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Cover: Riparian plant community in Grand Canyon downstream from the confluence of National
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Assessment of Riparian Vegetation Patterns and Change
Downstream from Glen Canyon Dam from 2014 to 2019

By Emily C. Palmquist,! Bradley J. Butterfield,2 and Barbara E. Ralston’

Abstract

Changes in riparian vegetation cover and composition
occur in relation to flow regime, geomorphic template,
and climate, and can have cascading effects on aquatic and
terrestrial ecosystems. Tracking such changes over time
is therefore an important part of monitoring the condition
and trajectory of riparian ecosystems. Maintaining diverse,
self-sustaining riparian vegetation comprised of mostly native
species is identified in the Glen Canyon Dam Long-Term
Experimental and Management Plan as a key resource
objective for the section of the Colorado River between Glen
Canyon Dam and Lake Mead. The U.S. Geological Survey
Grand Canyon Monitoring and Research Center implemented
an annual monitoring program in 2014 to assess the status
and trends of riparian vegetation along this section of river,
particularly as they relate to flow regime. In this report,
we summarize plant species composition and cover data
collected under the annual monitoring program from 2014
to 2019, with special consideration given to the hydrologic
position, associated geomorphic feature class, local climate
patterns, native and nonnative species, and floristic region
for key vegetation metrics and species. We divided the study
area into four river segments (referred to as Glen Canyon,
Marble Canyon, eastern Grand Canyon, and western Grand
Canyon) on the basis of geography and floristic composition
and calculated each recorded plant species’ relative frequency
and foliar cover by river segment. These data were then
used to evaluate species composition relationships among
river segments, hydrologic zones, geomorphic features, and
sampling years through ordination analysis. Temporal trends
in our focal resource objectives—species richness, total foliar
cover, proportion of native to nonnative species richness,
proportion of native to nonnative species cover, Tamarix cover,
Pluchea sericea cover, and Baccharis species cover—were
assessed using mixed-effects models. Four patterns related
to species composition emerged: (1) species composition of
fixed-site sandbars differed from that of randomly selected
sites (including randomly selected sandbars), (2) species
composition of Glen Canyon sites differed from that of other
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previously identified floristic regions, (3) species composition
differed across hydrologic zones related to dam operations,
and (4) species composition within river segments did

not change across years. For temporal patterns, four main
findings emerged: (1) trends differed between fixed-sites and
randomly selected sites; (2) although few directional changes
were observed from 2014 to 2019, Baccharis species cover
increased at randomly selected sites in areas influenced by
daily water fluctuations; (3) native species cover and richness
were greater than nonnative species cover and richness across
all hydrologic zones; and (4) the temporal trend metrics used
here can be used across floristic groups, enabling assessment
of the Colorado River ecosystem as a whole. In addition to
these findings, lists of recorded plant species are included as
appendixes. The variations and patterns in vegetation status
and trends presented in this report can be used as a baseline
against which future monitoring can be compared.

Introduction

Riparian ecosystems are dynamic, disturbance-driven
habitats (Poff and others, 1997), and temporal changes to
riparian vegetation are integral to riparian functioning (Naiman
and Decamps, 1997; Tabacchi and others, 1998). Disturbance
events, particularly floods, periodically reshape riparian areas
by eroding and depositing sediment, distributing seeds and
propagules, redistributing nutrients, and damaging or removing
vegetation (Stevens and Waring, 1986; Gregory and others,
1991; Tabacchi and others, 1998; Dong and others, 2016).
Between large disturbance events, succession occurs, leading to
changes in vegetation structure, composition, and aerial extent
(Webb and Leake, 2006; Stromberg and others, 2010; Sarr and
others, 2011; Sankey and others, 2015). Changes in riparian
vegetation composition and cover over time are therefore
expected consequences of natural ecosystem processes.

Flow regime is a primary controlling factor for riparian
vegetation composition and change (Poff and others, 1997,
Stromberg and others, 2007). The timing, magnitude, duration,
and frequency of flooding establishes the rate of succession
and development of riparian vegetation (Tabacchi and others,
1998). Natural flow regimes can be highly dynamic within
a year but are fairly predictable across years, such that high
and low flows exhibit a consistent seasonality (Poff and
others, 1997; Topping and others, 2003). High volume or long
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duration floods can remove vegetation, clearing the riparian
area for new colonization (Stevens and Waring, 1985; Dean
and Schmidt, 2011). Many Populus (cottonwood) and Salix
(willow) species require vegetation-clearing floods during
species-specific times of the year in order to germinate
(Gonzalez and others, 2018); without such floods, their
populations decline (Rood and others, 2005; Merritt and
Poff, 2010; Mortenson and Weisberg, 2010). Reduced flood
peaks—whether due to climate shifts or river regulation—
can create an opportunity for riparian vegetation to expand
and stabilize the floodplain (Sankey and others, 2015; Scott
and others, 2018). Increasing year-round baseflows (in
other words, creating a constant water supply) in concert
with flood-peak reduction provides the context for woody
riparian species to proliferate (Stromberg and others, 2007;
Mortenson and Weisberg, 2010; Sankey and others, 2015)
and can promote clonal growth (Douhovnikoff and others,
2005; Ralston, 2011)—an example of how alterations to flow
regime can change the composition, cover, and diversity of
riparian vegetation. The parameters of the new flow regime
and the available species pool determine the resulting riparian
vegetation community.

The influence of flow regime on trends in riparian
vegetation change is constrained by a hierarchy of
environmental variables. At a broad scale, riparian vegetation
communities shift along longitudinal gradients related to
climate (McShane and others, 2015; Palmquist and others,
2018a). As changes in climate occur over time (manifested as
temperature, precipitation, and subsequent flow dynamics),
riparian species composition is also likely to change (Perry
and others, 2015; Reynolds and others, 2015). Within
landscape-scale patterns of climate, channel form, geology,
geomorphology, and alternating constrained and floodplain
river reaches affect species occurrence (Tabacchi and others,
1998; McShane and others, 2015). Flow interactions with
geomorphology maintain a mosaic of vegetation patches with
differing species compositions based on differences in soil
water holding capacity and topography (Lytle and Poft, 2004;
Lite and others, 2005; Stromberg and others, 2007). Channel
form controls the velocity and depth of flows, such that narrow
reaches have different flood dynamics than wide reaches. At
a local scale, species turnover occurs along lateral gradients
related to water and oxygen availability (Bendix, 1994b; Lite
and others, 2005), with more flood tolerant species growing
closer to base flows (McCoy-Sulentic and others, 2017a).

River regulation via large dams affects riparian vegetation
composition and cover through many of the same mechanisms
listed above. Large dams dramatically change flow regime
and reduce sediment inputs (Webb and others, 1999; Gloss
and others, 2005; Magilligan and Nislow, 2005). They can
alter the geomorphic template of a river by changing the
grain size distribution of sediment deposits, eroding potential
habitat for vegetation, and changing feedback loops between
vegetation and sediment (Rubin and others, 2002; Hazel and
others, 2006; Butterfield and others, 2020). Depending on
pre- and post-dam flow characteristics, riparian vegetation
can increase or decrease in cover and richness, shift in species

composition, maintain or lose functional groups, and change
in genetic structure (Jansson and others, 2000; Douhovnikoff
and others, 2005; Beauchamp and Stromberg, 2008; Merritt
and Poff, 2010; Bejarano and others, 2012; Werth and others,
2014; Sankey and others, 2015; Bejarano and others, 2018).
Vegetation changes related to dam operations can occur on
different time and spatial scales depending on the natural
processes affected and species longevity. Long after dam
operations are implemented, riparian vegetation composition
and cover can continue to shift as a result of ecosystem change,
flow regime management, invasive plant species management,
and the occurrence of other disturbances such as fire,
restoration efforts, and insect herbivory (Stevens and others,
1995; Kearsley and Ayers, 1996; Sankey and others, 2015).

Tracking riparian vegetation change is a primary
method for assessing riparian ecosystem condition because
riparian vegetation exists at the intersection between aquatic
and terrestrial systems and provides habitat and other key
resources for both (Merritt and others, 2017; Palmquist
and others, 2018b; Perkins and others, 2018). Consistent
monitoring of vegetation and periodic assessment of the data
collected to identify changes to riparian species diversity,
distributions, and cover provide information about the
trajectory of riparian vegetation change relative to hydrology
and other abiotic or management manipulations (for example,
invasive plant management). In this report, we examine plant
species composition and trends in plant cover from 2014
to 2019 along the segment of the Colorado River between
Glen Canyon Dam and Lake Mead. These patterns are
analyzed in the context of hydrologic, geomorphological, and
climate parameters and discussed relative to other sources
of vegetation change (for example, vegetation management
actions and biological control of invasive species).

The segment of the Colorado River between Glen
Canyon Dam and Lake Mead supports a culturally and
ecologically important riparian ecosystem that fulfills a
variety of societal and ecological functions. Located in
northwestern Arizona, this section of the Colorado River
(hereafter referred to as the “study area” or “study reach”)
flows through the lower part of Glen Canyon, Marble Canyon,
and Grand Canyon within Glen Canyon National Recreation
Area (GLCA) and Grand Canyon National Park (GRCA).
The study area supports a suite of animal life including birds,
mammals, amphibians, reptiles, and invertebrates (Carothers
and others, 1976; Schmidt and others, 1998; Stevens and
others, 2001; Holmes and others, 2005). Riparian vegetation
in Grand Canyon is traditionally important to many regional
tribes, in part for its role in supporting the overall health of
Grand Canyon ecosystems and for the usefulness of particular
species (Mayes and Lacy, 1989; Fairley, 2005; Jackson-Kelly
and Hubbs, 2007). Some plant species are important to river
recreationists for the shade and protection from wind they
provide in a hot, dry climate (Stewart and others, 2003).

In the southwestern United States, where riparian areas are
often impaired and degraded (Stromberg and others, 2012;
Stromberg and others, 2013), this riparian area supports some
functions lost in other dryland areas (Spence, 2006).



Riparian vegetation expansion in the study area has
a positive effect on bird communities. The diversity and
abundance of bird species increased with the establishment
of perennial riparian vegetation near the river’s edge (Brown
and Johnson, 1985) and are predicted to increase further as
habitat patches grow larger and become more contiguous
(Holmes and others, 2005). The volume and location of woody
plant species are identified as key qualities for predicting the
abundance of breeding birds (Sogge and others, 1998; Spence,
2006). Plant species composition is also important to breeding
birds; for example, Prosopis glandulosa (honey mesquite)
and Senegalia greggii (catclaw acacia) densities promote bird
density (Kearsley and others, 2004). Changes to the extent,
amount, and species composition of riparian vegetation in the
study area will affect bird diversity and abundance (Holmes
and others, 2005).

In the study area, increases in shrubby riparian
plant cover are considered detrimental to campsites and
archeological sites, which are identified as key resources in the
Glen Canyon Dam Long-Term Experimental and Management
Plan (U.S. Department of the Interior, 2016; Durning and
others, 2021). Increased shrub cover on historically large,
bare sandbars is the primary cause of a 37-percent reduction
from 2002 to 2016 in the limited camping area available
for the more than 25,000 boaters and hikers that recreate in
the area annually (National Park Service, 2006; Hadley and
others, 2018). The study area provides a unique wilderness
experience for recreationists that is supported in part by access
to a sufficient number of suitable campsites and day use areas
(Kearsley and others, 1994; Kaplinski and others, 2005).
Vegetation expansion on large sandbars in the study area
also reduces aeolian transport of sand, which has historically
facilitated the burial and protection of archeological sites
(East and others, 2017; Hadley and others, 2018; Kasprak
and others, 2018); thus, vegetation expansion decreases
the stability of the unique cultural legacy found along the
Colorado River (Sankey and Draut, 2014). Vegetation
expansion near the river edge is predicted to continue (Sankey
and others, 2015; Kasprak and others, 2018), potentially
exacerbating the negative effects of riparian vegetation
expansion on these Colorado River resources.

As identified in the record of decision for the Glen
Canyon Dam Long-Term Experimental and Management Plan
final environmental impact statement (U.S. Department of the
Interior, 2016), the goal for riparian vegetation in the study
area is to “maintain native vegetation and wildlife habitat, in
various stages of maturity, such that they are diverse, healthy,
productive, self-sustaining, and ecologically appropriate.”
The long-term monitoring data presented herein can be used
to address questions related to the diversity, productivity,
and relative dominance of native and nonnative species in
terms of areal cover and species composition. Assessing the
quality of wildlife habitat would require additional sampling
of vegetation structure, and assessing the maturity, health,
and sustainability of vegetation would require plant growth
and demography monitoring that is beyond the scope of this
program. However, the long-term monitoring data herein can
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provide indirect insights into such objectives. The objective of
ecological appropriateness can be judged by stakeholders on
the basis of the results presented in this report.

To reliably and consistently track changes to riparian
vegetation within the study area, a long-term monitoring
protocol was developed and implemented by the Grand
Canyon Monitoring and Research Center (GCMRC; Palmquist
and others, 2018b; Palmquist and others, 2019). Given the
influence of geomorphology, climate, and flow regime in
determining riparian vegetation composition and cover,
the protocol incorporates geomorphic feature classes, flow
parameters, and river segments related to floristic groups and
climate into vegetation sampling. The primary objectives of
the GCMRC riparian monitoring program are as follows:

* Annually measure and summarize the status (that
is, composition and cover) of native and nonnative
vascular plant species within the riparian zone of
the Colorado River between Glen Canyon Dam and
Lake Mead.

» At 5-year intervals, assess change in the vegetation
composition and cover within the riparian zone, as
related to geomorphic setting and dam operations
(particularly flow regime).

* Collect data in such a manner that it can be used by
multiple stakeholders and is compatible with the
basin-wide monitoring program overseen by the
National Park Service’s Northern Colorado Plateau
Network Inventory and Monitoring program (Perkins
and others, 2018).

This status and trends report summarizes species
composition and cover data collected from 2014 to 2019, with
special consideration given to floristic region, hydrologic
position, associated geomorphic feature, and native and
nonnative species.

Methods
Study Area

Physical Setting

The section of the Colorado River between Glen
Canyon Dam and the high-water inflow of Lake Mead is an
approximately 415-kilometer (km; 260-mile [mi]) reach that
passes through Glen Canyon National Recreation Area and
Grand Canyon National Park (fig. 1). Locations along the river
are denoted using river kilometers (Rkm; Gushue, 2019)—
that is, by their distance downstream (positive numbers) or
upstream (negative numbers) from Lees Ferry as measured in
kilometers along the channel centerline. For the purposes of
the GCMRC riparian monitoring program, the river corridor
is divided into four segments that relate to geography and
floristic composition (Palmquist and others, 2018a): the Glen
Canyon river segment, spanning from Rkm —25 to Rkm 0
(hereafter referred to as “Glen Canyon”); the Marble Canyon
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segment, spanning from Rkm 0 to Rkm 97 (hereafter “Marble
Canyon”); the eastern Grand Canyon segment, spanning from
Rkm 97 to Rkm 259 (hereafter “eastern Grand Canyon’); and
the western Grand Canyon segment, spanning from Rkm 259
to Rkm 404 (hereafter “western Grand Canyon”; fig. 1). At
Rkm 404, the high-water line of Lake Mead is apparent on
the shorelines of the Colorado River as deltaic sediments that
were deposited when the reservoir was full; these deposits are
not included in the GCMRC riparian monitoring protocol.

The geologic rock layers at river level include limestones,
sandstones, and Precambrian metamorphic rocks, with each
layer affecting the channel width and associated habitable
area for plants. Throughout the study area, the Colorado
River is a canyon-bound river with a pool-drop rapid system
in which rapids are associated with tributary debris fans
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(Schmidt and Graf, 1990). Approximately 740 tributaries
(most of them ephemeral) join the Colorado River’s mainstem
between Glen Canyon Dam and Lake Mead (Griffiths and
others, 2004). Debris fans originating from these tributaries
form channel constrictions that create rapids and affect the
direction and velocity of the river current and associated
sediment deposition (Rubin and others, 1990). Upstream

from a channel constriction, water pools and the current is
slower, and sediment can accumulate along the upstream
shoreline. Downstream from a constriction, part of the current
recirculates upstream and slows, creating an eddy wherein
sediment deposition can also occur. Shorelines both upstream
and downstream from channel constrictions are areas where
sediment accumulates and forms sandbars (fig. 2; Schmidt and
Graf, 1990; Mueller and others, 2018). Within this geomorphic

Figure 2. Aerial photograph
showing examples of the generalized
feature classes (debris fan, sandbar,
and channel margin) that form

the geomorphic template of the
Colorado River within the study

area. Debris fans are cone-shaped,
coarse-grained sediment deposits
emanating from tributaries, and
sandbars are fine-grained deposits
that form upstream and downstream
from debris fans; the channel margin
feature class encompasses all other
shorelines. Hydrologic zones related
to Glen Canyon Dam operations
(active channel, active floodplain,
and inactive floodplain) are also
depicted. The active channel is

the area inundated by daily flow
fluctuations (discharges of 707 cubic
meters per second [m3/s] or less); the
active floodplain is the area flooded
by high flow experiments (discharges
between 707 and 1,274 m3/s); and

the inactive floodplain, which is
rarely flooded under current dam
operations, is the area inundated by
discharges of more than 1,274 m3/s.
White arrows indicate the direction
of flow. Base image from Durning and
others (2016).

EXPLANATION

=== Upper boundary of active channel

Upper boundary of active floodplain

Upper boundary of inactive

floodplain
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template, there are three generalized feature classes on which
riparian vegetation can grow: debris fans, sandbars, and
channel margins. Debris fans are triangular or cone-shaped
deposits of boulders, cobbles, gravel, and sand that typically
emanate from tributaries; and sandbars are fine-grained
deposits located upstream and downstream from debris

fans. Channel margins encompass all other shorelines and
can consist of bedrock and (or) deposited boulders, cobbles,
gravel, and sand (fig. 2).

Hydrology

The hydrology of the study reach is controlled by Glen
Canyon Dam (fig. 1). Before dam operations began in 1963,
the Colorado River had a seasonal snowmelt-dominated
hydrograph with large seasonal flow volume variation and
little daily variation; in the post-dam era, however, discharge
fluctuates daily but is relatively similar across seasons
(figs. 3, 4). Except for large, unplanned floods in the 1980s,
post-dam floods peak at less than half the magnitude of
pre-dam floods, are relatively infrequent, and occur primarily
in the fall rather than late spring and summer (as was
typical before the dam; Topping and others, 2003). Within
the post-dam era, the magnitude of daily fluctuations from
1963 to the mid-1990s was greater (sometimes exceeding
790 m?3/s) than it is under current conditions (in which it

does not exceed 226 m3/s) owing to the implementation of
the Modified Low Fluctuating Flow operation pattern (U.S.
Department of the Interior, 2016). The potential for releases
exceeding 707 m?3/s over several days has increased relative
to that from 1963 to 2011 owing to implementation of the
Experimental Management Plan for Glen Canyon Dam.

This plan incorporates short-duration (that is, dayslong)
high-flow experiment (HFE) releases in spring or fall if
resource criteria for water, sediment, and fish are met (U.S.
Department of the Interior, 2016). The pre-dam high-water
line, the experimental high flows, and the daily fluctuating
flows create a gradient of inundation frequency ranging

from a more frequently flooded area close to the river to an
infrequently flooded area far away from the shoreline (fig. 2).
Three hydrologic zones are delineated based on these effects
of dam operations (fig. 4). The active channel is the area that
can be inundated by daily fluctuating flows (that is, by flows
of 708 m?/s or less) and is the most frequently flooded zone.
The active floodplain is the area inundated by HFE releases
(that is, by discharges between 708 and 1,274 m3/s) and is
less frequently flooded than the active channel. The inactive
floodplain is the area within the historical high-water line that
is no longer inundated by planned dam releases. The inactive
floodplain zone was last flooded in the 1980s and is currently
more influenced by local precipitation than river flows
(Sankey and others, 2015).

Dam operations
begin in 1963 1996
HFE
"é MLFF 2004
S 3,000 — begins HFE
o 2008
5 HFE
o
5
2 \V/
@ | N
g 2000 HFE Protocol
S 2012-2019
E Vo NAY e
>
£ 1000
é’ L‘w‘ U NL d “
0| | | | | | | | | | |

Jan. 1920 Jan.1930 Jan.1940 Jan.1950 Jan.1960 Jan.1970 Jan.1980 Jan.1990 Jan.2000 Jan.2010 Jan.2020

Month and Year

Figure 3.

Hydrograph of the Colorado River from 1921 to present, as recorded at Lees Ferry, Arizona. Notable

changes in dam operations are indicated. MLFF, Modified Low Fluctuating Flow; HFE, high flow experiment; m%/s,

cubic meters per second.
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Figure 4. Hydrograph showing hourly discharge data for the Colorado River at Lees Ferry, Arizona, from
January 1, 2014, to December 31, 2019. High flow experiment (HFE) releases are labeled (for example, “2014
HFE”). Red dashed lines indicate discharge levels from Glen Canyon Dam that are used by this study to
delineate three hydrologic zones (active channel, active floodplain, and inactive floodplain) on the basis of
inundation frequency. Red arrows indicate the range of discharge levels associated with each hydrologic zone.
Active channel is defined as the area inundated by daily fluctuating flows that range up to 708 cubic meters
per second [m3/s]. Active floodplain is defined as the area inundated by HFE releases (that is, by discharges
between 708 and 1,274 m¥/s). Inactive floodplain is defined as the area within the historical high-water line that
is no longer inundated by planned dam releases. Light blue dashed line represents the minimum daytime flow
(227 m3/s) from Glen Canyon Dam under the Long-Term Experimental and Management Plan record of decision

(U.S. Department of the Interior, 2016).

Riparian Vegetation History and Floristic
Distributions

Vegetation growing along the study reach varies greatly
in structure, functional strategies, wetland indicator status,
and floristic affinities (McCoy-Sulentic and others, 2017a;
McCoy-Sulentic and others, 2017b; Palmquist and others,
2017; Palmquist and others, 2018a). Species range from
less than 1 centimeter tall to over 8§ meters (m) tall and
include annual, biennial, and perennial forbs, sedges, rushes,
grasses, shrubs, and trees (Palmquist and others, 2017).
Vegetation is densely layered in some parts of the canyon,
consisting of a short-statured herbaceous layer (for example,
Schedonorus arundinaceus, Cynodon dactylon, Equisetum
X ferrissii, Euthamia occidentalis, Bromus diandrus), a
midstory to overstory layer of woody shrubs (for example,
Baccharis emoryi, Baccharis salicifolia, Pluchea sericea),
and sometimes an overstory of trees (Prosopis glandulosa,
Tamarix). Individuals of Tamarix (saltcedar) in this study
area (hereafter “Taumarix”) conform to the morphology of 7.
ramosissima and 1. chinensis and are likely hybrids of the two
species given their widespread introgression in the western

United States (Gaskin and Schaal, 2002). In other areas, such
as less vegetated sandbars or newer debris fans, vegetation

is sparse and short, comprised mostly of smaller shrubs

and grasses.

Plant species in the study area are associated primarily
with desert and semiarid regions of the western United States,
particularly the Mojave and Sonoran deserts but also the
Colorado Plateau, Great Basin, and the Rocky Mountains
(Palmquist and others, 2018a). Floristic patterns along the
river follow an increasing temperature gradient with distance
from Glen Canyon Dam, and three distinct floristic regions
can be delineated that correspond with different river segments
(Butterfield and others, 2018; Palmquist and others, 2018a).
Of these floristic regions, Marble Canyon (Rkm 0-97)
contains the highest proportion of species with affinities to
higher elevation regions, particularly the Colorado Plateau
and Rocky Mountains. Eastern Grand Canyon (Rkm 97-259)
features an intermediate floristic group comprising a mixture
of plants from Marble Canyon and western Grand Canyon.
Western Grand Canyon (Rkm 259-404) is dominated by
species with affinities to the Mojave and Sonoran deserts.
Glen Canyon (Rkm —25-0) was not included in Palmquist
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and others (2018a), but we address it in the present study

to determine if the unique species found there differentiate
Glen Canyon floristically from Marble Canyon. Species
composition also shifts laterally away from the river’s edge
with decreasing flood tolerance and increasing drought
tolerance (McCoy-Sulentic and others, 2017a; Butterfield and
others, 2018). These shifts in species composition result in a
corresponding shift in functional trait values (McCoy-Sulentic
and others, 2017a).

Prior to dam operations, the shoreline of the Colorado
River through Marble and Grand Canyons was characterized
much more by rock and sand than by riparian vegetation
(Webb, 1996; Webb and others, 2011; Scott and others,
2018). The species recorded in the pre-dam era by Clover and
Jotter (1944) are many of the dominant species recorded in
current surveys, including nonnative species such as Cynodon
dactylon (Bermuda grass) and Tamarix. Native riparian
trees such as Populus fremontii (Fremont cottonwood) and
Salix gooddingii (Goodding’s willow) were largely absent
in the pre-dam era except at the mouths of tributaries and
more protected areas (Clover and Jotter, 1944; Turner and
Karpiscak, 1980; Scott and others, 2018), though S. gooddingii
appears to have been more common than P, fremontii (Clover
and Jotter, 1944; Turner and Karpiscak, 1980). Naturally
occurring P. fremontii and S. gooddingii stands are still
uncommon in the study area.

Regulated flows from Glen Canyon Dam have allowed
the areal cover of riparian vegetation to increase since dam
operations began in 1963 (Sankey and others, 2015; Mueller
and others, 2018), though growth rates vary in space and time.
Variable flow patterns, including large floods in the 1980s
and increased base flows, have alternately removed some
vegetation (Stevens and Waring, 1986), supported fluvial
marshes (Stevens and others, 1995), supported woody plant
expansion into fluvial marshes (Kearsley and Ayers, 1996),
promoted germination of and then eroded nonnative Tamarix
seedlings (Porter and Kearsley, 2001), and created conditions
favorable to clonal species (Ralston, 2010; Durning and
others, 2021). Particularly since the beginning of Modified
Low Fluctuating Flow in the early 1990s, vegetated area has
increased in the active channel and active floodplain from
approximately 5-9 percent to 25-40 percent depending on
hydrological position (Sankey and others, 2015). Vegetation
expansion is projected to continue under current dam
operations and could increase 12 percent over the next
15 years (Kasprak and others, 2018).

Climate Variability

The climate of the study area is warm and dry with
most precipitation falling in the winter and late summer
(fig. 5; Caster and Sankey, 2016). Late summer precipitation
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Figure 5. Mean monthly temperature (shown as red line) and monthly total precipitation (shown as gray bars) during the study
period, as measured at meteorological stations at Lees Ferry, Phantom Ranch, and near the confluence of the Colorado River and
Diamond Creek (labeled as “Diamond Creek” in figure), Arizona. Dash-dot and solid vertical lines indicate sampling events for

randomly selected sites and fixed-site sandbars, respectively.



is associated with the North American monsoon and
characterized by intense, localized thunderstorms between
July and October. March through June and October through
December are typically dry periods.

Climate data were acquired for the study period from
three weather stations along the Colorado River: PGEA3,
located at Lees Ferry (Rkm 0); USC00026471, located at
Phantom Ranch (Rkm 143); and AZ G:03:0072, located
near the confluence of Diamond Creek and the Colorado
River (Rkm 359). Data for PGEA3 were downloaded from
MesoWest (https://mesowest.utah.edu/) and for USC00026471
from the National Climate Data Center (https://www.ncdc
.noaa.gov/cdo-web/). Data from AZ G:03:0072 were sourced
from Caster and others (2018). Temperatures associated with
the weather station at Lees Ferry were coolest, with a mean
average temperature of 18.2 °C during the study period.
Phantom Ranch temperatures were warmer at 20.4 °C, and
Diamond Creek temperatures were warmest at 24.3 °C. The
weather station at Lees Ferry received less average annual
precipitation (164 millimeters [mm]) than the Phantom Ranch
(250 mm) and Diamond Creek (337 mm) stations. In general,
2015 and 2016 were the wettest years. The driest years were
2014 and 2017, and 2019 had an exceptionally dry summer
season (fig. 5).

Table 1.

Methods 9

Data Collection and Preparation

Data collection follows the methods described in detail
in Palmquist and others (2018b) with a few exceptions. Data
are collected at two different types of sites once per year:
randomly selected sites that encompass multiple geomorphic
features and are in different locations each year; and fixed-site
eddy sandbars that are resampled each year. Pilot studies
were conducted in 2012 and 2013 at a subset of locations for
both fixed-site and random site datasets (table 1). Generally
consistent sampling methods started in 2014 but were slightly
modified for 2016 through 2019. Modifications from 2014
consist of adding an estimate of total living foliar cover,
adding a separate estimation of overhanging plant species, and
changing from estimating multiple grain-size categories to
grouping all grain sizes greater than 2 mm into one category.

In August and early September, randomly selected debris
fans, channel margins, and eddy sandbars were sampled. The
random sampling protocol aimed to sample approximately
equal numbers of these geomorphic features within each
floristic segment each year (table 2). Each year, a new set of
sites were randomly selected in ArcGIS (Palmquist and others,
2018b). Sites that are sampled are removed from the pool of
potential sampling sites for a five-year period.

Number of sites sampled for randomly selected sites and fixed-site sandbars by year.

[Dataset definitions are as follows: “Glen Canyon random,” randomly selected sites sampled in Glen Canyon (river kilometers [Rkm] —25-0); “Marble Canyon
random,” randomly selected sites sampled in Marble Canyon (Rkm 0-97); “Eastern GRCA random,” randomly selected sites sampled in eastern Grand Canyon
(Rkm 97 to 259); “Western GRCA random,” randomly selected sites sampled in western Grand Canyon (Rkm 259 to 404); Fixed-site sandbars, sandbars that are
sampled annually across all river segments. “Pilot” indicates a smaller test subset of sites were sampled.]

Dataset 2012 2013 2014 2015 2016 2017 2018 2019
Glen Canyon random 0 0 0 6 7 6 6 7
Marble Canyon random 0 Pilot 25 0 21 25 25 25
Eastern GRCA random 0 Pilot 32 0 29 25 36 36
Western GRCA random 0 Pilot 39 0 32 32 31 34
Fixed-site sandbars Pilot 42 42 43 43 43 43 42

Table 2. Number of randomly selected channel margin (CM), debris fan (DF), and sandbar (SB) sites and fixed-site sandbars for each
river segment, with randomly selected sites further divided into years.

[Number of fixed-site sandbars (“Fixed-site SB”’) within each river segment are not separated by year or geomorphic feature class because these sites are
sampled annually and are all sandbars. River segments are delineated by river kilometers as follows: Glen Canyon, river kilometers —25 to 0; Marble Canyon,
river kilometers 0 to 97; eastern Grand Canyon (“Eastern GRCA”), river kilometers 97 to 259; western Grand Canyon (“Western GRCA”), river kilometers 259
to 404.]

Dataset Glen Canyon Marble Canyon Eastern GRCA Western GRCA

CcM DF SB CcCM DF SB CM DF SB CM DF SB

2014 0 0 0 11 7 7 16 10 6 17 11 11
2016 2 3 2 6 8 8 9 12 13 14 5
2017 2 2 2 7 9 10 10 5 11 11 10
2018 2 2 2 7 9 9 13 10 13 9 10 12
2019 2 2 3 7 9 9 12 12 12 10 13 11
Total 8 9 9 41 38 42 59 51 48 60 59 49
Fixed-site SB -- -- 1 -- -- 20 -- -- 14 -- -- 8
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In late September and October, fixed-site eddy sandbars
were sampled. These sites are locations previously identified
for long-term geomorphic change monitoring (Kaplinski and
others, 2014) and only include sandbars. They are a mix of
commonly used campsites and rarely visited locations that are
mostly located in Marble Canyon and eastern Grand Canyon.
Two of these sites (—6 Mile in Glen Canyon and Granite
Camp in eastern Grand Canyon) have undergone previous
revegetation activities consisting of Tamarix removal and

subsequent planting of native species (Ralston and Sarr, 2017).

These sites were retained in analyses in order to fully evaluate
riparian vegetation of the study area.

Sampling was separated by river segments related to
geography and floristic composition: Glen Canyon (Rkm
—25-0), Marble Canyon (Rkm 0-97), eastern Grand Canyon
(Rkm 97-259), and western Grand Canyon (Rkm 259-404).
The number of sites sampled per river segment is based on
segment length, such that the maximum sampling rate is

one sample collected per 2.5 river miles (4.1 Rkm). For the
purpose of analysis, data from randomly selected sites and
fixed-site sandbars were compiled for 2014 and from 2016 to
2019. Data from 2012 and 2013 were excluded from analyses
because of inconsistencies with data collection. As few ran-
domly selected sites were sampled in 2015, all data from that
year were also excluded from analyses to make comparisons
across time similar.

Individual species cover and total living foliar cover
values are estimated within 1-square-meter (m?) quadrats
arranged along transects and stratified by flooding frequency.
At randomly selected sites, three transects are placed
perpendicular to the river’s current, each with nine sample
quadrats (for a total of 27 quadrats per site; fig. 6). At
fixed-site sandbars, the site layout consists of a predetermined
number of transects and quadrats based on sandbar size and
shape. These sites can have three or four transects with six or
nine quadrats each.

Figure 6. Diagram illustrating
the sampling layout for randomly
selected sites. Three transects
are placed perpendicular to

the river channel, and nine
1-square-meter (m2) sample
quadrats (illustrated as red
squares, not shown to scale)
are placed on each transect.
Quadrats are stratified by
hydrologic zone (active channel,
active floodplain, and inactive
floodplain). Base image from
Durning and others (2016).

= Upper boundary of active channel
. Sample quadrat




Quadrats are stratified across the three hydrologic zones
defined by dam operation parameters: the active channel, the
active floodplain, and the inactive floodplain (fig. 6). Equal
numbers of quadrats are placed in each zone.

At each quadrat, visual cover estimates of each plant
species rooted inside the frame, each species hanging over
the frame but rooted outside of it, and total living foliar cover
rooted inside the frame are recorded. The latter two estimates
were not conducted in 2014. To standardize total living foliar
cover across all years for analyses, the variable was estimated
by summing all cover values for recorded species.

For additional details on sample site layout and data
collection, see Palmquist and others (2018b). Data used
for analyses are available from the U.S. Geological Survey
ScienceBase catalog (Palmquist and others, 2022).

Descriptive Summaries

Species Lists

Lists of recorded species were compiled for the randomly
selected sites dataset (app. 1) and for the fixed-site sandbars
dataset (app. 2) using the R software environment (R Core
Team, 2021). Each list includes the number of sites at which
each species was recorded for the study area and by river
segment (app. 1, 2).

Community Composition

Differences in community composition (that is,
differences in recorded species and their relative abundances)
between geomorphic feature classes in the random sampling
dataset and the fixed-site sandbars were assessed through
ordination. To reduce the effect of zero-inflated data on the
ordination results, relative abundance was quantified as the
average cover of a species across all plots within a site and
hydrologic zone for each year. This resulted in a total of 1,925
site-zone-year sample points. A detrended correspondence
analysis (DCA) was first performed using the “decorana”
function in the R vegan package (Oksanen and others, 2015) to
determine if the primary compositional gradient was unimodal
or linear. The first DCA axis had a length of 7.4 standard
deviations, indicating a unimodal gradient and supporting the
continued use of DCA as an appropriate ordination technique.
Statistical differences in community composition between
geomorphic feature types, river segments, hydrologic zones,
and years were highly significant based on both the analysis
of variance and permutational analysis of variance of DCA
scores (all pairwise p-values < 0.001). Thus, DCA results
were further used for visualization and descriptive purposes.
Differences between categories of each factor (for example,
between the active channel and active floodplain in the
hydrologic zone analysis) were visualized in the DCA with
error bars reflecting two standard errors of the mean.

Species Frequency

For both randomly selected sites and fixed-site sandbars,
the relative frequency of each species was calculated as the
number of sites at which the species was recorded divided by
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the total number of sites (total number of randomly selected
sites = 472; total number of fixed-site sandbars = 43). Relative
frequency was calculated for the entire study area for both
randomly selected and fixed sites, and for each floristic segment
for the randomly selected sites. Relative frequency was not
calculated by floristic segment for the fixed-site sandbars
dataset because of the small sample sizes for some segments.

Foliar Cover

Average cover and standard deviation were calculated
for each species by floristic segment and geomorphic feature
(fixed-site sandbars were treated as a fourth geomorphic
feature). Average site-level cover values for individual species
were calculated in R by adding overhanging cover values to
rooted cover values for each quadrat, then calculating the mean
cover for each site. For fixed-site sandbars, average cover values
were calculated for each year (as opposed to across years).
Glen Canyon and Marble Canyon were combined because of
the small sample sizes in Glen Canyon. The five species with
the highest cover values for the randomly selected sites and
fixed-site sandbars were graphed (see “Results” section).

To visualize differences in total cover across the study
area, total foliar cover estimates for 2016 through 2019
were averaged by site for the randomly selected sites and
plotted against the corresponding river kilometer. The mean,
maximum, minimum, and standard deviation of total foliar
cover values were calculated for each river segment.

Temporal Trends by Hydrologic Zone

In accordance with the riparian vegetation resource goals
outlined in the Glen Canyon Dam Long-Term Experimental
and Management Plan, the species richness (total number of
species), standardized proportion of native species richness
versus nonnative species richness (number of native species
divided by total number of species), total foliar cover (as
percentage of quadrat), and proportion of native species cover
versus nonnative species cover per quadrat were analyzed
for temporal trends. Tamarix, Pluchea sericea (arrowweed),
and Baccharis spp. were also analyzed for temporal trends,
as these are species of management interest (U.S. Department
of the Interior, 2016; U.S. Department of the Interior, 2020).
For Baccharis spp. analyses, Baccharis emoryi (Emory’s
baccharis), Baccharis salicifolia (mule fat), and Baccharis
sarothroides (desertbroom) were grouped and analyzed
together. These three species have similar hydrologic niches
(Butterfield and others, 2018) and are frequent in different
segments of the study area (Palmquist and others, 2018a). Data
were analyzed separately for the randomly selected sites and
fixed-site sandbar sites using mixed-effects models with site
as a random effect. This approach was used to accommodate
the statistical non-independence of plots within the same site.
Initial models were conducted with hydrologic zone (active
channel, active floodplain, and inactive floodplain), floristic
region (Glen Canyon-Marble Canyon river segment, eastern
Grand Canyon river segment, and western Grand Canyon
river segment), geomorphic feature type (sandbar, debris fan,
and channel margin), and year (2014, 2016, 2017, 2018, and
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2019) as fixed effects, including all possible interactions, for
the random sampling sites. The geomorphic feature type fixed
effect was absent from analyses of the fixed-site sandbars.
Year, as a fixed effect, was treated as a categorical variable

to account for potentially strong nonlinearities in vegetation
status among years and because of the absence of complete
data in 2015.

Hydrologic zone consistently presented in initial
analyses as the strongest predictor variable of most aspects
of vegetation status. The inclusion of geomorphic feature
and floristic region, even when significant, often did not
result in significant differences among factor levels based
on post-hoc analyses, and not all variables had sufficient
data density to include all factors in a single model. For the
sake of clarity and consistency, all models presented in this
report are based on the interaction between hydrologic zone
and year. Year was included in all models because of the
explicit interest in identifying temporal trends in vegetation
status. Mixed-effects models were conducted with the “Ilmer”

function in the Ime4 package in R (Bates and others, 2015)
and Tukey’s post-hoc comparisons were conducted with the
“emmeans” function in the emmeans package in R (Lenth and
others, 2018).

Results

Descriptive Summaries

Lists of recorded species for the randomly selected sites
and the fixed-site sandbars are available in appendix 1 and
appendix 2, respectively. The number of species recorded at
randomly selected sites was 296; at the fixed-site sandbars,
218 species were recorded.

Community Composition

Geomorphic feature, river segment, and hydrologic
zone exhibited differences in community composition
(fig. 7). There was little difference across years. Community
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composition differed substantially between the fixed-site
sandbar and the randomly selected debris fan and channel
margin sites, with random sampling sandbars intermediate
(fig. 7). Debris fan and channel margin sites did not differ
in composition. These differences were most strongly
expressed along the first DCA axis. Glen Canyon, Marble
Canyon, eastern Grand Canyon, and western Grand Canyon
also differed in community composition. Glen Canyon
and Marble Canyon were most similar in community
composition. The community composition of sites in
eastern Grand Canyon was intermediate between the
community composition of sites in western Grand Canyon
and that of Glen Canyon and Marble Canyon sites.
Hydrologic zones also showed differences in plant species
composition, with the active channel and the inactive
floodplain exhibiting the greatest difference.
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Species Frequency

The three most frequent native species were the same
for randomly selected sites and fixed-site sandbars: Baccharis
emoryi, Sporobolus flexuosus (mesa dropseed), and Equisetum
x ferrissii (horsetail; tables 3, 4). Bromus species and Tamarix
were the most frequent nonnative groups for both types of sites
(tables 5, 6). Cynodon dactylon was frequent at both randomly
selected sites and fixed-site sandbars but more so at the former.
When frequency was calculated for each floristic segment,
both native and nonnative species frequencies changed with
respect to study-wide frequency. Some species were frequent
throughout the corridor (B. emoryi, Tamarix, Bromus rubens),
whereas many were only frequent in certain segments (for
example, Artemisia ludoviciana, Euthamia occidentalis,
Salix exigua, Pluchea sericea, Isocoma acradenia, Alhagi
maurorum, Cynodon dactylon, Schedonorus arundinaceus).

Table 3. The 10 most frequently recorded native plant species at randomly selected sites for the entire study area and for each river

segment.

[River segments are delineated by river kilometers as follows: Glen Canyon, river kilometers —25 to 0; Marble Canyon, river kilometers 0 to 97; eastern Grand
Canyon, river kilometers 97 to 259; western Grand Canyon, river kilometers 259 to 404.]

Scientific name Common name Growth form Relative frequency
Entire study area
Baccharis emoryi Emory's baccharis Shrub 0.64
Equisetum X ferrissii horsetail Forb 0.54
Sporobolus flexuosus mesa dropseed Graminoid 0.45
Aristida purpurea purple threeawn Graminoid 0.42
Euthamia occidentalis western goldentop Forb 0.37
Bothriochloa barbinodis cane bluestem Graminoid 0.33
Brickellia longifolia longleaf brickellbush Shrub 0.32
Artemisia ludoviciana white sagebrush Forb 0.32
Baccharis sarothroides desertbroom Shrub 0.31
Pluchea sericea arrowweed Shrub 0.30
Glen Canyon
Artemisia ludoviciana white sagebrush Forb 0.92
Baccharis emoryi Emory's baccharis Shrub 0.88
Euthamia occidentalis western goldentop Forb 0.88
Equisetum x ferrissii horsetail Forb 0.77
Salix exigua Coyote willow Shrub 0.77
Carex emoryi Emory's sedge Sedge 0.58
Chloracantha spinosa spiny chloracantha Forb 0.58
Mubhlenbergia asperifolia scratchgrass Graminoid 0.58
Mentha arvensis wild mint Forb 0.46
Sporobolus flexuosus mesa dropseed Graminoid 0.46
Marble Canyon
Baccharis emoryi Emory's baccharis Shrub 0.93
Equisetum x ferrissii horsetail Forb 0.80
Artemisia ludoviciana white sagebrush Forb 0.73
Euthamia occidentalis western goldentop Forb 0.65
Brickellia longifolia longleaf brickellbush Shrub 0.56
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Table 3. The 10 most frequently recorded native plant species at randomly selected sites for the entire study area and for each river
segment.—Continued

[River segments are delineated by river kilometers as follows: Glen Canyon, river kilometers —25 to 0; Marble Canyon, river kilometers 0 to 97; eastern Grand
Canyon, river kilometers 97 to 259; western Grand Canyon, river kilometers 259 to 404.]

Scientific name Common name Growth form Relative frequency

Marble Canyon—Continued

Sporobolus flexuosus mesa dropseed Graminoid 0.52
Salix exigua coyote willow Shrub 0.47
Muhlenbergia asperifolia scratchgrass Graminoid 0.46
Chloracantha spinosa spiny chloracantha Forb 0.42
Aristida purpurea purple threeawn Graminoid 0.38

Eastern Grand Canyon

Baccharis emoryi Emory's baccharis Shrub 0.52
Aristida purpurea purple threeawn Graminoid 0.51
Sporobolus flexuosus mesa dropseed Graminoid 0.47
Baccharis salicifolia mule-fat Shrub 0.42
Bothriochloa barbinodis cane bluestem Graminoid 0.42
Brickellia longifolia longleaf brickellbush Shrub 0.39
Aristida arizonica Arizona threeawn Graminoid 0.38
Isocoma acradenia alkali goldenbush Shrub 0.37
Sporobolus spp. dropseed Graminoid 0.35
Senegalia greggii catclaw acacia Tree 0.34

Western Grand Canyon

Baccharis sarothroides desertbroom Shrub 0.74
Equisetum X ferrissii horsetail Forb 0.55
Baccharis emoryi Emory's baccharis Shrub 0.50
Isocoma acradenia alkali goldenbush Shrub 0.43
Aristida purpurea purple threeawn Graminoid 0.41
Pluchea sericea arrowweed Shrub 0.41
Senegalia greggii catclaw acacia Tree 0.39
Bothriochloa barbinodis cane bluestem Graminoid 0.38
Sporobolus flexuosus mesa dropseed Graminoid 0.38
Baccharis salicifolia mule-fat Shrub 0.34

Table 4. The 10 most frequently recorded native plant species at fixed-site sandbars for the entire study area.

Scientific name Common name Growth form Relative frequency
Baccharis emoryi Emory's baccharis Shrub 0.93
Sporobolus flexuosus mesa dropseed Graminoid 0.91
Equisetum x ferrissii horsetail Forb 0.70
Sporobolus cryptandrus sand dropseed Graminoid 0.70
Euthamia occidentalis western goldentop Forb 0.65
Salix exigua coyote willow Shrub 0.63
Sporobolus spp. dropseed Graminoid 0.63
Sporobolus contractus spike dropseed Shrub 0.60
Muhlenbergia asperifolia scratchgrass Graminoid 0.58

Pluchea sericea arrowweed Shrub 0.58




Table 5. The 10 most frequently recorded nonnative plant species at randomly selected sites for the entire study area and for each

river segment.
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[River segments are delineated by river kilometers as follows: Glen Canyon, river kilometers —25 to 0; Marble Canyon, river kilometers 0 to 97; eastern Grand
Canyon, river kilometers 97 to 259; western Grand Canyon, river kilometers 259 to 404.]

Scientific name Common name Growth form Relative frequency
Entire study area
Bromus rubens red brome Graminoid 0.74
Tamarix salt cedar Tree 0.62
Cynodon dactylon Bermudagrass Graminoid 0.51
Bromus diandrus ripgut brome Graminoid 0.45
Schedonorus arundinaceus tall fescue Graminoid 0.33
Alhagi maurorum camelthorn Forb 0.27
Conyza canadensis Canadian horseweed Forb 0.23
Agrostis stolonifera creeping bentgrass Graminoid 0.23
Melilotus officinalis sweetclover Forb 0.22
Polypogon viridis beardless rabbitsfoot grass Graminoid 0.17
Glen Canyon
Schedonorus arundinaceus tall fescue Graminoid 1.00
Bromus rubens red brome Graminoid 0.92
Tamarix salt cedar Tree 0.85
Agrostis gigantea redtop Graminoid 0.81
Bromus diandrus ripgut brome Graminoid 0.81
Plantago lanceolata narrowleaf plantain Forb 0.81
Melilotus officinalis sweetclover Forb 0.46
Agrostis stolonifera creeping bentgrass Graminoid 0.38
Taraxacum officinale common dandelion Forb 0.23
Bromus tectorum cheatgrass Graminoid 0.19
Marble Canyon
Bromus rubens red brome Graminoid 0.79
Schedonorus arundinaceus tall fescue Graminoid 0.78
Tamarix salt cedar Tree 0.73
Agrostis stolonifera creeping bentgrass Graminoid 0.60
Bromus diandrus ripgut brome Graminoid 0.59
Polypogon viridis beardless rabbitsfoot grass Graminoid 0.37
Conyza canadensis Canadian horseweed Forb 0.26
Salsola tragus prickly Russian thistle Forb 0.24
Melilotus officinalis sweetclover Forb 0.21
Poa pratensis Kentucky bluegrass Graminoid 0.18
Eastern Grand Canyon
Bromus rubens red brome Graminoid 0.75
Tamarix salt cedar Tree 0.58
Cynodon dactylon Bermudagrass Graminoid 0.46
Alhagi maurorum camelthorn Forb 0.39
Bromus diandrus ripgut brome Graminoid 0.28
Conyza canadensis Canadian horseweed Forb 0.20
Salsola tragus prickly Russian thistle Forb 0.18
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Scientific name Common name Growth form Relative frequency
Bromus rubens red brome Graminoid 1.00
Tamarix saltcedar Tree 0.98
Bromus diandrus ripgut brome Graminoid 0.84
Bromus spp. brome Graminoid 0.72
Polypogon viridis beardless rabbitsfoot grass Graminoid 0.56
Salsola tragus prickly Russian thistle Forb 0.56
Conyza canadensis Canadian horseweed Forb 0.53
Schedonorus arundinaceus tall fescue Graminoid 0.47
Schismus arabicus Arabian schismus Graminoid 0.44
Cynodon dactylon Bermudagrass Graminoid 0.37

Foliar Cover

The five species with the highest average foliar cover
in each river segment differ for randomly selected sites
and fixed-site sandbars (figs. 8, 9, 10). In Glen and Marble
Canyons, the species at randomly selected sites with the
highest average cover are Baccharis emoryi, Tamarix,
Schedonorus arundinaceus (tall fescue), Bromus diandrus
(ripgut brome), and Equisetum X ferrissii; for fixed-site
sandbars, Tamarix, B. emoryi, Pluchea sericea, Phragmites
australis (common reed), and S. arundinaceus have the
highest average cover. In eastern Grand Canyon, the highest
average cover species are Tamarix, B. emoryi, P. sericea,
Baccharis salicifolia, and Cynodon dactylon for the randomly
selected sites and P. sericea, Tamarix, B. emoryi, Salix exigua

(coyote willow), and B. salicifolia for the fixed-site sandbars.
In western Grand Canyon, the highest average cover species
are C. dactylon, Baccharis sarothroides, B. emoryi, Tamarix,
and Prosopis glandulosa for the randomly selected sites, and
C. dactylon, P. sericea, B. emoryi, P. australis, and Tamarix
for the fixed-site sandbars.

The four nonnative species occurring in the five highest
cover value species also show different distributions.
Tamarix has high living cover across all river segments and
geomorphic features as compared to all the other species
(table 7, figs. 8, 9, 10). Cynodon dactylon cover is close
to zero in Glen and Marble Canyons, greater in eastern
Grand Canyon, and high in western Grand Canyon, with
little variation among geomorphic features in any segment
(table 7). Schedonorus arundinaceus and Bromus diandrus
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Figure 8. Average living foliar cover for the dominant species in Glen Canyon and Marble Canyon (river kilometers -25-97), separated
by geomorphic feature class. Species shown consist of the five species with the highest average cover on the randomly selected sites
and the five species with the highest average cover on the fixed-site sandbars (note that some species are dominant at both types of
sites). Species names abbreviated as follows: BACEMO, Baccharis emoryi; BRODIA, Bromus diandrus, EQUFER, Equisetum x ferrissir,
PHRAUS, Phragmites australis;, PLUSER, Pluchea sericea;, SCHARU, Schedonorus arundinaceus, TAMAR2, Tamarix. Whiskers extend to
the most extreme data point that is not more than 1.5 times the interquartile range (I1QR).
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Figure 9. Average living foliar cover for the dominant species in eastern Grand Canyon (river kilometers 97-259), separated by
geomorphic feature class. Species shown consist of the five species with the highest average cover on the randomly selected sites
and the five species with the highest average cover on the fixed-site sandbars (note that some species are dominant at both types of
sites). Species names abbreviated as follows: BACEMO, Baccharis emoryi, BACSAL, Baccharis salicifolia, CYNDAC, Cynodon dactylon;,
PLUSER, Pluchea sericea, SALEXI, Salix exigua, TAMAR2, Tamarix. Whiskers extend to the most extreme data point that is not more
than 1.5 times the interquartile range (IQR).
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Figure 10. Average living foliar cover for the dominant species in western Grand Canyon (river kilometers 259-404), separated by
geomorphic feature class. Species shown consist of the five species with the highest average cover on the randomly selected sites and
the five species with the highest average cover on the fixed-site sandbars (note that some species are dominant at both types of sites).
Species names abbreviated as follows: BACEMO, Baccharis emoryi; BACSAR, Baccharis sarothroides; CYNDAC, Cynodon dactylon;
PHRAUS, Phragmites australis, PLUSER, Pluchea sericea; PROGLA, Prosopis glandulosa, TAMAR2, Tamarix. Whiskers extend to the
most extreme data point that is not more than 1.5 times the interquartile range (IQR).

Table 7. Mean living foliar cover (as percentage of quadrat) and standard deviations (in parentheses) by river segment and
geomorphic feature.

[Species listed are one of the top five highest average foliar cover species in at least one river segment of the study area. River segments are delineated by river
kilometers as follows: Glen Canyon and Marble Canyon (“Glen/Marble Canyon”), river kilometers —25 to 97; eastern Grand Canyon (“Eastern GRCA”), river
kilometers 97 to 259; western Grand Canyon (“Western GRCA”), river kilometers 259 to 404.]

Randomly selected sites

River segment Fixed-site sandbars - -
Sandbars Debris fans Channel margins
Baccharis emoryi
Glen/Marble Canyon 2.7(34) 5.4 (4.5) 6.8 (5.5) 6.1(5.3)
Eastern GRCA 3.74.7) 2.8 (4.4) 2.0(3.4) 1.7(3.4)
Western GRCA 4.5(6.1) 2.1(4.4) 1.5(3.5) 1.7 (3.3)
Baccharis salicifolia
Glen/Marble Canyon 0.2 (0.8) 0.3 (1.3) 0.2 (0.8) 0.1 (0.5)
Eastern GRCA 0.3 (2.0) 1.4 (3.0) 0.6 (1.2) 1.2 (1.9)

Western GRCA 0.6 (1.3) 0.7 (1.7) 0.7 (2.0) 0.5(1.2)




Results

Table 7. Mean living foliar cover (as percentage of quadrat) and standard deviations (in parentheses) by river segment and

geomorphic feature.—Continued
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[Species listed are one of the top five highest average foliar cover species in at least one river segment of the study area. River segments are delineated by river
kilometers as follows: Glen Canyon and Marble Canyon (“Glen/Marble Canyon”), river kilometers —25 to 97; eastern Grand Canyon (“Eastern GRCA”), river
kilometers 97 to 259; western Grand Canyon (“Western GRCA”), river kilometers 259 to 404.]

River segment

Fixed-site sandbars

Randomly selected sites

Sandbars Debris fans Channel margins
Baccharis sarothroides
Glen/Marble Canyon 0.0 (0.2) 0.0 (0.1) 0.0 (0.0) 0.0 (0.0)
Eastern GRCA 0.3 (1.3) 0.3 (1.0) 0.3 (0.7) 0.3 (0.8)
Western GRCA 1.2(2.1) 29(3.4) 3.2(2.9) 3.1(3.2)
Bromus diandrus
Glen/Marble Canyon 1.3(3.7) 1.5 (2.6) 1.3 (2.5) 1.3(2.9)
Eastern GRCA 0.2 (0.5) 0.1 (0.2) 0.0 (0.1) 0.0 (0.1)
Western GRCA 0.5 (1.7) 0.3 (0.7) 0.2 (0.5) 0.1(0.5)
Cynodon dactylon
Glen/Marble Canyon 0.0 (0.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Eastern GRCA 0.5 (1.3) 0.8(2.4) 0.7 (1.5) 0.4 (0.9)
Western GRCA 8.0 (7.0) 7.1(7.1) 5.8 (4.0) 6.3 (6.8)
Equisetum x ferrissii
Glen/Marble Canyon 0.5(1.2) 1.1(1.7) 0.6 (1.2) 0.5(0.7)
Eastern GRCA 0.5(1.9) 0.4 (1.0) 0.1(0.4) 0.0 (0.2)
Western GRCA 1.8 (4.7) 0.7 (1.6) 0.6 (1.7) 0.9 (2.3)
Phragmites australis
Glen/Marble Canyon 1.7 (4.6) 0.8(2.9) 0.1(0.8) 0.1(0.4)
Eastern GRCA 0.7 (2.1) 0.4(2.5) 0.1 (0.6) 0.2 (1.7)
Western GRCA 3.9(7.5) 0.4 (1.6) 0.2 (0.9) 0.2 (1.1)
Pluchea sericea
Glen/Marble Canyon 2.5(5.7) 1.0 (2.5) 0.2 (0.7) 0.2 (0.9)
Eastern GRCA 6.4 (7.8) 2.0 (4.8) 1.2 (2.5) 0.9 (2.7)
Western GRCA 6.9 (6.8) 1.6 (4.2) 0.4 (0.7) 0.7 (1.8)
Prosopis glandulosa
Glen/Marble Canyon 0.2 (0.9) 0.1 (0.6) 0.2 (0.7) 0.0 (0.2)
Eastern GRCA 0.3 (1.1) 0.3 (1.4) 0.3 (0.9) 0.3 (1.0)
Western GRCA 2.6 (6.9) 0.9 (2.6) 1.5(3.1) 0.4 (1.1)
Salix exigua
Glen/Marble Canyon 1.3(1.9) 0.5 (1.1) 0.7 (1.5) 0.4 (0.7)
Eastern GRCA 0.9 (1.3) 0.4(2.1) 0.2 (0.4) 0.1(0.7)
Western GRCA 0.2 (0.7) 0.0 (0.1) 0.0 (0.0) 0.0 (0.2)
Schedonorus arundinaceus
Glen/Marble Canyon 1.5(2.9) 2.6 (4.6) 5.3 (6.0) 5.6(7.2)
Eastern GRCA 0.1 (0.3) 0.1(0.2) 0.1(0.3) 0.0 (0.2)
Western GRCA 0.0 (0.0) 0.0 (0.1) 0.1(0.2) 0.0 (0.1)
Tamarix
Glen/Marble Canyon 4.2 (4.5) 43 (4.5) 2.6 (2.7) 2.6(3.2)
Eastern GRCA 5.1(6.9) 3.8(4.4) 2.1(3.0) 1.8 (2.7)
Western GRCA 2.83(3.2) 2.4(3.4) 1.6 (2.0) 1.0 (1.6)
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are only in the top five cover estimates for randomly selected
features in Glen and Marble Canyons (table 7). Schedonorus
arundinaceus has particularly high cover on debris fans and
channel margins in Glen and Marble Canyons (fig. 8) and low
cover elsewhere. Bromus diandrus shows little cover variation
among geomorphic features in Glen and Marble Canyons

(fig. 8); its cover is close to zero elsewhere.

Three native Baccharis species have different
distributions within the study area. Baccharis emoryi has
high cover across all geomorphic feature classes in Glen
and Marble Canyons and at fixed-site sandbars in eastern
Grand Canyon and western Grand Canyon, but less cover at
randomly selected sites in western Grand Canyon (table 7).
Baccharis salicifolia is one of the five highest cover species in
only eastern Grand Canyon (fig. 9); it has less cover in Glen
and Marble Canyons and western Grand Canyon. Baccharis
sarothroides is one of the five highest cover species in western
Grand Canyon (fig. 10), where it has similar cover across
all geomorphic feature classes at randomly selected sites but
slightly less cover at fixed-site sandbars. In Glen and Marble
Canyons, however, Baccharis sarothroides has almost no
cover and little more in eastern Grand Canyon (table 7).

Of the other native species, Pluchea sericea and
Phragmites australis both have higher cover on fixed-site
sandbars than randomly selected sandbars, debris fans, and
channel margins (table 7). Pluchea sericea cover is higher in

eastern and western Grand Canyon than in Glen and Marble
Canyons (table 7). Phragmites australis also has higher cover
in western Grand Canyon than elsewhere (table 7). Salix
exigua is one of the five highest cover species on fixed-site
sandbars in only eastern Grand Canyon (fig. 9), despite
having higher average cover on fixed-site sandbars in Glen
and Marble Canyons (table 7). Cover values for S. exigua in
western Grand Canyon are close to zero. Prosopis glandulosa
cover is greatest in western Grand Canyon.

As shown in figure 11, Glen Canyon has the highest
average total foliar cover (29.0+12.2 percent) of all river
segments. Marble Canyon and western Grand Canyon
have the next highest average total foliar cover values at
14.049.4 percent and 13.8+9.1 percent, respectively, and
eastern Grand Canyon has the lowest average total percentage
of foliar cover (8.7+6.5 percent) of the four river segments.
Site average total foliar cover is variable within river segments,
ranging from 9.3 to 58.1 percent in Glen Canyon, 0.1 to 37.8
percent in Marble Canyon, 0.5 to 36.5 percent in eastern Grand
Canyon, and 0.4 to 42.5 percent in western Grand Canyon.

Temporal Trends by Hydrologic Zone

Statistical results of the mixed-effects models are
presented in table 8. Results for each of the response variables
are discussed in the following sections.
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Figure 11. Average total foliar cover (as percentage of quadrat) for randomly selected sites by river kilometer.

Sample year is indicated by point shape. River segments (indicated by color) are defined as follows: Glen
Canyon, river kilometers (Rkm) -25 to 0; Marble Canyon, Rkm 0 to 97; eastern Grand Canyon, Rkm 97 to 259;
western Grand Canyon, Rkm 259 to 404.



Species Richness

Total species richness (average number of species
per square meter) exhibited significant interaction effects
between hydrologic zone and year (table 8). The main effect
of hydrologic zone was not significant across the randomly
selected sites, but for fixed-site sandbars, hydrologic zone had
a much greater effect than year (see difference in F-values in
table 8). This difference is largely due to a substantial drop
in species richness in the active channel relative to the other
hydrologic zones that is observed at fixed-site sandbars but
not at randomly selected sites (fig. 12). Species richness in
the inactive floodplain and active floodplain was generally
lower in 2014 and 2017 than in other years, with the exception
of comparably low species richness in the active floodplain
of fixed-site sandbars in 2019. Species richness at randomly
selected sites was lowest in 2014; at the fixed-site sandbars,
species richness was lowest in 2019.

Figure 12. Fitted-model estimates for total species richness
across hydrologic zones (active channel shown in blue; active
floodplain shown in green; inactive floodplain shown in orange).
Different lowercase letters indicate significant differences at

a =0.05 based on Tukey's post-hoc comparisons.
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Table 8. Generalized linear mixed-effects model results for each of the response variables on randomly selected sites and fixed-site

sandbars.

[P-values <0.001 are notated as 0. Zone refers to hydrologic zone (active channel, active floodplain, inactive floodplain). Abbreviations: SS, sum of squares; df,

degrees of freedom; F, F-statistics; P, p-value.]

Randomly selected sites

Fixed-site sandbars

Dependent variable Fixed effect
df F P SS df F P
Total species richness Zone 0.2 2, 11890 2.2 0.109 27.3 2, 5960 240.2 0
Year 1.5 4, 460 7.7 0 2.8 4, 5949 12.5 0
Zone:year 5.2 8, 11889 13.5 0 4.6 8, 5951 10.1 0
Proportion of native versus Zone 35.8 2,9293 46.8 0 14.9 2,4032 20.5 0
nonnative species richness  yeqy 10.7 4,446 70 0 290 4,4017 199 0
Zone:year 31.6 8,9292 10.3 0 11.2 8, 4021 3.8 0
Total cover Zone 48.7 2, 11891 83.5 0 396.0 2, 5959 123.1 0
Year 10.2 4,461 8.7 0 104.2 4, 5948 25.9 0
Zone:year 39.5 8, 11891 17.0 0 223 8, 5951 134 0
Proportion of native versus Zone 144.5 2,9309 131.0 0 6.6 2,4035 6.4 0.002
nonnative cover Year 9.6 4,450 4.4 0.002 26.9 4,4018 12.9 0
Zone:year 29.9 8, 9308 6.8 0 5.6 8, 4023 1.3 0.220
Tamarix cover Zone 6.8 2, 11983 51.8 0 17.4 2, 5987 77.2 0
Year 0.1 4,455 0.4 0.784 13.4 4, 5959 29.7 0
Zone:year 2.0 8, 11982 3.9 0 8.5 8, 5971 9.5 0
Pluchea sericea cover Zone 6.3 2, 11888 90.4 0 584 2, 5956 191.6 0
Year 0.2 4,461 1.2 0.311 3.0 4, 5948 4.9 0.001
Zone:year 0.5 8, 11888 1.7 0.090 2.2 8, 5950 1.8 0.071
Baccharis spp. cover Zone 31.4 2, 11965 99.4 0 17.5 2, 5987 62.7 0
Year 0.9 4,462 1.4 0.232 6.4 4, 5958 11.6 0
Zone:year 13.7 8, 11965 10.8 0 5.7 8, 5969 5.1 0
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Native species richness exceeded nonnative species
richness, on average, across hydrologic zones and years
except within the active floodplain and active channel at
randomly selected sites in 2014 (fig. 13). The interactive
effect of hydrologic zone and year was significant in both
datasets, but the main effect of hydrologic zone was stronger
in the randomly selected sites dataset. The year 2014
generally showed a decrease in native species dominance in
the randomly selected sites dataset, whereas the fixed-site
sandbars dataset was less dominated by native species in
2017 and 2019. In general, native species dominance was
more pronounced at fixed-site sandbars (where it became
increasingly pronounced in the active floodplain and active
channel) than across randomly selected sites, though the
proportion of native species in the active channel did increase
through time for the randomly selected sites dataset.

Randomly selected sites Fixed-site sandbars
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Figure 13. Fitted-model estimates for the proportion of native
versus nonnative species richness across hydrologic zones
(active channel shown in blue; active floodplain shown in green;
inactive floodplain shown in orange). Different lowercase letters
indicate significant differences at a = 0.05 based on Tukey's
post-hoc comparisons.

Foliar Cover

The interactive effect of hydrologic zone and year on
total foliar cover was significant in both datasets, where the
main effect of hydrologic zone was greater than that of year
(table 8). Cover was lowest in 2014 in the active floodplain
and active channel of the randomly selected sites dataset, and
lowest in 2019 in the fixed-site sandbars dataset (fig. 14).
From 2014 through 2018, cover in the inactive and active
floodplains was greater at the fixed-site sandbar sites than at
the randomly selected sites, though the reduction in cover on
the fixed-site sandbars in 2019 nullified that difference.

Native species cover exceeded that of nonnative species,
on average, across hydrologic zones and years except within
the active floodplain in 2014 and the active channel in 2014
and 2016 for the randomly selected sites dataset (fig. 15). The
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Figure 14. Fitted-model estimates for total vegetation cover
across hydrologic zones (active channel shown in blue; active
floodplain shown in green; inactive floodplain shown in orange).
Different lowercase letters indicate significant differences at

a =0.05 based on Tukey's post-hoc comparisons.



interactive effect of hydrologic zone and year was significant
for the randomly selected sites but not the fixed-site sandbars.
Hydrologic zone had the predominant main effect in the
randomly selected sites dataset, whereas year had a stronger

main effect in the fixed-site sandbars (table 8). This difference

is attributable to the decline in native species dominance from
the inactive floodplain to the active channel in the randomly
selected sites—a pattern not observed on the fixed-site
sandbars. The fixed-site sandbars exhibited a significant drop
in native species dominance in the upper two hydrologic
zones in 2017.
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Figure 15. Fitted-model estimates for the proportion of native
versus nonnative species cover across hydrologic zones (active
channel shown in blue; active floodplain shown in green; inactive
floodplain shown in orange). Different lowercase letters indicate
significant differences at a = 0.05 based on Tukey’s post-hoc
comparisons.

Species of Interest

Tamarix cover showed interactive effects of hydrologic
zone and year, though the main effect of year was not
significant at the randomly selected sites and was weaker than
that of hydrologic zone in the fixed-site sandbars (table 8).
Tamarix cover generally decreased from higher to lower
elevation hydrologic zones (fig. 16); a significant increase in
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Figure 16. Fitted-model estimates for Tamarix species cover
across hydrologic zones (active channel shown in blue; active
floodplain shown in green; inactive floodplain shown in orange).
Different lowercase letters indicate significant differences ata =
0.05 based on Tukey's post-hoc comparisons.

Tamarix cover at the fixed-site sandbars between 2014 and
2016 was nullified in subsequent years by a decline in cover
back to 2014 levels.

Pluchea sericea cover was consistently greater on the
fixed-site sandbars at elevations above the channel (that
is, within the inactive floodplain and active floodplain
hydrologic zones) than at the randomly selected sites (fig. 17).
The interaction between hydrologic zone and year was not
significant in either dataset. The main effect of year was weak
in the fixed-site sandbar dataset, driven by a decline in cover
in the active channel over time.

Hydrologic zone and year had a significant interactive
effect in both datasets on the cover of Baccharis species, with
hydrologic zone having the stronger main effect (table 8).
Baccharis species cover was generally higher in the active
floodplain for both datasets, although consistent cover increase
in the active channel of the randomly selected sites resulted
in comparable cover between the active floodplain and
active channel in that dataset by the end of the study period
(fig. 18). Baccharis species cover peaked in 2016 in the active
floodplain of the fixed-site sandbars but showed no other
temporal trends in that dataset.
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Figure 17. Fitted-model estimates for Pluchea sericea
(arrowweed) cover across hydrologic zones (active channel
shown in blue; active floodplain shown in green; inactive
floodplain shown in orange). Different lowercase letters indicate
significant differences at a = 0.05 based on Tukey's post-hoc
comparisons.

Discussion

Differences Among Sample Sites

The community composition and temporal dynamics
of fixed-site sandbars differ throughout the study area
from those of randomly selected sites, including randomly
selected sandbars. The differences in composition between
fixed-site sandbars and randomly selected sandbars may
reflect differences in disturbance resulting from visitor use,
differential effects of HFE releases, historical or current
vegetation management (Ralston and Sarr, 2017; U.S.
Department of the Interior, 2020), and (or) fundamental
differences in grain size or geomorphic settings (Mueller and
others, 2018). The results of this study support analyzing data
from randomly selected sites (including randomly selected
sandbars) and fixed-site sandbars separately for status and
trends assessments, as well as maintaining separate monitoring
activities for the two types of sites. Data from randomly
selected sites represent the breadth and variability of riparian

Riparian Vegetation Patterns and Change Downstream from Glen Canyon Dam, 2014-2019

Randomly selected sites Fixed-site sandbars

0.6 — — 0.6

0.0 —

0.6 — — 0.6

Baccharis species cover (percent)
(1usduad) 1an09 sa1oads sueyaoeg

0.0 — — 0.0
| | | | | | | | |
1.2 — —1.2
a
ab
ab
0.6 - {06

f

0.0 — —0.0
| | | | | | | | | |

2014 2016 2017 2018 2019 2014 2016 2017 2018 2019
Year

Figure 18. Fitted-model estimates for Baccharis species cover
across hydrologic zones (active channel shown in blue; active
floodplain shown in green; inactive floodplain shown in orange).
Different lowercase letters indicate significant differences at

a =0.05 based on Tukey's post-hoc comparisons.

vegetation across multiple geomorphic features, whereas
data from the fixed-site sandbars provide an in-depth look
at campsites and eddy sandbars identified as key resources
in the Glen Canyon Dam Long-Term Experimental and
Management Plan.

One of the differences between fixed-site sandbars and
randomly selected sites is the prevalence of Pluchea sericea
(arrowweed). This species is notably higher in cover and
frequency on fixed-site sandbars and is especially prevalent in
Grand Canyon. Because of its affinity for growing at popular
campsites, P. sericea has been implicated in the reduction of
available campsite area within the study area (Hadley and
others, 2018) and is now being targeted for removal from a
few fixed-site sandbars and other campsites as part of the Glen
Canyon Dam Adaptive Management Program triennial budget
and work plan (U.S. Department of the Interior, 2020). Grand
Canyon National Park staff are coordinating with GCMRC
and Northern Arizona University scientists to implement
non-flow-related experimental vegetation treatments to assess
if and how vegetation removal at key sandbars can increase



usable campsite area and facilitate acolian transport of sand to
upland dunes. The fixed-site sandbars included in these efforts
in 2019 were Basalt Camp and 122 Mile Camp (Palmquist and
others, 2018b).

The clonal habit, high salinity tolerance (Vandersande
and others, 2001), and rapid resprouting capabilities (Busch
and Smith, 1993) of P. sericea make the species well suited
for growing on highly disturbed sand deposits as well as
in conjunction with—or following mortality of—7amarix
stands. HFE releases are designed to deposit sand on eddy
sandbars with the goal of creating large, open sand deposits,
and fixed-site sandbars are known to change rapidly in volume
depending on flow patterns (Mueller and others, 2014). At
the same time, Tamarix stands in the study area are being
defoliated as a result of the tamarisk beetle (Diorhabda
carinulata; Bedford and others, 2018), and P. sericea
commonly grows with living and dying Tamarix (Busch and
Smith, 1995; Hadley and others, 2018; Gonzalez and others,
2020). Conditions in the study area appear to be conducive to
P, sericea occupancy, particularly on sandbars. It is anticipated,
then, that this species will continue to do well in the study area.

Geographic Patterns

Floristic patterns documented in 2014 in randomly
selected sites (Palmquist and others, 2018a) remained clearly
delineated across years and with more intensive sampling.
Sampling in the Glen Canyon river segment has now shown
that randomly selected sites in Glen Canyon are floristically
similar to randomly selected sites in Marble Canyon, although
they are compositionally different. Glen Canyon has higher
frequencies of plant species that are either absent or rare in
other parts of the study area, such as Sisyrinchium demissum
(blue-eyed grass), Juncus torreyi (desert olive), Juncus
arcticus (arctic rush), Mentha arvensis (wild mint), Epipactis
gigantea (stream orchid), Plantago lanceolata (narrowleaf
plantain), and Epilobium ciliatum (fringed willowherb; see
app. 1). These (and similar) species reflect a greater presence
of flood-tolerant fluvial marsh species in Glen Canyon relative
to the rest of the study area. Glen Canyon also has higher
overall foliar cover values than the rest of the study area. These
qualities (greater presence of fluvial marsh species and high
foliar cover) may be the result of daily hydropower waves and
a lack of suspended sediment within the river segment, factors
which together produce daily inundations of very clear water
that provide light and water to flood-tolerant species (Blindow
and others, 1993). Because of its short length, the Glen Canyon
river segment has a small annual sample size (consisting of
approximately six randomly selected sites and one fixed-site
sandbar), and data from this segment must therefore be
grouped with data from the neighboring Marble Canyon river
segment for some status and trend analyses.

The floristic associations that currently exist are not
necessarily static through time. As climate, dam operations,
and tributary flow patterns change, it is likely that species
distributions along the Colorado River will also change
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(Capon and others, 2013; McShane and others, 2015; Perry
and others, 2015). The current floristic groups may remain
similar but shift geographically. For example, the desert
riparian community in Grand Canyon may become more
prevalent in Marble Canyon over time. Alternatively, novel
floristic groups may emerge as individual species respond
independently to environmental changes on the basis of
their specific physiological traits and niche preferences
(Hobbs and others, 2006; Catford and others, 2013). Because
different vegetation types differentially influence sediment
deposition (Butterfield and others, 2020), drive community
level functional traits (McCoy-Sulentic and others, 2017a),
and respond to hydrologic and climatic variables (Butterfield
and others, 2018), it is important to track shifts in riparian
vegetation communities over time.

Total riparian vegetation cover is variable across and
within segments. Narrow sections of Grand Canyon tend
to have lower total vegetated area, as illustrated by Sankey
and others (2015), but a lack of habitable area should not be
reflected in the total cover estimates provided in this report.
The sampled area (comprising no more than twenty-seven 1-m?
quadrats) is similar for all randomly selected sites, and quadrats
are arranged based on the width of the hydrologic zones;
therefore, a site that is 50-m wide can have a similar total
foliar cover estimate as a site that is 10-m wide. The reduced
total foliar cover exhibited in eastern Grand Canyon, then,
is likely due to other contributing factors such as increased
shading from canyon walls, increased flow velocity due to a
narrower channel, coarser soil components (in other words,
soil containing more gravels and rock), and so on. These same
factors may be related to the high variability in total vegetation
cover throughout the canyon, indicating strong interactions
between river flows and other environmental variables
(Bendix, 1994a; Butterfield and others, 2018; Butterfield and
others, 2020). To predict vegetation response to flows and
increase vegetation restoration success, it is important to better
understand how river flows and other environmental variables
jointly influence plant species in the study area.

Temporal Dynamics

The indicators used to assess management goals within
Grand Canyon have demonstrated few directional changes from
2014 to 2019, with observed trends primarily occurring within
the area influenced by daily dam operations (that is, within the
active channel). Some fluctuations in vegetation status can be
attributed to interannual climatic variation (discussed below),
but for some temporal variations in species of interest (for
example, the 2016 Baccharis and Tamarix peak in the active
floodplain of sandbars), the drivers are less evident. The status
and trends herein provide a baseline of interannual variation
against which future monitoring can be compared. The annual
timesteps of the monitoring data illustrate that collecting data
less frequently (for example, every other year) would make
it more difficult to detect trends or be confident that observed
patterns indicate trends in vegetation change. Additionally, less
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frequent sampling could miss nonlinear responses to unique
changes in dam operations (such as flows designed for trout
management and HFE releases).

In general, vegetation status and dynamics at randomly
selected sites differed from those at fixed-site sandbars,
indicating that different processes regulate vegetation in these
different geomorphic settings. For example, species richness
is lower in the active channel of fixed-site sandbars than in the
active channel of randomly selected sites. Another example is
that Baccharis species are increasing in the active channel of
randomly selected sites but not in the active channel of fixed-
site sandbars. These results imply that different management
strategies may be necessary to obtain vegetation and recreation
resource goals in these different settings.

Species diversity and total foliar cover showed temporal
patterns in the active channel that were consistent with
the overriding influence of river flows (rather than climate
variability) on vegetation affected by daily fluctuations.
Species richness, cover, and native species dominance
increased over time in the active channel across randomly
selected sites; whereas in the active channel of fixed-site
sandbars, species richness and cover both decreased slightly
over time, and native species dominance did not change. The
increase in native species dominance across randomly selected
sites reflects a shift from nonnative species dominance in
2014, and native species dominance at randomly selected
sites has begun to converge on the higher level of native
species dominance that has been consistently observed in
the active channel of the fixed-site sandbars. This increase
in native species dominance, as well as the overall increase
in species richness and cover across randomly selected sites,
likely reflects the consistent flow regime and low intensity
of disturbance over the study period, which has allowed
establishment and expansion of more native species in the
active channel. The increased prevalence of large native
shrubs in the genus Baccharis is emblematic of this change.

The opposite pattern of declining species richness and
cover in the fixed-site sandbars may reflect the combined
impacts of hydrological and climatic factors. The lower
species richness and cover of 2019 largely drove this trend,
which is consistent with the combination of a HFE in the
fall of 2018 and virtually no monsoon precipitation in 2019.
The reduction in species richness is unlikely to be related
to vegetation removals conducted by the National Park
Service at the Basalt Camp and 122 Mile Camp fixed-site
sandbars in 2019 (U.S. Department of the Interior, 2017).
Encroaching Pluchea sericea was removed to increase usable
camping area and facilitate increased transport of windblown
sand to upland areas. Because of the limited number of
sites affected, the relatively small extent of areas cleared,
the few species removed, and the notable lack of change in
cover of the targeted species (P. sericea), it is most probable
that the fall 2018 HFE and the dry 2019 monsoon season
are jointly related to the lower species richness and cover
observed in 2019.

The active floodplain and inactive floodplain exhibited
greater sensitivity to interannual climate variability, though
species richness and vegetation cover appeared to be
responsive to different aspects of precipitation. Species
richness was generally lowest in 2014 and 2018, the years
with the lowest total annual precipitation. Vegetation cover
was lowest in 2014 and 2019; the latter year, though not
particularly dry in terms of total annual precipitation, had one
of the driest monsoon seasons in decades. In contrast, although
2018 was dry in terms of total annual precipitation, that year’s
monsoon season was close to average. These differing patterns
are consistent with the influence of herbaceous, often annual
species that make up a large proportion of the species pool
but contribute less than woody vegetation to total ecosystem
productivity. The apparent effect of a relatively dry 2019
monsoon suggests that vegetation productivity is constrained
by warm-season precipitation. The fixed-site sandbars, which
in normal years had generally higher vegetation cover than
the randomly selected sites, seem to have been particularly
sensitive to the dry monsoon season in 2019. This apparent
sensitivity could reflect the higher initial vegetative cover of
fixed-site sandbars, which could have resulted in more intense
competition in 2019, or it could reflect that the fixed-site
sandbars experience more severe water deficits under dry
conditions because of their typically coarse substrates.

Some species of interest appeared to exhibit sensitivity
to monsoon precipitation, though the evidence is weak and
may be conflated with effects of HFE frequency. Baccharis
and Tamarix had peak cover in 2016 in the active floodplain
(and Tamarix in the inactive floodplain) of fixed-site sandbars.
Pluchea sericea had a minor increase in cover that year, as
well, though it was not significantly different than other years.
Precipitation during the 2016 monsoon was high following an
average precipitation winter and spring, which may account
for these increases in cover but does not account for these
anomalies not being observable across the randomly selected
sites. Another possibility is that the lack of a HFE in 2015
allowed these woody plants to expand on the less stable
sandbar surfaces, though a similar response was not seen in
2018 after the lack of a HFE in 2017. Regardless, the fact that
this anomaly was only observed on the fixed-site sandbars
suggests an influence of either substrate type, sandbar
reconfiguration, or both. The amount and quality of active
floodplain and inactive floodplain habitat could have been
quite different in 2016 because of HFE releases in the three
consecutive years from 2012 to 2014. Further investigation of
the effects of HFE releases on species of interest in terms of
habitat quality and lag effects are warranted.

Riparian vegetation in the study area is expected to
increase over time because habitat is still available and base
flows are anticipated to remain stable (Sankey and others,
2015; Kasprak and others, 2018; Kasprak and others, 2021).
In an evaluation of riparian vegetation expansion between
2002 and 2013, Durning and others (2021) showed that
most encroachment occurred between 2002 and 2009 and



that the years from 2009 to 2013 were characterized by

less encroachment by a smaller set of species. During the
timeframe analyzed here (2014-2019), foliar cover does not
appear to be increasing, suggesting that the slower rate of
encroachment that Durning and others (2021) noted from
2009 to 2013 is continuing. The exception to this trend is the
increasing Baccharis spp. cover in the active channel. Durning
and others (2021) also found that Baccharis species were one
of the primary contributors to recent vegetation encroachment,
so this pattern of growth is also continuing. It is likely that
Baccharis species are driving the greater proportion of native
species in the active channel. Baccharis emoryi is high in
cover across all geomorphic features and is the only native
species with cover estimates approaching those of nonnative
Tamarix and Cynodon dactylon. Baccharis sarothroides

is also a large contributor to vegetation cover in western
Grand Canyon. Although P, sericea is a major contributor

to vegetation cover on fixed-site sandbars, its cover did not
increase from 2014 to 2019. Vegetation increases in the

past have not proceeded consistently across years, space,

or species in the study area and are related to river flows,
geomorphology, and climate (Carothers and others, 1976;
Brian, 1982; Sankey and others, 2015; Butterfield and others,
2018; Mueller and others, 2018; Butterfield and others, 2020;
Durning and others, 2021). Determining the flow patterns that
lead to one species increasing in cover and (or) frequency
while the cover and frequency of others remain the same
would improve our abilities to predict the trajectory of riparian
vegetation change and help define useful management actions.

The riparian area of the Colorado River between Glen
Canyon Dam and Lake Mead is currently undergoing a visible
change in its native to nonnative species ratio. Diorhabda
carinulata (tamarisk beetle) has been present in the ecosystem
since at least 2009 and, as of 2013, affected approximately
15 percent of Tumarix (Bedford and others, 2018). Over
the timeframe covered here, monitoring efforts have not
recorded significant decreases in living Tamarix cover, despite
observable defoliation events. In this study, defoliated and
fully healthy Tamarix are recorded similarly, so only tree
mortality would be observable. Repeated defoliation events
weaken Tamarix and can eventually result in tree mortality,
but limb loss and resource depletion occur first (Bean and
Dudley, 2018). Thus, considering 85 percent of Tamarix had
not been affected by the tamarisk beetle in 2013, it is likely
that Tamarix mortality is not yet recordable. The efforts of this
monitoring protocol (which records dead Tamarix; Palmquist
and others, 2018b) and periodic overflights (which can
successfully track 7amarix defoliation and mortality; Bedford
and others, 2018) are together expected to be able to track the
effects of the tamarisk beetle on 7amarix cover over time.

The metrics used to track key riparian vegetation qualities
(species richness, native to nonnative species ratio, total foliar
cover) are promising for tracking management goals in the
face of changing climate and flow conditions. These metrics
are not dependent upon specific species and compositions;
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rather, they are simply related to the total number of species,
the number of native species, and areal cover. The apparent
lack of importance of both geomorphic feature and floristic
region in the mixed-effects models of vegetation metrics
(species richness, native to nonnative species ratio, total

foliar cover) means that they can be evaluated across the
entire study area (and thus do not require that the study area
be divided into multiple river segments). Any future species
distribution shifts will not necessarily change the outcome of
these metrics, so values will be comparable over time. Shifts
in species richness, native to nonnative species ratios, and total
foliar cover can indicate if species are being lost over time,

if nonnative species are predominating, or if total vegetation
cover is declining or increasing. Although species composition
is important because of the ecosystem services provided

by specific species, measures of species richness, native to
nonnative species ratios, and total foliar cover can provide

a simple assessment of vegetation status that is useful for
assessing the state of riparian vegetation along the Colorado
River between Glen Canyon Dam and Lake Mead over time.
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Appendix 1. Species List for Randomly Selected Sites

Table 1.1 provides a list of all recorded species in the randomly selected sites dataset.
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Appendix 47

Appendix 2. Species List for Fixed-Site Sandbars

Table 2.1 provides a list of all recorded species in the fixed-site sandbars dataset.
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