele.  The Iap locus controls a 

pistil barrier that prevents foreign species pollen tube growth; whereas, the recessive 

genotype (iap iap) allows pollen tube growth of maize as well as wild sorghum species 

(Laurie and Bennett, 1989; Price et al., 2006).  Utilizing iap iap germplasm allowed the 

facile recovery of interspecific hybrids with S. macrospermum, as well as never before 

produced hybrids with S. angustum and S. nitidum (Price et al., 2006).      

Recent research on S. bicolor x S. macrospermum interspecific hybrids showed 

that allosyndetic recombination occurred between the genomes and that introgression 

was recovered in backcross progeny (Kuhlman et al., in review).  Sorghum 

macrospermum is the only tertiary gene pool species characterized for use by sorghum 
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breeders, but future research will likely reveal that other species can be utilized by using 

iap iap germplasm.  One limitation cited was that the iap iap genotype used to make the 

initial cross was agronomically very poor (Kuhlman et al., in review).  The Iap gene was 

identified in S. bicolor accession ‘NR481’ (Laurie and Bennett, 1989) which is tall, has a 

pigmented testa, and is extremely susceptible to lodging.  Its potential for use in an 

introgression program is limited because any genetic variation from wild species 

transferred will be in a very poor genetic background.  The objective of this research was 

to backcross the iap iap genotype into elite Texas A&M germplasm for use as the 

recurrent parent in an introgression breeding program.   

 

Materials and Methods 

Plant Material 

NR481, an unreleased line homozygous for the iap allele (Laurie and Bennett, 

1989), was used as the donor parent and genetic male-sterile BTx623ms3 as the elite 

recurrent parent.  Plant height was measured in centimeters from the soil surface to the 

tip of the mature panicle.  Plants were also characterized for plant color, seed color, 

awns, days to 50% anthesis, lodging, and stable segregation of male-sterility (ms3).  

Breeding, selection, and evaluation was conducted at College Station and Weslaco, TX.   

 

Pollen Tube Growth Evaluation 

Maize pollen was used to determine the pollen tube growth reaction of individual 

plants as described by Laurie and Bennett (1989).  Hand-emasculated or genetic male-
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sterile sorghum florets were dusted with freshly collected maize pollen, cv. DK66-80, 

one day after emasculation or anthesis.  Twenty-four hours post pollination, florets were 

harvested and placed into vials and fixed in 3:1 (95% ethanol : glacial acetic acid) for a 

minimum of one week; then they were transferred into 70% ethanol for long term 

storage at -20ºC.  Pistils were excised from the florets prior to processing.  Pistils were 

processed using a modified version of the protocol described by Kho and Baer (1968) 

which was recently described (Hodnett et al., 2005).  Briefly, pistils were softened 

overnight in 0.8M NaOH, stained with 0.025% (w/v) aniline blue in 0.1M K2PO4 for 

approximately 30 minutes in the dark.  Twelve intact pistils were mounted on a glass 

slide in 50% 0.1M K2PO4 buffer and 50% glycerol under a 24x50 mm coverslip.  Slides 

were observed with a Zeiss Universal II microscope (Carl Zeiss Inc., Gottingen, 

Germany).  Fluorescence of the callose in the pollen tubes was induced using 390 to 

420-nm light from a mercury lamp with a 450-nm emission filter.  Each stigma was 

counted for number of maize pollen grains that germinated and then the pollen tubes 

were quantified that reached the axis, top of the style, bottom ¼ of the style, and the 

ovary.  Plants showing maize pollen tube growth into the bottom ¼ of the style in any of 

24 stigmas was given a positive phenotype and considered iap iap.     

   

Results and Discussion 

Tx3361, a proposed sorghum genetic stock, was developed and is under review 

for release by the Sorghum Improvement Program of the Texas Agricultural Experiment 
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Station in College Station, TX.  This line is being considered for release because of its 

improved agronomic performance and iap iap genotype.   

Tx3361 was derived from the backcross BTx623ms3 x (BTx623ms3 x NR481).  

NR481 is 2-dwarf in height, has a red pericarp, red plant color, pigmented testa, awns, 

and is highly susceptible to lodging.  BTx623ms3 is an unreleased derivative of BTx623 

which segregates for the genetic male-sterility allele, ms3.  BTx623 is an elite parental 

line developed by the Texas Agricultural Experiment Station which has been commonly 

used to make commercial hybrids.  It is 3-dwarf in height, has a white pericarp, and red 

plant color.  Individuals from the BC1F1 population were self-pollinated and selected for 

3-dwarf height, white pericarp, no awns, absence of pigmented testa, and reduced 

lodging in the field in College Station, TX 2005..  The BC1F2 families were grown in a 

greenhouse, hand emasculated, and tested for maize pollen tube growth.  Selected iap 

iap individuals were self-pollinated and progeny-rows were grown at College Station, 

TX in 2006.  Lines were evaluated for lodging, height, awns, and segregation of the ms3 

allele.  Selected male-fertile and sterile plants (BC1F3) within ms3 segregating rows were 

sib-mated.  Individual sib crosses were grown at Weslaco, TX in 2006 and evaluated for 

stable backcross segregation of ms3, lodging, height, maturity, and maize pollen tube 

growth to confirm their Iap locus genotype (Figure 8).  The selected line, designated as 

Tx3361, was bulk sib-mated between male-sterile and fertile plants to produce breeder’s 

seed of the proposed genetic stock.  

The observed expression of the iap iap genotype based on maize pollen tube 

growth to the base of the style was lower than that reported by Laurie and Bennett 
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(1989) but was similar to that reported by Kuhlman et al. (in review).  Maize pollen tube 

growth in Tx3361 was similar to NR481 in all tested environments.  Tx3361 has short 

plant height, improved lodging resistance, early maturity, white seed color, non-

pigmented testa, and is backcross segregating for male-sterility (Table 8).  This genetic 

stock can be used as a female parent to obtain interspecific hybrids with exotic sorghum 

species and possibly species beyond the genus Sorghum.  Any recovered introgression 

will be in a more favorable genetic background for further evaluation and breeding.  

Seed of Tx3361 will be maintained by the Department of Soil and Crop Sciences, Texas 

A&M University, College Station, TX 77843-2474.   
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Figure 8.  Maize pollen tube growth in sorghum stigmas. (A) Tx3361 pistil showing 
maize pollen tube growth, arrow shows maize pollen tube growing through the base of 
the style into the ovary, (B) Sorghum pistil showing no maize pollen tube growth, arrow 
shows maize pollen tube failing to enter the stigma axis. 
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Table 8. Agronomic traits of the two parents and the proposed genetic stock evaluated in Weslaco, 
TX 2006 

NR481 BTx623ms3 Tx3361 LSD(.05)
Dwarf Loci1 ___  dw2  ___  ___† dw1 Dw2 dw3 dw4 dw1 Dw2 dw3 dw4  
Pericarp Color2 R    

    
    

   

W W
Awns3 Y N N
Pigmented Testa3 Y N N
ms3 backcross     
segregation3 N Y Y  

Maize PTG4 22.5%A 0.0%B 15.3%A 11.0% 
Iap Locus  iap iap  Iap Iap iap iap  
Height (cm) 234A  137B 137B  19.1 
Exsertion (cm) 21A  9B 11B   7.1 
Lodging5 5.7A  0.6B  1.8B  1.5 
Days to 50% 
Anthesis 49C 65A 53B 3.5 
1 Dwarf Loci: represents the homozygous allele at each dwarfing locus 
†’NR481’ has 2 loci that are homozygous recessive but only the genotype at Dw2 is known 
2 Pericarp color: R = red, W = white 
3 Awns, pigmented testa, and ms3 backcross segregation: Y = yes, N = no  
4 Frequency of sorghum pistils with maize pollen tube growth to the base of the style   
Values are means, different letters within rows indicate significantly different means α = .05 
5 Lodging: 0 – 9 scale, 0 = 0-10%, 9 = 90-100% lodging  
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CHAPTER VII 

CONCLUSIONS 

 

 Prior to this research, knowledge of the introgression breeding potential of 

tertiary gene pool species in Sorghum was, for all practical purposes, absent.  In this 

investigation, one tertiary gene pool species, S. macrospermum, was used to create 

interspecific hybrids with S. bicolor in order to study the possibility of gene transfer.  It 

was determined that allosyndetic recombination occurred at a moderate level (2.6 II per 

PMC) in the interspecific hybrids and that at least 80% of the S. bicolor genome has 

potential for recombination with S. macrospermum.  It was also found that the A 

subgenome of S. bicolor undergoes recombination 2.5 times more frequently than the B1 

subgenome, which means that introgression into A subgenome chromosomes is more 

likely.  Based on genomic associations, S. macrospermum is hypothesized to have the 

genomic formula AAB1B1YYZZ with subgenomes Y and Z unknown.    

 Backcrosses using the interspecific hybrid as the female parent, in combination 

with embryo rescue, resulted 15 BC1F1 progeny.  Their chromosome numbers ranged 

from 35 to 70 and the plants were male-sterile.  However, three BC1F1s had enough 

female fertility to produce BC2F1 seed.  Ninety-five percent of the BC2F1 plants tested 

had 20 chromosomes, and one plant was 2n = 21.  Sorghum macrospermum  
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introgression (0-18.6%) was detected in 75% of BC2F1 progeny; in total 26% of the S. 

macrospermum genome was detected in the BC2 generation.  Male-sterility was the only 

phenotypic effect that could be confidently hypothesized to be caused by introgression.  

Two families had significant male-sterility and had only the recurrent parent (NR481) in 

their pedigree.  The third family was a mixed pedigree involving BTx623 and it had near 

normal levels of male-fertility and seed set.  Molecular cytogenetic techniques showed 

that three types of germplasm had been created: alien addition lines; alien substitution 

lines; and introgression lines.  The alien addition line (3.5% introgression) contained a 

single non-recombinant S. macrospermum chromosome plus all 20 S. bicolor 

chromosomes.  The alien substitution line (18.5% introgression) had two non-

recombinant S. macrospermum chromosomes plus 18 S. bicolor chromosomes.  Two 

introgression lines (1.1% and 0.6% introgression) were confirmed to have two 

recombinant, likely homologous, chromosomes that contained S. macrospermum 

introgression sites plus 18 non-recombinant S. bicolor chromosomes.  This research 

demonstrated that recovery of backcross progeny is possible and that S. macrospermum 

introgression occurs.   

 The Iap gene controls a reproductive barrier in sorghum pistils that inhibits wild 

species pollen tube growth, thus preventing fertilization.  Germplasm homozygous for 

the iap allele allows pollen tube growth and was used in this research to create the 

interspecific hybrid.  The Iap locus was mapped to chromosome 2 (SBI-02) and 

positioned at 17.0-18.2cM on the Menz et al. (2002) genetic map.  Flanking AFLP 
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markers were identified at 2.1 and 2.7cM, a third AFLP marker (0.0cM) shared the same 

map position as Iap.  The closest flanking SSR markers were at 8.7 and 11.4 cM.   

 The original iap iap genotype germplasm used to create interspecific hybrids is 

agronomically very poor.  A genetic stock, Tx3361, was created that is iap iap, but has 

improved agronomic characteristics such as short plant height, white seed color, non-

pigmented testa, reduced lodging, no awns, early maturity, and is backcross segregating 

for male-sterility (ms3).  This genetic stock is proposed for release from the Texas 

Agricultural Experiment Station and can be used as a recurrent parent in an introgression 

breeding program.   

 The research reported herein shows that the tertiary gene pool species S. 

macrospermum can be used by plant breeders.  These results should serve as a baseline 

from which to improve for sorghum introgression breeding programs and may also be 

useful for research involving other members of the tertiary gene pool.  The present 

research opens the door for multiple future research projects.  Using similar molecular 

cytogenetic techniques, the identities of the unknown S. macrospermum subgenomes 
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may be uncovered in crosses with other Eusorghum species.  The phenotypic effect of 

the alien substitution and addition chromosomes can be characterized in various genetic  

backgrounds.  Homoeologous recombination may be able to be induced in crosses with 

sorghum monosomics or trisomics.  Field selections can be made of short agronomically 

acceptable BC2F2 progeny from family 101 for characterization of introgression effects.  

Using marker-assisted selection, a highly heterogeneous breeding population (iap iap) 

can be created which may increase the survivability of interspecific hybrids or increase 

the amount of recoverable introgression.  Finally, a sorghum introgression breeding 

program needs to be established which can complete the suggested research as well as 

explore the limits of gene transfer with other species.  There is an immense amount of 

potential that can be accomplished based on these results and such a program could have 

a major impact on sorghum research.     
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