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A B S T R A C T

Mango is a globally important tropical fruit but lacks genomic tools to support cultivar identification and to
enable breeding efforts. Assessing the genetic diversity and relatedness of mango germplasm is essential for
identifying genetically distant parents with favorable agronomic traits to produce hybrid populations enabling
selection of improved cultivars. We thus genotyped 1915 mango accessions from the United States, Senegal,
Thailand, and Australia with 272 single nucleotide polymorphism (SNP) markers identifying over 520,000
genotypes. These accessions represent the available diversity from both public and private germplasm collec-
tions in these countries, as well as accessions from smaller international collections. The study included
Mangifera indica, other Mangifera species, and accessions from half sibling populations. Genotype data were
analyzed using an affinity propagation method to define 258 groups. Using a simple visual method, no more than
30 SNPs are needed to distinguish a single cultivar of interest from all other cultivars in the dataset enabling the
accurate identification of important commercial cultivars. As these SNP markers provided accurate genotype
data for accessions from different genera as well as half siblings, the majority of the genetic diversity of the
mango germplasm and related species that were genotyped has been captured. The dataset contains a large
collection of open-pollinated half siblings from known maternal parents. A simple visual method can also be used
to identify self-pollinated individuals among the half siblings of known maternal parents and, in some cases, to
infer likely candidates for the paternal parent. Identification of self-pollinated individuals is particularly im-
portant in terms of selection of improved cultivars, as due to high levels of heterozygosity, self-pollinated
progeny are likely to uncover deleterious recessive alleles. Genotyping of progeny at the seedling stage and
removal of self-pollinated progeny can increase the efficiency and decrease the costs of selection of improved
cultivars from open-pollinated populations.

1. Introduction

Mango (Mangifera indica) is a tropical tree species valued for the
nutritional and organoleptic qualities of its fruit. Global mango pro-
duction reached 46.51 million metric tons in 2016 (FAO, 2016b), and
ranked sixth in global fruit production behind watermelons, bananas,
apples, grapes, and oranges (FAO, 2016a). Mango has been cultivated
for an estimated 4,000 years or more (De Candolle, 1885) with seed
propagation followed by grafting of superior types resulting in ap-
proximately 1,000 named cultivars (Litz, 2009). Mango is imbedded in
the cultural backgrounds of many tropical nations including major
producers such as India, Mexico, China, Thailand, Indonesia, and

Pakistan (Mahato et al., 2016). The center of origin for mango is be-
lieved to be somewhere in Northeastern India, Bangladesh, and Nepal,
perhaps stretching into Northern Myanmar and Thailand, though cur-
rent distributions of wild M. indica are not well known (Kostermans and
Bompard, 1993; Litz, 2009; Singh et al., 2016). In contrast, Malesia
(particularly Sumatra, Borneo, and the Malay Peninsula) is the center of
diversity for the genus Mangifera (Kostermans and Bompard, 1993).
Mangos from South East Asia comprise a tropical, polyembryonic group
that contain seeds with both zygotic and nucellar embryos. A second
group includes subtropical, Indian types with monoembryonic seeds
(Mukherjee and Litz, 2009). Since its original domestication, mango has
been dispersed and cultivated throughout the tropical and subtropical
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world and has been associated with the migration of people and trade
with and in between regions (Bompard, 2009; Duval et al., 2006;
Kostermans and Bompard, 1993). Identification of mango species based
on morphological characters has provided estimates of the number of
species ranging from 45 (Hou, 1974) to 69 (Kostermans and Bompard,
1993). Highlighting the confusion surrounding the taxonomy of Man-
gifera, the taxonomic database the plant list (theplantlist.org) includes
133 specific epithets for Mangifera, only 10 of which are currently ac-
cepted, and 116 of which are unresolved. Additional data from genome-
wide molecular markers should help resolve some outstanding mango
diversity questions and aid future plant improvement work.

The majority of mangoes are consumed domestically (Galán Saúco,
2015). Only a few cultivars are typically preferred in these domestic
markets, and even fewer meet the stringent criteria for export markets.
Most named varieties (cultivars) originate from chance seedlings or
selections that are propagated by cuttings, though formal mango
breeding programs exist in Australia, Brazil, China, India, Indonesia,
Israel, Mexico, Pakistan, and Thailand (Bally and Dillon, 2018; Kuhn
et al., 2017). The primary export mangos are restricted to a few specific
cultivars originating from a selection process that began in Florida in
the first decades of the 20th century including ‘Tommy Atkins’, ‘Kent’,
and ‘Keitt’ (Galán Saúco, 2015; Schnell et al., 2006). Export mangos are
mostly large, externally attractive fruits with excellent shipping char-
acteristics. The United States is the largest mango importer consuming
around one third (˜436,000 metric tons) of global mango imports in
2013 (Galán Saúco, 2010).

Public and private mango collections have attempted to capture the
diversity of cultivated accessions along with some wild Mangifera spe-
cies but are challenged by the biology of this species. Mango seeds are
not tolerant to desiccation and cannot be stored for long periods of
time. Additionally, the long mango juvenile period would not be
amenable to rapid data collection on fruit quality traits if starting from
seeds or immature trees. Therefore, mango germplasm collections in-
clude long-term maintenance of living trees that are propagated peri-
odically by grafting. This process can lead to unintentional mislabeling
and propagation of rootstocks rather than scion material. Large mango
germplasm collections have been established at the USDA Subtropical
Horticulture Research Station (SHRS) in Miami, FL (the largest collec-
tion), and the Department of Agriculture and Fisheries, Mareeba,
Queensland, Australia. These collections along with smaller collections
are listed in Table 1. The collection at SHRS includes several research
populations made from a hybridization polycross experiment where
multiple clones of six different mango cultivars were planted in proxi-
mity and the seedlings from these open-pollinated trees planted and
evaluated. The collection at Mareeba also includes selections and sev-
eral hybrid populations from a long-term Australian mango breeding
program. Ideally, any molecular marker, including SNP markers, would
uniquely identify half/full sibling progeny accessions as well as acces-
sions from different genera to allow a single set of markers to be used
for all germplasm and research collections.

The mango genome is diploid (n= 20) with an estimated haploid
size of ˜439 MB (Arumuganathan and Earle, 1991). There have been
many studies of mango germplasm accessions with a wide variety of
molecular markers focusing primarily on M. indica including previous
work using SNPs (Kuhn et al., 2014; Mahato et al., 2016; Sherman et al.,
2015). Historical development and use of other types of molecular
markers (RAPD, ISSR, SSR, SCoT, AFLP, etc.) are platform dependent,
and genotype data cannot be easily transferred between labs. The
density of these markers can also be insufficient to support breeding
and genetics work in mango. Clustering analyses using these alternative
molecular markers has identified differences in mango by source re-
gion, but the number of markers and accessions tested only allows for a
rough estimate of genetic diversity. Conversely, SNP molecular markers
are unambiguous, platform-independent, transferable between labs,
and of sufficient quantity to enable genotype databases supporting ac-
cession identification and breeding efforts.

SNP discovery in mango and other non-model systems usually relies
on next generation sequencing and de novo transcriptome analysis of a
few accessions to develop markers for genotyping collections. A
‘Tommy Atkins’ mango transcriptome from multiple plant tissues
identified 30,000 transcripts and mapped RNA sequences from 24 ge-
netically diverse mango accessions to identify ˜400,000 SNPs that led to
640 high-quality, well isolated SNPs in protein-coding genes (Kuhn
et al., 2014). Another study developed 239 SNPs from mango cultivars
‘Keitt’ and ‘Tommy Atkins’ and was used to genotype 74 Israeli acces-
sions (Sherman et al., 2015). Recently, 1,054 single nucleotide poly-
morphism (SNP) markers were used from the three sources described to
create a genetic map for mango (Kuhn et al., 2017). The markers from
Kuhn et al were used to genotype seven mapping populations of mango
totaling 807 individuals. A consensus genetic map was produced that
defined 20 linkage groups for mango as expected. In the present study,
384 SNP markers were used to analyze diversity. The majority of these
markers are evenly distributed across the 20 linkage groups to capture
diversity across the genome.

The primary objective of this study was to genotype the largest
number of mango accessions possible from germplasm collections from
the United States, Senegal, Thailand, and Australia with sufficient
molecular markers to generate accurate genotypes and determine ge-
netic relationships. The resulting database was then used to 1) estimate
genetic diversity in the germplasm dataset, 2) estimate mislabeling/
misidentification in the germplasm collections, 3) confirm self-polli-
nation, self-compatibility, and pedigree when possible, 4) test marker
association with the polyembryony trait, and 5) genotype accessions
from other genera and species related to M. indica to assess congruency
with classical taxonomy. In using the large SNP database to accomplish
these goals, we have developed an intuitive, visual analysis method that
allows advanced querying of the database using simple functions of a
spreadsheet program. Sorting and counting allows a user to determine
the likelihood of self-pollination, infer the paternal parent of open
pollinated seedlings of known maternal parentage, and choose subsets
of SNP markers to distinguish a cultivar of interest from all other
germplasm accessions.

2. Materials and methods

2.1. Germplasm accessions

Mango accessions from the United States, Senegal, Thailand, and
Australia were included in this study. The sources of all 2232 in-
dividuals that were genotyped are summarized in Table 1. Designators
were assigned for genotyping and original names appended to desig-
nators. Individuals named in the dataset represent a combination of the
actual accession name and a unique identifier assigned to distinguish it
in the analysis. Combined names may have unusual joining characters
such as two colons (::) that have been added to simplify conversion of
names from the analysis programs to human friendly names. In some
cases, revision of the names is designated by the addition of the revision
in parentheses. For Australian germplasm accessions, the addition of
(Kensington) to a name denotes that it is a farmer’s selection of 'Ken-
sington Pride'.

2.2. Isolation of DNA

DNA was isolated as described in Kuhn et al (Kuhn et al., 2017).
Briefly, 3mm leaf disks were punched from leaves (˜50mg per sample),
disrupted by shaking with 1/52″ stainless steel beads, and extracted
using a Mag-Bind Plant DNA DS 96 Kit from Omega BioTek (M1130-01)
with automated steps run on a Hamilton Starlet liquid handling robot.
DNA was quantified by fluorometry and all DNA samples adjusted to a
concentration of 10–20 ng/uL using a Hamilton liquid handling robot.
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2.3. SNP genotyping of germplasm accessions

Each mango accession was genotyped with 384 SNP markers de-
signed as assays to be run on the Fluidigm EP-1 platform (Fluidigm)
from a larger set of SNP markers as previously described (Kuhn et al.,
2017). The sequences of the 399 and subset of 272 SNP assays used in
this study are in Supplemental Table 1 with the associated linkage
group, map position, and annotation where available. Assays were
performed on a 96×96 Fluidigm chip with 91 sample DNAs, five
controls and 96 SNP assays. Genotype information in a flat file format
was grouped and reformatted using Perl scripts for analysis. Perl scripts
are available upon request.

2.4. Analysis of genotype data

Genotype data was encoded in four categories: homozygous allele 1
(1), homozygous allele 2 (2), heterozygous (3) or missing data (0) ra-
ther than nucleotide data to allow an unbiased analysis as to the rela-
tions of the individuals.

2.4.1. Calculating pairwise distances
The following custom distance function was used to generate pair-

wise distances:

=
∑

− +
=x y

md x md y
distance( , )

272 ( ( ) ( )

comp x y
i

272 ( , )
1

i i

where comp (xi, yi) is the SNP state comparison scoring function for a
given marker i for samples x and y and i) comp (1, 2) or comp (2,1) is
equal to 1, ii) comp (b, 3) or comp (3, b), where b is 1 or 2, is equal to
0.5, and iii) comp (a, a), comp (a, 0), comp (0, a), where a is any of the
four possible states, is equal to 0. The missing data function, md(x),
counts the number of missing data points for a given sample x. The
value 272 is the number of markers compared between samples after
data was curated to remove markers with greater than 5% missing data
and individuals with greater than 5% missing data in a recursive
fashion, resulting in a dataset of 272 markers for 1915 individuals.

2.4.2. Affinity propagation analysis
Affinity propagation has been used previously to analyze SNP data

(Bryant et al., 2013; Pers et al., 2015), and employs an algorithm that
resamples the data space until the group identities and exemplars
converge and do not change under further resampling. Affinity propa-
gation, as implemented by the Python library Scikit-learn (Pedregosa
et al., 2011), was run with 0.99 damping, 1.0E6 maximum iterations,
5.0E5 convergence iterations, default median preference, and affinity
set to “precomputed”. The input must be a square pairwise sample si-
milarity matrix which, in this case, was produced by inverting the
distance matrix by subtracting each distance from 1. By selecting a
convergence iteration value half that of the max iterations, a 50 percent
consensus rule was enforced; if the analysis stopped before maximum
iterations were reached, then the same groups were resolved at least 50
percent of the time.

2.4.3. Silhouette scores for membership in affinity groups
Per sample and average silhouette scores (Rousseeuw, 1987) were

calculated using Scikit-learn (Pedregosa et al., 2011) and the per
sample scores are reported in Supplemental Table 2. The inputs are the
clusters found by affinity propagation and the pairwise sample distance
matrix. Silhouette scores are normalized between 1 and -1. Per sample
silhouette scores indicate how well a given sample is matched to its
cluster, with 1 being a perfect match and -1 a total mismatch. The
average silhouette score reflects how well the dataset has been clus-
tered, with scores closer to 1 indicative of increasingly resolved clus-
tering structure (Rousseeuw, 1987).

2.5. Visualization of genotypic data

Genotype data files were imported into Microsoft Excel for visuali-
zation of this large dataset enabling validation of queries without re-
quiring specialized analytical programming scripts in Perl, Python, or
R. Grouping information from the affinity propagation analysis, ex-
emplars and silhouette scores were added as columns and the dataset
was sorted by affinity group. Cells were colored using conditional for-
matting (0, grey, missing data; 1, blue, homozygous allele 1; 2, orange,
homozygous allele 2; 3, green, heterozygous) which allowed sorting
without regard to the actual nucleotide data. Numbers of 0, 1, 2, 3 were
calculated for each row and column using the countif function in Excel.
Some of the simple analyses performed on the dataset were done using
the sorting function in Excel. Columns (markers) were sorted by an
individual’s genotype across all markers (0–3), number of 1 s, smallest
to largest, by heterozygosity and by marker position in the genome,
among other methods. Rows (individuals) were sorted by groups,
names, homozygosity and heterozygosity, among other methods.
Colored data file with affinity propagation groups, silhouette scores and
related data are in Supplemental Table 2.

In an affinity group, if two or more accessions share the same or
similar silhouette score, they are likely to be genetically identical
within the limits of machine genotype error. They will also have similar
or identical numbers of homozygous allele 1, homozygous allele 2 and
heterozygous states. Using supplemental Table 2, identity can be vi-
sually determined by hiding rows in the cluster with dissimilar sil-
houette scores and scanning across the columns looking for different
colored cells among accessions believed to be identical by naming
convention.

In addition, to identify a subset of markers that can be used to
distinguish a single accession from all other non-identical accessions,
supplemental Table 2 can be sorted by the row with the accession of
interest. The ranges of 1 s and 2 s can be used in countif formulas to
determine the number of mismatches with all other accessions in the
database, giving a score of 1 for a 1:2 or 2:1 mismatch.

2.6. Association of polyembryony with SNP markers for germplasm
collection

A chi-square test for independence (degrees of freedom=1106)
was used to establish whether a relationship existed between the em-
bryony trait and SNPs at significance threshold p= .001; 369 markers
were used across 199 individuals and the derived contingency table of
expected values contained ≥ 80% of cells with ≥ 5 counts and no cells
with 0 counts.

Association mapping for the polyembryony trait was done in R using
post hoc Fisher’s Exact Tests with a calculated Bonferroni multiple test
corrected significance threshold of p=2.71e-6. The fisher. Test func-
tion was used to test 369 of the 384 markers and 199 individuals with a
two-sided alternative hypothesis and a workspace of 2e8The markers
with the lowest p-values were compared to the linkage map and QTL
mapping from a previous study (Kuhn et al., 2017).

3. Results

3.1. Estimation of genetic diversity

3.1.1. Genotype statistics
Biallelic SNP markers (384) were used to genotype 2,232 germ-

plasm accessions. Data were curated to remove markers with greater
than 5% missing data and individuals with greater than 5% missing
data in a recursive fashion, resulting in a dataset of genotypes of 272
markers for 1915 individuals (Supplementary Table 2). The individuals
included accessions from different genera (Bouea and Anacardium) of
the Anacardiaceae, different Mangifera species, germplasm accessions,
hybrids of known cultivars and half-sibs from open pollination of
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selected maternal parents. Missing data per individual varied from 0 to
14 markers of the 272 and missing data for markers varied from 2 to
102 for the 1915 individuals.

3.1.2. Affinity propagation analysis
The affinity propagation analysis was done with 1915 individuals

and 272 markers as described above and generated 258 affinity groups.
The affinity propagation analysis converged after ˜520,000 iterations,
well before the maximum number of 1M iterations, and accession
membership in identical affinity groups was observed in greater than
50% of the 520,000 iterations. For each affinity group an exemplar that
represents the “center” of the cluster in n-dimensional dataspace is
determined by measuring distances of all other cluster members to the
exemplar. As the analysis continues, each accession is considered a
possible exemplar, distances were calculated and affinity groups de-
termined. Affinity groups varied in size from 2 to 99 individuals. A
distribution of the frequency of different sized affinity groups is shown
in Fig. 1. The majority of the affinity groups (246 of 258) contained
between 2 and 15 individuals.

3.1.3. Silhouette scores
After affinity propagation analysis of the 1915 individuals, a sil-

houette analysis determined the quality of the membership of a parti-
cular accession in an affinity group (Supplemental Table 2). Silhouette
scores near or below zero indicate weak evidence for membership in the
affinity group, or that the accessions in the group are equally spaced
and diffuse in the dataspace such that there is no clear “center” to the
cluster. A low silhouette score does not indicate that there is no affinity
group, nor that accessions are in a “can’t be clustered” bin, nor that
individuals have simply been grouped because they are distant from all
other clusters, a version of long branch attraction in phylogenetic
analyses. With the parameters set for the analysis, convergence of the
analysis guarantees that accessions occur more than 50% of the time in
the same cluster and clusters are determined by distance to the ex-
emplar and not to other clusters.

3.1.4. Calculation of machine genotyping error
Some cultivars had been genotyped multiple times and allowed the

calculation of machine genotyping error. For 26 clones of cultivar
‘Haden’ in affinity group 235 (Supplementary Table 2) that were la-
beled as ‘Haden’ from the Australian, Fruit and Spice Park, SHRS, and
Zill collections, there were 35 differences at 16 markers. Seven of the
markers showed only one difference among the 26 sequences, with the
greatest number of differences for a single marker being seven
(Mi_0481). For the 26 clones, there were no “impossible” differences at
any marker. For example, an individual that was homozygous for allele
1 and an individual that was homozygous for allele 2 for the same SNP

marker (1:2, 2:1) between compared accessions that are putatively
identical. Such “impossible” differences are unlikely to occur in the
Fluidigm platform used for assay based on how the genotypes are called
but have been observed when multiple identical clones are compared.
Such differences have not been correlated with specific markers and are
assumed to be due to machine error as they occur at less than 0.1%
frequncy. All differences observed were between individuals homo-
zygous for the markers and individuals heterozygous at the same
marker. Nine of the 26 ‘Haden’ sequences showed no differences over
the 272 markers and defined the consensus correct genotype. The
greatest number of differences from the consensus genotype was a
single individual with seven differences (2.6%), the other clones having
one to three differences. Thus, the most conservative estimation of
machine genotyping error (7 differences out of 272, 2.6%) was used to
determine whether two individuals could be considered identical.

3.1.5. Heterozygosity of individuals and markers
Heterozygosity of individuals ranged from 1% (3/272) for M.

quadrifida (ew51::SBG_6) to 94% (257/272) for cultivar ‘Julie’
(ZLp069::0). Low heterozygosity was seen for most individuals labeled
as species other than M. indica. Heterozygosity of markers ranged from
21.4% (410/1915, Mi_0481, map position LG8 145 cM) to 52.1% (998/
1915, mango_rep_c3432, map position LG14 60.4 cM). On average, 17
out of 1915 genotypes were missing across all markers (0.9%), while
the average missing data per individual was 2.4 out of 272 markers
(0.9%). Average allele frequency over all markers for allele 1 was
51.2% and allele 2 was 48.7%. Allele frequency ranged from alle-
le1:allele2 25:75 for Mi_0358 to 84:16 for SSKP077C2_A650 G.

3.1.6. Estimating mislabeling
To estimate mislabeling, small groups of identical or nearly iden-

tical cultivars were used with the assumption that identical genotypes
should have identical names. For example, in group 106, there are 99
accessions that fall into three ranges of silhouette scores: -0.3−0.17 has
21 accessions, 0.24−0.55 has 10 and 0.61−0.69 has 68. Accessions in
the highest silhouette score range can be considered identical as they
have seven or fewer differences to the consensus genotype for
‘Kensington Pride’. Many of these are farmer’s selections of ‘Kensington
Pride’ (Bally et al., 1996) as indicated by having (Kensington) after the
name. Interestingly, not all of the farmers’ selections are from clonal
‘Kensington Pride’, but rather seedlings of ‘Kensington Pride’, such as
AuMG411_Weaver, AuMG352 Kensington Mackay AUS, AuMG250
Bowen Early AUS, AuMG288 Mountain View Mottle HI and Amarto
Seedless AUS that have silhouette scores between 0.09 and 0.36. Some
accessions are known to be mislabeled such as AuMG249 ‘Mulgoa Ra-
masamy’ and AuMG465 M. pajang that are actually ‘Kensington Pride’.
Previous names have been kept by the curator to provide historical

Fig. 1. The distribution of the number of affinity groups having a specific number of individuals. The x-axis represents the number of individuals in an affinity group
and the y-axis is the number of affinity groups that have that number of individuals.
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consistency. In all, 10 of the 68 (15%) genotypically identical acces-
sions from the Australian germplasm collection (AuMG prefix) may be
mislabeled or misidentified. The sample AuMG371 ‘Carabao Super
Manila Harbon’ is not a mislabeling at the germplasm level but an error
during genotyping, and two samples, AuMG371 and AuMG106 ‘Ken-
sington Spooner’ (AUS) were mislabeled during genotyping. AuMG106
is in group 3 with the other ‘Carabao’ and AuMG371 is in group 66 with
the other ‘Kensington Pride’-like accessions. This mislabeling/mis-
identification estimate is based solely on this group and may not be
representative of mislabeling throughout the Australian collection. Two
accessions with silhouette scores of 0.68 (AuMG382 Rahder Original
(R2E2) and AuMG322 Brown’s seedling) are labeled as seedlings, but
appear to be ‘Kensington Pride’ clones. R2E2 is a mid-season variety
with large, highly coloured fruit. It was selected in 1982 by Ian Bally,
Ross Wright, and Peter Beal as a seedling progeny of the Florida variety
‘Kent’, and takes its name from the row and position in the field of the
original tree at the department´s Bowen Research Facility. Further
evidence of mislabeling in germplasm collections comes from identi-
fying groups where two or more differently named accessions are
genotypically identical. Only groups that had at least two accessions
with the same highest silhouette scores were considered, with the as-
sumption being that these accessions were genetically identical. This
occurred in 58 of the 258 groups (22%). Mislabeling was attributed to
each of the four largest germplasm collections by the criterion de-
scribed above and the number of potential mislabeling events were
divided by the total number of accessions in the collection. For the
Miami, Fruit and Spice Park, Australian, and Senegal collections, the
mislabeling was ˜8%. This is likely an underestimate due to the diffi-
culty of identifying mislabeling in groups where multiple genetically
identical accessions were all named differently.

3.2. Detection of self-pollination and estimation of self-compatibility

To visually determine the likelihood of self-pollination in hybrids
with a known maternal parent, the genotype data in Supplemental
Table 2 can be sorted by row using the maternal parent to sort on,
followed by counting the number of times that the hybrid and maternal
parent differ at homozygous loci. If the maternal parent is correctly
identified, differences in the hybrid will only be heterozygotes (3). If
there are a number of impossible differences (1:2 or 2:1, maternal
parent:hybrid), then the maternal parent has likely been misidentified.
An abbreviated example is given in Fig. 2.

There are 41 groups that contain only hybrids, with the total
number of hybrids being 418 and the range of hybrids per group as
3–50. Groups that contain hybrids and one of the maternal parents
provide an opportunity to determine self-pollination and estimate self-
compatibility of the maternal parent. For example, in group 149, 12 of
the hybrids that show ‘Keitt’ as a maternal parent are homozygous for
the same alleles at all loci where ‘Keitt’ is homozygous for that allele.

Where ‘Keitt’ is heterozygous at a locus, different genotypes are seen at
these loci in the hybrid progeny. This is consistent with the hybrids
being self-pollinated progeny of ‘Keitt’. In group 256 which contains
‘Tommy Atkins’, there are 30 hybrids with ‘Tommy Atkins’ as the ma-
ternal parent. Of these 30, 23 are self-pollinated. The rest of the hybrid
analysis is summarized in Table 3. ‘Haden’ is the maternal parent of
‘Tommy Atkins’ and both show the highest rate of self-pollination and
presumably the greatest amount of self-compatibility.

3.3. Identifying zygotic progeny from polyembryonic parents using
silhouette scores

In group 5, AuMG005_Carabao 1_PHIL has a silhouette score of 0.11
while the rest of the group 5 individuals have a silhouette score of 0.85
and are all labeled as Carabao. Using the visual analysis method,
AuMG005_Carabao 1_PHIL has no genotypes that would be impossible
(1:2, 2:1 genotypes when compared to other group members) if another
member of group 5 had been a parent of it. Since AuMG005_Carabao
1_PHIL is not identical to the other ‘Carabao’ accessions of Group 5, it is
likely the zygotic embryo from a maternal ‘Carabao’ parent. AuMG005
was introduced to Australia in the early 1980′s separate from the other
‘Carabao’ accessions in the collection. It may have been selected due to
favorable trait changes due to its zygotic nature.

3.4. Identifying putative paternal parents of hybrids with known maternal
parents

Similarly, silhouette scores can be used to identify the putative
paternal parents of cultivars from a known maternal line whether poly
or monoembryonic. PC307::WB2-07-44::T/A 05-02, an open pollinated
progeny of ‘Tommy Atkins’ occurs in group 21 with a silhouette score of
0.05 while the other group 21 individuals are ‘Nam Doc Mai’ (poly-
embryonic) with silhouette scores ranging from 0.76 to 0.84. The ma-
ternal parent is known to be ‘Tommy Atkins’ and there is only one
impossible genotype (1:2, 2:1 as above) of 272 SNP loci, which can be
attributed to genotyping error as described above, when PC307 is
compared to the ‘Nam Doc Mai’ accessions in Group 21. Thus, the pa-
ternal parent is likely the Thai cultivar ‘Nam Doc Mai’. Further visual
verification by sorting on the ‘Nam Doc Mai’ parent and copying and
pasting the ‘Tommy Atkins’ genotype into group 21 showed that there
were no genotypes other than the one previously noted that were not
consistent with ‘Nam Doc Mai’ as the paternal parent. This data is not
shown but can be demonstrated by sorting Supplemental Table 2 as
described. Likewise, in group 58, PC315::WB2-07-58::T/A 05-02, an
open pollinated progeny of ‘Tommy Atkins’ has a silhouette score of
0.13 and the other members of group 58 are approximately genotypi-
cally identical accessions of the Thai cultivar ‘PPK’ (a cultivar of vari-
able spellings, e.g. ‘Pu Pui Kali’, ‘Po Pyu Kalay’, ‘Po Piju Kalay’, ‘Po Pyo
Ka Kal’) with silhouette scores of 0.80. PC315::WB2-07-58::T/A 05-02

Fig. 2. Evidence for self-pollinated progeny using genotype data. Data are from an abbreviated version of the genotype dataset in Supplemental Table 2 for selected
individuals in affinity group 256. Column 1 is the number of the affinity group. Column 2 is the silhouette score for the individual named in column 3. Row 2 of
column 3 identifies the ‘Tommy Atkins’ maternal parent genotype and the other accessions are hybrids that have ‘Tommy Atkins’ as the maternal parent. The 10
following columns contain the genotypes at the SNP markers described in the column headings. Genotype cells are colored and coded as follows: 0, grey, missing
data; 1, blue, homozygous allele; 2, orange, homozygous allele 2; 3, green, heterozygous. The first four hybrids share the same homozygous genotypes as the maternal
parent and are presumed self-pollinated progeny. The next four hybrids differ from the maternal parent genotypes as heterozygotes and are presumed to have a
paternal parent other than ‘Tommy Atkins’ (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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has only one inconsistent genotype when compared to the PPK acces-
sions in the group and ‘PPK’ is the likely paternal parent of this ac-
cession. Visual verification as described above supported this conclu-
sion as there were no genotypes inconsistent with ‘PPK’ as the paternal
parent. PC279::WB2-06-59::T/A 05-02 in group 91 has a silhouette
score of -0.01 and three identical accessions of ‘Rapoza’ have silhouette
scores of 0.46, suggesting ‘Rapoza’ is a likely paternal parent of
PC279::WB2-06-59::T/A 05-02. In group 117, by similar analysis and
visual verification, the open pollinated progeny of ‘Him Sagar’, ‘Tommy
Atkins’ and ‘Keitt’, but not ‘Haden’, likely have ‘Glenn’ as the paternal
parent.

In group 150, there are nine hybrids with attributed maternal par-
ents as follows, ‘Keitt’ 2, ‘Tommy Atkins’ 6, and one unknown, that
likely have ‘Kent’ as a paternal parent based on their silhouette scores.
Fig. 3 is an abbreviated example of the visual analysis of group 150
where the genotype data has been sorted by row on ‘Kent’. The figure
shows a mislabeling of FSP016::FSP_Mango Row_20120016::Palmer as
‘Palmer’ because it is identical in genotype to ‘Kent’ from the Aus-
tralian, Senegal and SHRS germplasm collections. The ‘Tommy Atkins’
genotype from group 256 has been added to show that the three hybrids
with ‘Tommy Atkins’ as the maternal parent have no genotypes that
would contradict ‘Kent’ as the paternal parent. Finally, the two ‘Kent’
hybrids are shown to not be self-pollinated by the criteria described
above. The presence of a hybrid with a low silhouette score in a group
with known cultivars with high silhouette scores does not guarantee
that the known cultivar is the paternal parent, as is seen in group 176,
where the ‘Keitt’ seedling has too many impossible genotypes to have
‘Brooks’ as the paternal parent. This is also seen in group 194 where the
‘Keitt’ seedling has too many impossible genotypes to have ‘Ah Ping’ as
a paternal parent. Visual verification was used to identify these oc-
currences and should always be used to verify paternal parentage in-
ferences based on silhouette score.

3.5. Determination of a subset of SNP markers for use in identification of
particular cultivars

We have genotyped all 1915 accessions with 272 SNP markers to
create a useful database for comparing germplasm accessions from
multiple collections. Not all 272 SNP markers are necessary to distin-
guish an accession from all others in the database. Although there is no
single core set of SNPs that can reliably differentiate all accessions in
the database due to the breadth of the dataset from half-siblings to
other genera, individual subsets of SNP markers can be designed to
differentiate a particular cultivar of interest from all other accessions in
the dataset. As the dataset appears to encompass the known genetic
diversity of the genus Mangifera, such a subset could be used to dif-
ferentiate a cultivar of interest from any other mango.

Fig. 4 gives an example of how such a subset for the cultivar ‘Al-
fonso’ could be determined. First, the dataset in Supplemental Table 2 is
sorted by the ‘Alfonso’ genotype in row 340 (FSP161 Alfonso), the

exemplar in affinity group 48 to order the markers in the increasing
sequence 0-3. Next, the range of 1 s and 2 s are determined for ‘Alfonso’,
in this case columns H to DH are 1 s and columns DI-FT are 2 s. Countif
formulas are made for these ranges, so that every difference between
another accession and ‘Alfonso’ can be counted. For example: =countif
(H2:DH2,2) + countif(DI2:FT2,1) where the values increase (H3:DH3,
etc) for each row, will count all the 1:2 and 2:1 differences between all
other accessions and ‘Alfonso’. Then the dataset can be sorted by
column on the number of differences and a subset of SNP markers that
will distinguish ‘Alfonso’ from the genotypically closest accessions can
be determined by visual inspection of the sorted dataset. An abbre-
viated example is given in Fig. 4. Note that even subsets as small as
seven markers that show 1:2, 2:1 differences can be reliably used to
differentiate ‘Alfonso’ from its closest accession in the dataset.

3.6. Marker association of embryony type

‘Kensington Pride’ is a polyembryonic cultivar that is used as the
paternal parent in crosses with monoembryonic cultivars in the
Australian mango breeding program. In two mapping populations of
mango (‘Tommy Atkins’ x ‘Kensington Pride’, ‘Creeper’ x ‘Kensington
Pride’), the polyembryony trait was associated with SNP markers on
Linkage Group 8 (Kuhn et al., 2017). These markers had been included
in the 384 SNP markers used to genotype the germplasm collection. For
199 individuals in the Australian germplasm collection embryony and
genotype data were used. We found a significant relationship between
SNPs and the embryony trait with the chi-squared test for independence
(p= 0.0). Using post hoc Fisher’s Exact Tests, we attempted to as-
sociate the embryony trait with a SNP marker across the germplasm
collection (Table 4). There were 98 significant (p-value< 2.71e-6)
markers out of 369. Mi_0173 which had shown association with the
trait in two mapping populations was one of the top 10 markers that
showed association with the embryony trait in the germplasm collec-
tion. Three of the other top 10 markers were found on LG19 between 0
and 39 cM.

3.7. Species

There were 113 accessions labeled as either genera other than
Mangifera or species other than M. indica within Mangifera, with the
dataset containing 100 accessions from 23 different Mangifera species
representing the two subgenera and four sections described by
Kostermans and Bompard (Kostermans and Bompard, 1993) (Table 2).
In group 0 (Supplementary Table 2), all silhouette scores were low
ranging from -0.24 to 0, and accessions represented three genera
(Anacardium, Bouea, and Mangifera) in the family Anacardiaceae and
seven species of Mangifera other than M. indica, three from subgenus
Mangifera (M. gedebe, M. quadrifida, M. casturi), and the other four from
subgenus Limus (M. macrocarpa, M. foetida, M. caesia, M. pajang). The
low silhouette scores in this group likely reflect that individuals are

Fig. 3. Evidence for the identification of hybrid parentage. Data are from an abbreviated version of the genotype dataset in Supplemental Table 2 for selected
individuals in affinity group 150 and the genotype of ‘Tommy Atkins’ from affinity group 256. Column 1 is the number of the affinity group of the individual. Column
2 is the silhouette score in its affinity group for the individual named in column 3. The 12 following columns contain the genotypes at the SNP markers described in
the column headings. Genotype cells are colored and coded as follows: 0, grey, missing data; 1, blue, homozygous allele; 2, orange, homozygous allele 2; 3, green,
heterozygous. Rows 2–5 are the genotypes of three accessions of ‘Kent’ from three different germplasm collections and a putatively mislabeled accession of ‘Palmer’.
Row 6 is the genotype of ‘Tommy Atkins’. Rows 7–9 are genotypes of hybrids with ‘Tommy Atkins’ as the maternal parent that putatively have ‘Kent’ as the paternal
parent. Rows 10–11 are genotypes of hybrids with ‘Kent’ as the maternal parent that putatively do not have ‘Kent’ as the paternal parent (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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evenly dispersed in this area of the dataspace. Visual inspection of
Group 0 in Supplemental Table 2 after zooming out as far as possible
reveals and validates the common genotype features of the group,
dismissing long branch attraction as a possible explanation of the
grouping. Group 1 had much higher silhouette scores, 0.21 to 0.66, and
accessions representing 9 Mangifera species other than M. indica, from
both subgenera and two sections of subgenus Mangifera (Mangifera and
Rawa). Group 3 had two accessions of M. altissima and no other species,
but AuMG036 M. altissima was genotypically identical to AuMG014
‘Pau. Previously these two accessions were found to be genetically
identical using 11 SSR markers (Dillon et al., 2013). Kostermans and
Bompard (1993) list Pau as a vernacular name for M. altissima. Group 8
had five Mangifera species including M. indica, but seven of the nine
accessions of M. casturi (subgenus Mangifera, section Mangifera) were in
this group. Five of those M. casturi accessions were genotypically
identical but also genotypically identical to ew29::KRB_30_M.rufocosta
(subgenus Mangifera, section Mangifera) and ew19::KRP_17_M.macro-
carpa (subgenus Limus). Group 15 was made up of M. lalijiwa and M.
indica accessions. However, the M. indica accession AuMG034_Mangga
Madu has previously been suggested to be genetically similar to M.
lalijiwa (Dillon et al., 2013). Group 20 had 10 of the 17 accessions of M.
odorata (subgenus Limus) that were genotypically identical to two ac-
cessions of M. torquenda (subgenus Mangifera). With limited genetic
diversity seen in an intra-species study of M. odorata (Yamanaka et al.,
2006) and the morphological similarity of the flowers of M. torquenda
and M. odorata (Kostermans and Bompard, 1993) it is assumed that
AuMG013_M. torquenda and AuMG021_Torquenda Lamantana are
mislabeled (Dillon et al., 2013). Group 36 had the only two accessions
of M. pentandra (subgenus Mangifera, section Euantherae). Groups 47,
74 and 108 were genotypically distinct but all labeled as M. laurina,
which seems split into M. laurina ‘Ipoh’ (group 47), M. laurina (group

74) and M. laurina ‘Lombok’ (group 108). Group 77 had the only ac-
cession of M. longipes (not listed by Kostermans and Bompard) which
was genotypically identical to ew26::KRB_7_M. caesia. Group 102 had
two accessions of M. applanata that were genotypically identical to four
accessions of M. rubropetala, further data are required to determine
which species is mislabeled (Dillon et al., 2013).

4. Discussion

The primary objective of this study was to develop a mango SNP
database that could be used as a genomics tool assisting curators with
germplasm maintenance and plant breeders with the development of
new cultivars. This work now represents the largest, most comprehen-
sive genotyping effort in mango to date. SNP markers were selected
because they are platform-independent, reproducible across labs, and
the resulting databases can be shared globally. SNP genotype data is
easy to collect in large amounts due to the high frequency of SNPs, ease
of design from transcriptome or genome assemblies, and the availability
of high throughput SNP assay platforms. We selected a subset of mango
SNP markers that were initially developed to produce a genetic map
(Kuhn et al., 2017), and used these markers to genotype as much of the
world’s mango germplasm as could be obtained for this study. Although
we included 384 markers, selecting 50 random subsets of SNPs markers
resulted in distance matrices and groupings that were not significantly
different from the full dataset (data not shown). This indicates that
fewer markers can be used to genotype accessions in the future. The
advantage of having a larger set of markers, though, is that it provides
users with the ability to select subsets of markers that distinguish par-
ticular cultivars of interest.

Fig. 4. Identifying a subset of SNP markers to differentiate a specific cultivar from all other cultivars in the database using genotype data. An abbreviated version of
the genotype dataset in Supplemental Table 2 that has been sorted by row for the cultivar ‘Alfonso’ (various spellings) and then sorted by column for genotype
differences of accessions compared to ‘Alfonso’. Column 1 is the number of the affinity group of the individual. Column 2 is the silhouette score in its affinity group
for the individual named in column 3. The 15 following columns contain the genotypes at the SNP markers described in the column headings. Genotype cells are
colored and coded as follows: 0, grey, missing data; 1, blue, homozygous allele; 2, orange, homozygous allele 2; 3, green, heterozygous. Rows 2–4 are the genotypes
of ‘Alfonso’. Rows 5–14 are accessions have been compared to ‘Alfonso’ and sorted by increasing number of differences to ‘Alfonso’. The associated table shows the
name of the accession from the colored genotype above in Column 1. Columns 2–5 have the number of missing data (0), homozygous allele 1genotypes (1),
homozygous allele 2 (2), and heterozygous genotypes (3) for these accessions from the whole genotype dataset, not the abbreviated version. Columns 6–8 have the
count of numbers of different genotypes and the type of difference (1:2, 1:3, 2:1,2:3, accession: ‘Alfonso’) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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Table 2
Germplasm accessions in the genotype database and their corresponding position in Kosterman and Bompard’s taxonomic categories for the genus Mangifera. The
genus, subgenus, section and species are from Kosterman and Bompard’s proposed taxonomy of the genus Mangifera. Affinity group of putative accessions of that
species. Number of putative accessions of that species in that affinity group and the total number of accessions of any type in that affinity group.

Genus Subgenus Section Species Affinity Group Number of accessions of species/total accessions in group

Mangifera Mangifera Marchandora gedebe 0 3/23
Mangifera Mangifera Euantherae caloneura
Mangifera Mangifera Euantherae cochinchinensis 2 1/10
Mangifera Mangifera Euantherae pentandra 36 2/5
Mangifera Mangifera Rawa parvifolia
Mangifera Mangifera Rawa paludosa
Mangifera Mangifera Rawa griffithii 1 2/22
Mangifera Mangifera Rawa gracilipes
Mangifera Mangifera Rawa merrillii
Mangifera Mangifera Rawa microphyla
Mangifera Mangifera Rawa minutifolia
Mangifera Mangifera Rawa andamanica
Mangifera Mangifera Rawa nicobarica
Mangifera Mangifera Mangifera altissima 3 2/4
Mangifera Mangifera Mangifera similis 1 2/22
Mangifera Mangifera Mangifera similis 108 1/11
Mangifera Mangifera Mangifera torquenda 20 2/17
Mangifera Mangifera Mangifera mucronulata
Mangifera Mangifera Mangifera applanata 102 2/9
Mangifera Mangifera Mangifera longipetiolata
Mangifera Mangifera Mangifera quadrifida 0 1/23
Mangifera Mangifera Mangifera quadrifida 1 6/22

Mangifera Mangifera quadrifida 2 1/10
Mangifera Mangifera quadrifida 8 1/12
Mangifera Mangifera quadrifida 35 2/5
Mangifera Mangifera quadrifida 36 1/5
Mangifera Mangifera quadrifida 129 1/3

Mangifera Mangifera Mangifera sumbawaensis
Mangifera Mangifera Mangifera timorensis
Mangifera Mangifera Mangifera magnifica 1 1/22
Mangifera Mangifera Mangifera linearifolia
Mangifera Mangifera Mangifera sulavesiana
Mangifera Mangifera Mangifera swintoniodes
Mangifera Mangifera Mangifera dewildei
Mangifera Mangifera Mangifera monandra
Mangifera Mangifera Mangifera casturi 0 1/23
Mangifera Mangifera Mangifera casturi 1 1/22

Mangifera Mangifera casturi 8 7/12
Mangifera Mangifera casturi 46 1/5

Mangifera Mangifera Mangifera indica
Mangifera Mangifera Mangifera rubropetala 4 1/2

Mangifera Mangifera rubropetala 102 4/9
Mangifera Mangifera Mangifera rigida
Mangifera Mangifera Mangifera dongnaiensis
Mangifera Mangifera Mangifera zeylanica 1 1/22

Mangifera Mangifera zeylanica 147 6/7
Mangifera Mangifera Mangifera oblongifolia 124 1/14
Mangifera Mangifera Mangifera rufocostata 8 1/12
Mangifera Mangifera Mangifera austro-yunnanensis
Mangifera Mangifera Mangifera collina

Mangifera Mangifera laurina 47 2/10
Mangifera Mangifera laurina 74 6/12
Mangifera Mangifera laurina 108 5/10

Mangifera Mangifera Mangifera pedicellata
Mangifera Mangifera Mangifera flava
Mangifera Mangifera Mangifera austro-indica
Mangifera Mangifera Mangifera sylvatica
Mangifera Mangifera Mangifera minor
Mangifera Mangifera Mangifera lalijiwa 4 4/7
Mangifera Mangifera Mangifera pseudo-indica
Mangifera Mangifera Mangifera orophila
Mangifera Limus lagenifera
Mangifera Limus decandra
Mangifera Limus superba
Mangifera Limus blommesteinii
Mangifera Limus pajang 0 1/23
Mangifera Limus pajang 1 1/22
Mangifera Limus caesia 0 1/23

Limus caesia 1 1/22
Limus caesia 77 1/3

Mangifera Limus kemanga
Mangifera Limus macrocarpa 0 1/23

(continued on next page)
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4.1. SNP markers

The SNP markers were developed from full sibling populations and
had no SNPs identified within 100 nucleotides on either side of the
variant nucleotide to allow design of SNP assays for the high
throughput platforms (Kuhn et al., 2017). In addition, the SNP markers
designed at SHRS (Mi_) were developed from RNA sequence data from
multiple M. indica accessions and a single M. casturi accession chosen
for their genetic diversity as measured by other methods (Schnell et al.,
2006). The high conservation demanded by filtering the flanking se-
quences and their origin from coding regions suggested that there was a
chance that some of the SNP flanking sequences might be conserved in
other Mangifera species and permit assaying of the variable locus out-
side of M. indica. However, the presence of heterozygosity in the par-
ents of the full sibling population suggests that this locus can be fixed
for either allele in other individuals including grandparents or more

distant individuals in the lineage of the full siblings. Further, the use of
SNP markers for estimating genetic diversity at the population, species,
and genus level poses several challenges.

The majority of markers developed (˜70%) were capable of reliably
genotyping accessions from other Mangifera species and other genera in
the Anacardiaceae. Since the SNP markers were developed from pri-
marily M. indica, it might be expected to see lower variability (het-
erozygosity) in other species. What was unexpected was that these ac-
cessions outside M. indica would frequently be homozygous for the
identical allele. Until this study, species identification has been based
on phenotypic characters.

If individuals from other genera can be accurately genotyped, then
these markers should be sufficient to capture all the genetic diversity
within the genus Mangifera. We successfully used the markers to dis-
tinguish accessions from the genus down to the half sibling level. The
accessions that have been genotyped do not represent a population in
the genetic sense of the term, because of the wide scope of the geno-
typed accessions, the vegetative reproduction of the named clonal
cultivars, and the inclusion of open pollinated progeny of clonally
propagated cultivars.

4.2. Affinity propagation

Our initial attempts to analyze the data in this study using the tra-
ditional analytical methods (neighbor joining or UPGMA clustering,
STRUCTURE, PCA) did not produce results that made biological sense
based on our prior knowledge of geographic and pedigree data. A
biologically-relevant factor contributing to this complexity includes the
often unknown pedigree relationships among parents, hybrids, self-
pollinated progeny, and siblings. The biallelic nature of SNP markers
also made analysis challenging. SNPs can be homozygous allele 1,
homozygous allele 2, or heterozygous. This does two things to the
analysis. First, it dramatically increases the identity by chance as there
are only three possible states. Second, it essentially erases the im-
portance of “private” or rare alleles which drive most of the genetic
diversity estimation for other analysis methods (eg. STRUCTURE).

An alternative analysis method was therefore developed to meet the
primary objectives of this research to assist curators and breeders with
germplasm identification. As described in Materials and Methods, this
method made no genetic assumptions about the data while generating
the affinity propagation groups that best matched prior expectations
while enabling the inference of unknown accessions. The literature
reflects affinity propagation’s relative ubiquity in solving clustering
problems with respect to molecular data. Affinity propagation has
played a crucial role in GWAS analysis software (e.g. DEPICT) (Pers
et al., 2015), subspecies identification (Borile et al., 2011), germplasm
evaluation (de Oliveira et al., 2015), and DNA motif discovery (Sun
et al., 2015). Affinity propagation cannot reliably determine the re-
lationships of groups or perform a higher order grouping, but there is
greater than 50% support for membership in these groups.

4.2.1. Silhouette scores
The silhouette scores that measure quality of membership in a group

Table 2 (continued)

Genus Subgenus Section Species Affinity Group Number of accessions of species/total accessions in group

Limus macrocarpa 8 1/12
Mangifera Limus foetida 0 7/23

Limus foetida 42 1/3
Mangifera Limus leschenaultii
Mangifera Limus odorata 20 10/17

Limus odorata 148 1/2
Limus odorata 244 1/6
Uncertain subsessilifolia 1 3/22

100 individuals

Table 3
Estimation of self-compatibility for maternal parents by analysis of hybrids of
known maternal parentage. Column 1 is the putative maternal parent of the
hybrid. Column 2 is the number of hybrids with that maternal parent. Column 3
is the number of hybrids that are presumed to be self-pollinated by visual
analysis. Column 4 is the percentage of total hybrids of the maternal parent that
are self-pollinated as an estimate of self-compatibility.

Maternal parent of
hybrid

Number of
hybrids

Number of self-
pollinated individuals

% self-
pollination

Tommy Atkins 104 23 22%
Keitt 207 12 6%
Kent 21 0 0%
Haden 28 6 21%
Him Sagar 26 0 0%

Table 4
Top 10 markers associated with polyembryony in germplasm dataset. Marker
names, linkage group from mango genetic map, position in cM on linkage
group, and p-value estimation of association of marker with the polyembryony
trait are detailed. Map information is from Kuhn et al., 2017.

Marker Linkage Group Position on Linkage Group in
cM

p-value

Contig2850 19 25.5 2.09E-21
Mi_0173 8 46.1 2.68E-20
Contig560 19 0 7.32E-18
Mi_0426 4 105.6 1.47E-17
SSKP036C1_A393G Not mapped Not mapped 1.61E-17
Mi_0227 18 9.8 1.75E-17
Contig2005 19 39.0 8.91E-16
mango_rep_c4227 13 74.1 1.78E-15
Mi_0252 15 32.6 5.96E-15
mango_rep_c8171 17 26.9 8.34E-15

1, Results of the permutation test for the mango dataset:
Chi-squared significance (p): 0.0.
Chi-squared Degrees of freedom: 1106 Bonferroni threshold (p) for post hoc
tests: 2.7100271002710026e-6.
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have allowed easier identification of mislabeled, misidentified, poten-
tial self-pollinated individuals, and even, in some cases, the identifi-
cation of potential paternal parents for open pollinated progeny. In
some cases, silhouette scores for all members of a group are close to
zero or even negative. Based on how the scores are calculated, the low
scores are due to a combination of within group dispersal and the
density of the space the entire dataset occupies; i.e. the dispersed group
members are close to the outermost borders of other groups. However,
visual representation of group members (Supplementary Table 2)
makes group relationships clear. In a group where the exemplar and all
members have low silhouette scores, the accessions are evenly dis-
persed through that portion of data space identified by the affinity
grouping and so each is an equally poor center (exemplar) for the
group. Thus, although high silhouette scores always indicate a high
degree of genetic identity, low silhouette scores, especially if low for an
entire group, do not mean that the group members are not genetically
related, but that they are more dispersed in the volume of data space
that they inhabit.

4.3. Estimating genetic diversity in the germplasm dataset

Affinity propagation generated 258 groups of the 1915 accessions,
with the most frequent group size having three members and most of
the groups having between 2 and 15 members. These groups can be
used to assist in the curation of germplasm collections. The 258 groups
represent genetic diversity from the genus level down to the half sibling
level and, overall, the groups reflect this diversity correctly. Some
species are grouped by themselves, while others from groups with
multiple species. Half siblings are grouped either by maternal parent or
paternal parent. M. indica germplasm accessions, the most important
group in this study, are found to be grouped by geographic location
(e.g. ‘Carabao’ in the Philippines, ‘Nam Doc Mai’ in Thailand), or by
genetic identity. For example, the 259 clonal accessions in the SHRS
germplasm collection appear in 138 groups. A single individual from
each of the 138 groups would be sufficient to capture all the genetic
diversity in the germplasm collection should it be necessary to choose
individuals for a backup collection at another site. The number of in-
dividuals representing the genetic diversity in the SHRS collection may
decrease once mislabeled/misidentified accessions have been removed.
Thus, all the genetic diversity encompassed by the current germplasm
collection could be maintained in a collection approximately half the
size of the current one and with greater confidence of the identity of the
accessions based on comparison with genotypes of accessions from
other collections. Another advantage for the SHRS program is that this
information will prove useful in determining priority of rescue of trees
after a hurricane or in prioritizing grafting of trees for regenerating the
collection.

A useful outcome from this study could also be the identification of
a subset of genetically identical accessions found in multiple locations
around the world. These could form the basis of a study to evaluate
their responses to different climatic and soil environments and provide
a means to determine the relative genetic by environmental (GxE) in-
fluences on traits of interest to growers and breeders.

4.4. Estimating mislabeling/misidentification in the germplasm collection

Correctly identifying accessions in germplasm collections is crucial
to their utility and for the distribution of material to requestors.
Mislabeling/misidentification is a common problem with all germplasm
collections and, in recent years, curators have turned to molecular
markers to reduce the amount of mislabeling and misidentification in
collections. Genotyping labeled clones from other germplasm collec-
tions to verify the identity of the potentially mislabeled clones may also
be confounded by the source of the material. Germplasm exchange in
the past was quite common, so it should be possible to come to a
consensus for labeled clones and specific genotypes.

We have taken two approaches to estimate the prevalence of mis-
labeling using molecular markers, neither one provides a complete
solution. In the Australian germplasm collection, there are a large
number of farmers’ selections of ‘Kensington Pride’ that are close to
genetically identical and all members of a single affinity group. Within
this group are other named accessions that are not related to
‘Kensington Pride’ but are almost genetically identical to it. Using this
single group, we calculated a potential mislabeling of 15% that may
represent the upper limit of mislabeling for the entire collection as there
were fewer accessions in the group than in the whole collection.

The other estimate of mislabeling occurred when two or more ac-
cessions appeared in more than one group. Without regard to which
clone was correct, it clearly indicated mislabeling. For all the germ-
plasm collections, this method estimated ˜8% mislabeling, which is an
underestimate and, also the lower limit of mislabeling for the collec-
tion. The lower estimate was done by counting mislabeling events for
each collection and dividing by the total number of accessions from that
collection that were genotyped. In any event, mislabeling is a serious
problem for all these germplasm collections and the genotype data
should be used to reduce this issue either by relabeling based on gen-
otype or removal of accessions from a collection.

4.5. Zygotic and maternal embryos of polyembryonic cultivars

Polyembryonic maternal parents that are well adapted to the en-
vironment and soil type of the region are frequently used to generate
clonal rootstock based on the belief that such maternal parents “breed
true” and the maternal apomictic embryo is selected over the zygotic
embryo. At SHRS, we have employed ‘Turpentine’ as rootstock for over
30 years. In addition, Turpentine was the paternal parent of ‘Haden’, a
Florida cultivar developed in the early 20th century. Our genotyping of
all accessions labeled ‘Turpentine’ at SHRS and comparison to acces-
sions from other germplasm collections demonstrate that our
‘Turpentine’ accessions fall into five different groups (78, 113, 131,
196, 231). Group 78 is the likely ‘Turpentine’ as accessions labeled
‘Turpentine’ from two other germplasm collections are identical to
three SHRS accessions and four other SHRS probably mislabeled/mis-
identified accessions that are likely to be rootstock. Group 131 contains
two SHRS accessions labeled ‘Turpentine’ as does group 231, with
groups 113 and 196 containing one labeled ‘Turpentine’ accession each.
None of these accessions can be first generation outcrossed progeny of
the accessions in group 78 due to the presence of a large number of
impossible genotypes (maternal parent homozygous for allele 1, pro-
geny homozygous for allele 2). Thus, the ‘Turpentine’ accessions in the
groups other than 78 are either two zygotic generations from the ori-
ginal maternal parent or mislabeled. If clonal rootstock is a necessity,
for example for clonal trials of scions, rootstock seedlings should be
genotyped using a small subset of markers that will distinguish apo-
mictic embryos from zygotic embryos prior to grafting of the scion.

4.6. Self-pollination and self-compatibility

In mango orchards populated with clones derived from perhaps
several thousand years of selection and vegetative propagation, self-
compatibility may be less frequent as pollen from other clones is more
available. Because we had genotypes from more than 400 hybrids
where the maternal parent was known to be monoembryonic and many
other mango cultivars were in proximity to the maternal parent, de-
termination of the frequency of self-pollination in the progeny would
allow a relative estimation of self-compatibility among maternal par-
ents. The visual representation of the data using colors for the geno-
types made it relatively easy to determine by inspection if progeny were
likely to result from self-pollination. Self-pollinated progeny would
share the same homozygous alleles as the maternal parent. By simply
counting the number of genotypes for an individual that differed from
the maternal parent at those homozygous loci, self-pollinated progeny
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could be distinguished from outcrossed progeny. Identifying and re-
moving self-pollinated progeny is important in breeding programs as
most maternal parents are heterozygous and the likelihood of gen-
erating homozygous recessive allele progeny is increased. By geno-
typing the progeny at the seedling stage, self-pollinated progeny can be
removed from the population that are to be grown up for evaluation
and selection, saving the breeder the significant cost per tree to main-
tain and evaluate experimental plots. Anecdotally, we have observed
that self-pollinated Tommy Atkins progeny on our station rarely flower
(David Kuhn, personal observation).

4.7. Inferring paternal parents of hybrids of known maternal parents

Inferring potential paternal parents of hybrids using affinity pro-
pagation analysis and silhouette scores with a simplified visual analysis
is a novel approach to analyzing a large dataset of SNP genotypes from
a large number of individuals. As in the analysis of zygotic embryos, the
key is to look for impossible genotypes between the potential paternal
parent and the hybrid. In the case where the hybrids are found in the
same group as a potential paternal parent, simply hiding the rows that
are not hybrids or the potential parent allows a quick visual scan
through the markers to identify hybrids that have one or no impossible
genotypes. Such identification of potential paternal parents is particu-
larly important to gain outcrossed material for breeding programs. With
the current dataset, genotyping of progeny from maternal trees at the
seedling stage and regeneration of the affinity groups can be used to
rapidly identify specific paternal parents of hybrids and to select these
parents for more detailed phenotypic evaluation.

4.8. Marker association in germplasm collections

Hybrid mapping populations with known maternal and paternal
parents that differ significantly for a trait provide a much more sensi-
tive means to associate traits with markers than do germplasm collec-
tions. In a mapping population, linkage disequilibrium is high, such
that markers every 5 cM are often sufficient to obtain significant asso-
ciations (J. van Ooijen, JoinMap 4 manual). In germplasm collections,
linkage disequilibrium is low as many more meioses have occurred
between individuals than in an F1 mapping population.

For the qualitative trait of polyembryony, we were able to find
several markers in the same relative positions in the same linkage group
of two different mapping populations that shared a single maternal
polyembryonic parent (‘Kensington Pride’). We attempted to identify
similar associations within the germplasm collection that had many
polyembryonic accessions. We used the Fisher’s exact statistical test to
determine association, since polyembryony is a qualitative trait with
only two states (polyembryonic and monoembryonic). The marker
(Mi_0173) that had shown an association with polyembryony in the
mapping populations, also showed the second highest association
(lowest p-value score) across the germplasm collection as shown in
Table 4. In addition, several other markers found on a different linkage
group and within 30 cM of each other were in the top ten markers.

Trait association using germplasm collections can be confounded by
mislabeling, low amounts of phenotypic data, and the potential for
undetected family structure. We performed a permutation test (chi-
squared test for independence) that showed that the polyembryony trait
was associated with markers in the germplasm collection genotype data
(p=0.0). The Bonferroni correction for post hoc Fisher’s Exact Tests
was approximately 2.71e-6, with 98 markers significant at p < 2.71e-
6. Such a high number of markers significantly associated with the trait
may be explained by the dataset representing a collection not a popu-
lation or family. Family structure, especially for polyembryonic in-
dividuals that are clonal, may cause a false association of markers to the
polyembryony trait. We cannot discount the possibility that there are
more genes that regulate polyembryony despite only finding one in our
mapping populations. The two mapping populations that showed a

significant association of markers on the same linkage group with
polyembryony shared a single polyembryonic paternal parent. Thus,
the associations of markers on other linkage groups with polyembryony
discovered in the germplasm study may be equally valid as the parents
are unknown. The germplasm collection study is likely to lead to the
identification of further candidate loci that may be linked to genes
regulating polyembryony.

4.9. Genotyping accessions from other genera and species

With the caveat that the accessions labeled as other species may also
have a rate of mislabeling as high as 15% and an unknown rate of
misidentification, we were able to distinguish distinct affinity groups
that either represented a single species or two labeled species that were
genetically identical. However, due to vagaries in the naming of ac-
cessions, the grouping of many different species and genera together in
a single group, and the small number of species with multiple acces-
sions, it is difficult to assess the value of the genotypic data in clarifying
or validating species identification.

The three accessions from Bouea (three B. macrophylla and one B.
oppositifolia), the single accession from Anacardium, and some acces-
sions of seven Mangifera species other than M. indica are found in group
0. Silhouette scores are low for all accessions in Group 0 but visual
inspection of the data does not suggest that individuals from different
genera are identical or that there are no distinct differences that would
identify individuals from a particular genus or species. In Mangifera,
three of the accessions are in subgenus Mangifera, but not in the same
section and four are in subgenus Limus.

Group 1, containing accessions from nine differentMangifera species
other than M. indica, two common name accessions and two accessions
labeled M. species, highlights the problem with labeling of accessions
and species identification. Group 1 has six accessions (AuMG055_12. M.
similis, ew14::KRB_2_M. similis, AuMG060_46. M. quadrifida,
AuMG532_M. quadrifida (NT DPI), AuMG461_Assam Ramuk,
AuMG537_Ramuk) that represent three pairs of labeled accessions that
are all genetically identical. It is unclear if ‘Ramuk’ is the local name for
another species or if this would be M. quadrifida or M. similis. Of the
nine accessions in Group 1 labeled as Mangifera species, two are in
subgenus Limus, six in subgenus Mangifera and one is not assigned to a
subgenus or section (M. subsessifolia). Thus, in the groups that contain
the greatest number of different species, there is no definitive evidence
to support the distinction between subgenera proposed by Kostermans
and Bompard (Kostermans and Bompard, 1993).

In cases where there are two or more accessions labeled as a species
and either all accessions are in the same affinity group or the majority
of accessions are in a single affinity group, the genotype data support
the identity of distinct species. From Table 2, there is evidence for M.
gedebe, M. pentandra, M. griffithii, M. altissima, M. quadrifida, M. casturi,
M. rubropetala/M. applanata, M. zeylanica, M. lalijiwa, M. foetida, M.
odorata, and M. subsessifolia. Accessions labeled M. laurina occur in
three distinct groups that may represent three separate species or
subspecies of M. laurina (Ipoh, Lombok and Laurina). These subdivi-
sions of M. laurina are supported by phenotypic data with Ipoh being
phenotypically distinct from the other M. laurina species (Ian Bally,
personal communication). Thus, despite some potential mislabeling/
misidentification, there is genotypic support for at least 13 of 23 species
represented in the dataset, with the potential for supporting more dis-
tinct species identification when more accessions become available for
genotyping. At the same time, a clear species identification forM. indica
becomes less certain, due to accessions labeled asM. indica appearing as
distinct affinity groups with less in common with otherM. indica groups
as there is between distinct species. One possible explanation is that M.
indica is really a cultigen with diverse introgression from other species
with the confounding factor of selection and vegetative propagation
over several thousand years.
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5. Conclusions

The generation of the largest mango SNP genotype database derived
from diverse germplasm accessions ranging from different genera to
half sibling hybrids provides a tool that is useful to mango breeders and
researchers worldwide. The employment of a novel grouping method
based on affinity propagation and the scoring of the quality of mem-
bership in a group by the silhouette analysis has shown that the gen-
otype data can be used successfully to estimate germplasm genetic
germplasm and identify mislabeling across the entire range of acces-
sions. In addition, using a simple color coding of the genotypes, we
have shown that identification of self-pollinated or outcrossed progeny,
estimation of self-compatibility for maternal parents, and identification
of likely paternal parents for hybrids of known maternal parents can be
easily interrogated by visual inspection. Finally, association of im-
portant horticultural qualitative traits with specific SNP markers across
the entire germplasm is possible if sufficient reliable phenotypic data is
available.
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